1
|
Mediaas SD, Haug M, Louet C, Wahl SGF, Gidon A, Flo TH. Metformin improves Mycobacterium avium infection by strengthening macrophage antimicrobial functions. Front Immunol 2024; 15:1463224. [PMID: 39737195 PMCID: PMC11682992 DOI: 10.3389/fimmu.2024.1463224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction The incidence and prevalence of infections with non-tuberculous mycobacteria such as Mycobacterium avium (Mav) are increasing. Prolonged drug regimens, inherent antibiotic resistance, and low cure rates underscore the need for improved treatment, which may be achieved by combining standard chemotherapy with drugs targeting the host immune system. Here, we examined if the diabetes type 2 drug metformin could improve Mav-infection. Methods Metformin was administered to C57BL/6 mice infected intranasally with Mav and C57BL/6 mice were infected intranasally with Mav and treated with metformin over 3 weeks. Organ bacterial loads and lung pathology, inflammatory cytokines and immune cell profiles were assessed. For mechanistic insight, macrophages infected with Mav were treated with metformin alone or in combination with inhibitors for mitochondrial ROS or AMPK and assessed for bacterial burden and phagosome maturation. Results and discussion Three weeks of metformin treatment significantly reduced the lung mycobacterial burden in mice infected with Mav without major changes in the overall lung pathology or immune cell composition. Metformin treatment had no significant impact on tissue inflammation except for a tendency of increased lung IFNγ and infiltration of Mav-specific IFNγ-secreting T cells. Metformin did, however, boost the antimicrobial capacity of infected macrophages directly by modulating metabolism/activating AMPK, increasing mitochondrial ROS and phagosome maturation, and indirectly by bolstering type I immunity. Taken together, our data show that metformin improved the control of Mav-infection in mice, mainly by strengthening antimicrobial defenses in macrophages, and suggest that metformin has potential as an adjunct treatment of Mav infections.
Collapse
Affiliation(s)
- Sindre Dahl Mediaas
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Infection, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Markus Haug
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Infection, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Claire Louet
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sissel Gyrid Freim Wahl
- Department of Pathology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Alexandre Gidon
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Infection, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
2
|
Ranjan R, Devireddy VSR. Prospects of Inhalable Formulations of Conventionally Administered Repurposed Drugs for Adjunctive Treatment of Drug-Resistant Tuberculosis: Supporting Evidence from Clinical Trials and Cohort Studies. J Aerosol Med Pulm Drug Deliv 2024. [PMID: 39648822 DOI: 10.1089/jamp.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
Background: Drug resistant tuberculosis is a major public health concern, since the causative agent Mycobacterium tuberculosis is resistant to the most effective drugs against tuberculosis treatment ie., rifampicin and isoniazid. Globally, it accounts 4.6 percent of the patients with tuberculosis, but in some low socioeconomic areas this proportion exceeds to 25 percent. The treatment of drug resistant tuberculosis is prolonged (9-12 months) and often have less favorable outcome with novel as well as recently repurposed drugs administered by conventional routes. Materials and Methods: Clinically, these repurposed drugs have shown several major concerns including low penetration of the drugs to the pulmonary region, emergence of resistant forms, first pass effects, drug-drug interactions, food effects, and serious side effects upon administration by conventional route of administration. Although, several antimicrobial agents have been either approved or are under investigation at different stages of clinical trials and in pre-clinical studies via inhalation route for the treatment of respiratory infections, inhalable formulation for the treatment of drug resistant tuberculosis is most untouched aspect of drug delivery to validate clinically. Only a single dry powder inhalation formulation of capreomycin is able to reach the milestone, ie., phase I for the treatment of drug resistant tuberculosis. Results: Administering inhalable formulations of repurposed drugs as adjuvant in the treatment of drug resistant tuberculosis could mitigate several concerns by targeting drugs directly in the vicinity of bacilli. Conclusion: This review focuses on the limitations and major concerns observed during clinical trials of repurposed drugs (host directed or bactericidal drugs) administered conventionally for the treatment of drug resistant tuberculosis. The outcomes and the concerns of these clinical trials rationalized the need of repurposing formulation which could be administered by inhalation route as adjunctive treatment of drug resistant tuberculosis. [Figure: see text].
Collapse
Affiliation(s)
- Rajeev Ranjan
- Faculty of Pharmacy, Gopal Narayan Singh University, Sasaram, Bihar, India
| | | |
Collapse
|
3
|
Abhimanyu, Longlax SC, Nishiguchi T, Ladki M, Sheikh D, Martinez AL, Mace EM, Grimm SL, Caldwell T, Portillo Varela A, Sekhar RV, Mandalakas AM, Mlotshwa M, Ginidza S, Cirillo JD, Wallis RS, Netea MG, van Crevel R, Coarfa C, DiNardo AR. TCA metabolism regulates DNA hypermethylation in LPS and Mycobacterium tuberculosis-induced immune tolerance. Proc Natl Acad Sci U S A 2024; 121:e2404841121. [PMID: 39348545 PMCID: PMC11474056 DOI: 10.1073/pnas.2404841121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/28/2024] [Indexed: 10/02/2024] Open
Abstract
Severe and chronic infections, including pneumonia, sepsis, and tuberculosis (TB), induce long-lasting epigenetic changes that are associated with an increase in all-cause postinfectious morbidity and mortality. Oncology studies identified metabolic drivers of the epigenetic landscape, with the tricarboxylic acid (TCA) cycle acting as a central hub. It is unknown if the TCA cycle also regulates epigenetics, specifically DNA methylation, after infection-induced immune tolerance. The following studies demonstrate that lipopolysaccharide and Mycobacterium tuberculosis induce changes in DNA methylation that are mediated by the TCA cycle. Infection-induced DNA hypermethylation is mitigated by inhibitors of cellular metabolism (rapamycin, everolimus, metformin) and the TCA cycle (isocitrate dehydrogenase inhibitors). Conversely, exogenous supplementation with TCA metabolites (succinate and itaconate) induces DNA hypermethylation and immune tolerance. Finally, TB patients who received everolimus have less DNA hypermethylation demonstrating proof of concept that metabolic manipulation can mitigate epigenetic scars.
Collapse
Affiliation(s)
- Abhimanyu
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Santiago Carrero Longlax
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Tomoki Nishiguchi
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Malik Ladki
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Daanish Sheikh
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Amera L. Martinez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX77030
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY10032
| | - Sandra L. Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Thaleia Caldwell
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Alexandra Portillo Varela
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Rajagopal V. Sekhar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Anna M. Mandalakas
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
- Epidemiology, Human Genetics & Environmental Sciences, University of Texas-UTHealth School of Public Health, Houston, TX77030
- Clinical Infectious Disease Group, German Center for Infectious Research (DZIF), Clinical tuberculosis (TB) Unit, Research Center Borstel, Borstel27246, Germany
| | - Mandla Mlotshwa
- The Aurum institute, Johannesburg2006, South Africa
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2006, South Africa
- Department of Medicine, Vanderbilt University, Nashville, TN37232
| | | | - Jeffrey D. Cirillo
- Center for Airborne Pathogen Research and Imaging, Texas A&M College of Medicine, Bryan, TX77843
| | - Robert S. Wallis
- The Aurum institute, Johannesburg2006, South Africa
- Department of Medicine, Case Western Reserve University, Cleveland, OH44106
- Vanderbilt Institute for Global Health, Vanderbilt University, Nashville, TN37232
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen6525, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn53113, Germany
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen6525, Netherlands
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, OxfordOX1 4BH, United Kingdom
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Andrew R. DiNardo
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen6525, Netherlands
| |
Collapse
|
4
|
Thom RE, D’Elia RV. Future applications of host direct therapies for infectious disease treatment. Front Immunol 2024; 15:1436557. [PMID: 39411713 PMCID: PMC11473292 DOI: 10.3389/fimmu.2024.1436557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
New and emerging pathogens, such as SARS-CoV2 have highlighted the requirement for threat agnostic therapies. Some antibiotics or antivirals can demonstrate broad-spectrum activity against pathogens in the same family or genus but efficacy can quickly reduce due to their specific mechanism of action and for the ability of the disease causing agent to evolve. This has led to the generation of antimicrobial resistant strains, making infectious diseases more difficult to treat. Alternative approaches therefore need to be considered, which include exploring the utility of Host-Directed Therapies (HDTs). This is a growing area with huge potential but difficulties arise due to the complexity of disease profiles. For example, a HDT given early during infection may not be appropriate or as effective when the disease has become chronic or when a patient is in intensive care. With the growing understanding of immune function, a new generation of HDT for the treatment of disease could allow targeting specific pathways to augment or diminish the host response, dependent upon disease profile, and allow for bespoke therapeutic management plans. This review highlights promising and approved HDTs that can manipulate the immune system throughout the spectrum of disease, in particular to viral and bacterial pathogens, and demonstrates how the advantages of HDT will soon outweigh the potential side effects.
Collapse
Affiliation(s)
- Ruth E. Thom
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - R V. D’Elia
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
5
|
Sweet MJ, Ramnath D, Singhal A, Kapetanovic R. Inducible antibacterial responses in macrophages. Nat Rev Immunol 2024:10.1038/s41577-024-01080-y. [PMID: 39294278 DOI: 10.1038/s41577-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/20/2024]
Abstract
Macrophages destroy bacteria and other microorganisms through phagocytosis-coupled antimicrobial responses, such as the generation of reactive oxygen species and the delivery of hydrolytic enzymes from lysosomes to the phagosome. However, many intracellular bacteria subvert these responses, escaping to other cellular compartments to survive and/or replicate. Such bacterial subversion strategies are countered by a range of additional direct antibacterial responses that are switched on by pattern-recognition receptors and/or host-derived cytokines and other factors, often through inducible gene expression and/or metabolic reprogramming. Our understanding of these inducible antibacterial defence strategies in macrophages is rapidly evolving. In this Review, we provide an overview of the broad repertoire of antibacterial responses that can be engaged in macrophages, including LC3-associated phagocytosis, metabolic reprogramming and antimicrobial metabolites, lipid droplets, guanylate-binding proteins, antimicrobial peptides, metal ion toxicity, nutrient depletion, autophagy and nitric oxide production. We also highlight key inducers, signalling pathways and transcription factors involved in driving these different antibacterial responses. Finally, we discuss how a detailed understanding of the molecular mechanisms of antibacterial responses in macrophages might be exploited for developing host-directed therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ronan Kapetanovic
- INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly, France
| |
Collapse
|
6
|
Pavan Kumar N, Padmapriyadarsini C, Nancy A, Tamizhselvan M, Mohan A, Reddy D, Ganga Devi NP, Rathinam P, Jeyadeepa B, Shandil RK, Guleria R, Singh M, Babu S. Effect of Metformin on systemic chemokine responses during anti-tuberculosis chemotherapy. Tuberculosis (Edinb) 2024; 148:102523. [PMID: 38850838 DOI: 10.1016/j.tube.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Metformin (MET), by boosting immunity, has been suggested as a host-adjunctive therapy to anti-tuberculosis treatment (ATT). METHODS We evaluated whether adding MET to the standard ATT can alter the host chemokine response. We investigated the influence of metformin on the plasma levels of a wide panel of chemokines in a group of active tuberculosis patients before treatment, at 2nd month of ATT and at 6-months of ATT as part of our clinical study to examine the effect of metformin on ATT. RESULTS Our results demonstrated that addition of metformin resulted in diminished CC (CCL1 and CCL3) and CXC (CXCL-2 and CXCL-10) chemokines in MET arm as compared to non-MET arm at the 2nd month and 6th month of ATT. In addition to this, MET arm showed significantly diminished chemokines in individuals with high bacterial burden and cavitary disease. CONCLUSION Our current data suggest that metformin alters chemokines responses that could potentially curb excessive inflammation during ATT.
Collapse
Affiliation(s)
| | | | - Arul Nancy
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - M Tamizhselvan
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Anant Mohan
- All India Institute for Medical Sciences, New Delhi, India
| | - Devarajulu Reddy
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | | | | | | | - R K Shandil
- Open Source Pharma Foundation, Bangalore, India
| | | | - Manjula Singh
- Indian Council of Medical Research, New Delhi, India
| | - Subash Babu
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| |
Collapse
|
7
|
Motta I, Boeree M, Chesov D, Dheda K, Günther G, Horsburgh CR, Kherabi Y, Lange C, Lienhardt C, McIlleron HM, Paton NI, Stagg HR, Thwaites G, Udwadia Z, Van Crevel R, Velásquez GE, Wilkinson RJ, Guglielmetti L. Recent advances in the treatment of tuberculosis. Clin Microbiol Infect 2024; 30:1107-1114. [PMID: 37482332 DOI: 10.1016/j.cmi.2023.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Tuberculosis (TB) is a global health challenge and one of the leading causes of death worldwide. In the last decade, the TB treatment landscape has dramatically changed. After long years of stagnation, new compounds entered the market (bedaquiline, delamanid, and pretomanid) and phase III clinical trials have shown promising results towards shortening duration of treatment for both drug-susceptible (Study 31/A5349, TRUNCATE-TB, and SHINE) and drug-resistant TB (STREAM, NiX-TB, ZeNix, and TB-PRACTECAL). Dose optimization of rifamycins and repurposed drugs has also brought hopes of further development of safe and effective regimens. Consequently, international and WHO clinical guidelines have been updated multiple times in the last years to keep pace with these advances. OBJECTIVES This narrative review aims to summarize the state-of-the-art on treatment of drug-susceptible and drug-resistant TB, as well as recent trial results and an overview of ongoing clinical trials. SOURCES A non-systematic literature review was conducted in PubMed and MEDLINE, focusing on the treatment of TB. Ongoing clinical trials were listed according to the authors' knowledge and completed consulting clinicaltrials.gov and other publicly available websites (www.resisttb.org/clinical-trials-progress-report, www.newtbdrugs.org/pipeline/trials). CONTENT This review summarizes the recent, major changes in the landscape for drug-susceptible and drug-resistant treatment, with a specific focus on their potential impact on patient outcomes and programmatic TB management. Moreover, insights in host-directed therapies, and advances in pharmacokinetics and pharmacogenomics are discussed. A thorough outline of ongoing therapeutic clinical trials is presented, highlighting different approaches and goals in current TB clinical research. IMPLICATIONS Future research should be directed to individualize regimens and protect these recent breakthroughs by preventing and identifying the selection of drug resistance and providing widespread, affordable, patient-centred access to new treatment options for all people affected by TB.
Collapse
Affiliation(s)
- Ilaria Motta
- Médecins Sans Frontières, Manson Unit, London, United Kingdom
| | - Martin Boeree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dumitru Chesov
- Chiril Draganiuc Phthisiopneumology Institute, Chisinau, Moldova; Department of Pulmonology and Allergology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova; Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gunar Günther
- Department of Pulmonology and Allergology, Inselspital, Bern University Hospital, Bern, Switzerland; Department of Medical Sciences, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - Charles Robert Horsburgh
- Departments of Epidemiology, Biostatistics, Global Health and Medicine, Boston University, Boston, MA, United States
| | - Yousra Kherabi
- Infectious, and Tropical Diseases Department, Bichat-Claude Bernard Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany; German Center for Infection Research (DZIF), Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Department of International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany; Department of Pediatrics-Global Immigrant, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Christian Lienhardt
- Department of Translational Research Applied to HIV and Infectious Diseases, Institut de Recherche pour le Développement, Montpellier, France; Department of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen M McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicholas I Paton
- Department of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Helen R Stagg
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Zarir Udwadia
- Department of Internal Medicine and Pulmonology, Hinduja Hospital & Research Centre, Mumbai, India
| | - Reinout Van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Gustavo E Velásquez
- UCSF Center for Tuberculosis, University of California, San Francisco, San Francisco, CA, United States; Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Robert J Wilkinson
- Francis Crick Institute, London, United Kingdom; Department of Infectious Diseases, Imperial College London, United Kingdom
| | - Lorenzo Guglielmetti
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France; AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Laboratoire de Bactériologie-Hygiène, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France.
| |
Collapse
|
8
|
Meng X, Zheng H, Du J, Wang X, Wang Y, Hu J, Zhao J, Du Q, Gao Y. Interaction of Glycemic Control and Statin Use on Diabetes-Tuberculosis Treatment Outcome: A Nested Case-Control Study. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:8675248. [PMID: 38938548 PMCID: PMC11211008 DOI: 10.1155/2024/8675248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/14/2024] [Accepted: 06/08/2024] [Indexed: 06/29/2024]
Abstract
This study aims to explore the interaction of glycemic control and statin use on the treatment outcomes of pulmonary tuberculosis-diabetes comorbidity (PTB-DM) patients. A nested case-control study was conducted in a tuberculosis patients' cohort. We defined cases as patients who experienced unfavorable outcomes. Glycemic control was estimated at the baseline. Statin use was obtained from medical records. The multivariate logistic regression models were developed, and the interaction table invented by Andersson was adopted to analyze the interaction of glycemic control and statin use on treatment outcomes. A total of 2,047 patients were included in this study. There was a significant interaction between glycemic control and statin use on the treatment outcomes. Patients with good glycemic control and no statin use (OR = 0.464, 95% CI: 0.360-0.623) had a lower risk of unfavorable outcomes than those with poor glycemic control and statin use (OR = 0.604, 95% CI: 0.401-0.734). Patients with good glycemic control and statin use had the lowest risk of unfavorable outcomes (OR = 0.394, 95% CI: 0.264-0.521). Glycemic control in diabetes-tuberculosis treatment should be paid considerable attention. Patients can benefit from statin use even if they have poor glycemic control. Patients with good glycemic control and statin use can have the best outcomes.
Collapse
Affiliation(s)
- Xiangrui Meng
- Center for Data Science in Health and Medicine, School of Public Health, Inner Mongolia Medical University, Hohhot 010110, China
| | - Huiqiu Zheng
- Center for Data Science in Health and Medicine, School of Public Health, Inner Mongolia Medical University, Hohhot 010110, China
| | - Jian Du
- Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, China
| | - Xuemei Wang
- Center for Data Science in Health and Medicine, School of Public Health, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yanling Wang
- Center for Data Science in Health and Medicine, School of Public Health, Inner Mongolia Medical University, Hohhot 010110, China
| | - Jing Hu
- Center for Data Science in Health and Medicine, School of Public Health, Inner Mongolia Medical University, Hohhot 010110, China
| | - Jing Zhao
- Center for Data Science in Health and Medicine, School of Public Health, Inner Mongolia Medical University, Hohhot 010110, China
| | - Qianqian Du
- Center for Data Science in Health and Medicine, School of Public Health, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yulong Gao
- Department of Infectious Disease Control and Prevention, Inner Mongolia Center for Disease Control and Prevention, Hohhot 010031, China
| |
Collapse
|
9
|
Helaine S, Conlon BP, Davis KM, Russell DG. Host stress drives tolerance and persistence: The bane of anti-microbial therapeutics. Cell Host Microbe 2024; 32:852-862. [PMID: 38870901 PMCID: PMC11446042 DOI: 10.1016/j.chom.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Antibiotic resistance, typically associated with genetic changes within a bacterial population, is a frequent contributor to antibiotic treatment failures. Antibiotic persistence and tolerance, which we collectively term recalcitrance, represent transient phenotypic changes in the bacterial population that prolong survival in the presence of typically lethal concentrations of antibiotics. Antibiotic recalcitrance is challenging to detect and investigate-traditionally studied under in vitro conditions, our understanding during infection and its contribution to antibiotic failure is limited. Recently, significant progress has been made in the study of antibiotic-recalcitrant populations in pathogenic species, including Mycobacterium tuberculosis, Staphylococcus aureus, Salmonella enterica, and Yersiniae, in the context of the host environment. Despite the diversity of these pathogens and infection models, shared signals and responses promote recalcitrance, and common features and vulnerabilities of persisters and tolerant bacteria have emerged. These will be discussed here, along with progress toward developing therapeutic interventions to better treat recalcitrant pathogens.
Collapse
Affiliation(s)
- Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Brian P Conlon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - Kimberly M Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Kumar AKH, Kadam A, Karunaianantham R, Tamizhselvan M, Padmapriyadarsini C, Mohan A, Jeyadeepa B, Radhakrishnan A, Singh UB, Bapat S, Mane A, Kumar P, Mamulwar M, Bhavani PK, Haribabu H, Rath N, Guleria R, Khan AM, Menon J. Effect of Metformin on Plasma Exposure of Rifampicin, Isoniazid, and Pyrazinamide in Patients on Treatment for Pulmonary Tuberculosis. Ther Drug Monit 2024; 46:370-375. [PMID: 38019456 PMCID: PMC11078288 DOI: 10.1097/ftd.0000000000001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/08/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND To evaluate the effect of metformin on the plasma levels of rifampicin, isoniazid, and pyrazinamide in patients with drug-sensitive pulmonary tuberculosis being treated with first-line antituberculosis treatment (ATT) and to assess the influence of gene polymorphisms on the metabolic pathway of metformin and plasma levels of antitubercular drugs. METHODS Nondiabetic adults aged 18-60 years with pulmonary tuberculosis were randomized to either the standard ATT (ATT group) or ATT plus metformin (METRIF group) groups in a phase IIB clinical trial. An intensive pharmacokinetic study with blood collection at 0 hour (predosing), followed by 1, 2, 4, 6, 8, and 12 hours after dosing was conducted during the first month of treatment in a subset of 60 study participants after a minimum of 14 doses. Plasma concentrations of rifampicin, isoniazid, pyrazinamide, and metformin were measured by high-performance liquid chromatography using validated methods, and pharmacokinetic parameters and OCT1 and MATE1 gene polymorphisms were compared between the groups. RESULTS Significant increases in the clearance of rifampicin, isoniazid, and pyrazinamide were observed in patients in the METRIF group (n = 29) compared with those in the ATT group (n = 31). The AA genotypes of the single-nucleotide polymorphism of rs2289669 ( MATE1 ) in the METRIF group showed a significantly decreased area under the concentration-time curve to the last observation point and increased clearance of rifampicin. CONCLUSIONS Metformin altered rifampicin and isoniazid plasma concentrations in patients receiving antituberculosis treatment for pulmonary tuberculosis with little effect on sputum conversion at the end of treatment. Studies with larger sample sizes are needed to understand host drug-drug interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Anant Mohan
- All India Institute of Medical Sciences, New Delhi
| | - B. Jeyadeepa
- ICMR-National Institute for Research in Tuberculosis, Chennai
| | | | | | | | - Aarti Mane
- ICMR-National AIDS Research Institute, Pune
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Al-Bari MAA, Peake N, Eid N. Tuberculosis-diabetes comorbidities: Mechanistic insights for clinical considerations and treatment challenges. World J Diabetes 2024; 15:853-866. [PMID: 38766427 PMCID: PMC11099355 DOI: 10.4239/wjd.v15.i5.853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 03/21/2024] [Indexed: 05/10/2024] Open
Abstract
Tuberculosis (TB) remains a leading cause of death among infectious diseases, particularly in poor countries. Viral infections, multidrug-resistant and ex-tensively drug-resistant TB strains, as well as the coexistence of chronic illnesses such as diabetes mellitus (DM) greatly aggravate TB morbidity and mortality. DM [particularly type 2 DM (T2DM)] and TB have converged making their control even more challenging. Two contemporary global epidemics, TB-DM behaves like a syndemic, a synergistic confluence of two highly prevalent diseases. T2DM is a risk factor for developing more severe forms of multi-drug resistant-TB and TB recurrence after preventive treatment. Since a bidirectional relationship exists between TB and DM, it is necessary to concurrently treat both, and promote recommendations for the joint management of both diseases. There are also some drug-drug interactions resulting in adverse treatment outcomes in TB-DM patients including treatment failure, and reinfection. In addition, autophagy may play a role in these comorbidities. Therefore, the TB-DM comorbidities present several health challenges, requiring a focus on multidisciplinary collaboration and integrated strategies, to effectively deal with this double burden. To effectively manage the comorbidity, further screening in affected countries, more suitable drugs, and better treatment strategies are required.
Collapse
Affiliation(s)
| | - Nicholas Peake
- Biosciences and Chemistry and Biomolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
12
|
Inbaraj LR, Manesh A, Ponnuraja C, Bhaskar A, Srinivasalu VA, Daniel BD. Comparative evaluation of intensified short course regimen and standard regimen for adults TB meningitis: a protocol for an open label, multi-center, parallel arms, randomized controlled superiority trial (INSHORT trial). Trials 2024; 25:294. [PMID: 38693583 PMCID: PMC11064413 DOI: 10.1186/s13063-024-08133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Despite several incremental improvements in the management of tuberculous meningitis (TBM), the mortality rates remain high. In spite of national and international guidelines, variation in the choice, dose, and duration of drugs exist between countries and clinicians. We propose to evaluate a shorter and more effective regimen containing agents with augmented intracerebral drug exposure and anti-inflammatory approaches to improve disability-free survival among patients with TBM. Our strategy incorporates the various developments in the field of TBM over the last two decades and only few trials have evaluated a composite of these strategies in the overall outcomes of TBM. METHODS An open label, parallel arms, randomized controlled superiority trial will be conducted among 372 participants across 6 sites in India. Eligible participants will be randomly allocated in 1:1:1 ratio into one of the three arms. The intervention arm consists of 2 months of high-dose rifampicin (25 mg/kg), moxifloxacin (400 mg), pyrazinamide, isoniazid, aspirin (150 mg), and steroids followed by rifampicin, isoniazid, and pyrazinamide for 4 months. The second intervention arm includes all the drugs as per the first arm except aspirin and the patients in the control arm will receive treatment according to the National TB Elimination Program guidelines. All participants will be followed up for 1 year after the treatment. DISCUSSION: Current WHO regimens have agents with poor central nervous system drug exposure and is too long. It does not reflect the accumulating evidence in the field. We propose a comprehensive clinical trial incorporating the emerging evidence accrued over the last two decades to shorten the duration and improve the treatment outcomes. This multi-centric trial may generate crucial evidence with policy and practice implications in the treatment of TBM. TRIAL REGISTRATION Clinical Trial Registry India CTRI/2023/05/053314. Registered on 31 May 2023 ( https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=ODYzMzg=&Enc=&userName=CTRI/2023/05/053314 ). CLINICALTRIALS gov NCT05917340. Registered on 6 August 2023 ( https://classic. CLINICALTRIALS gov/ct2/show/NCT05917340 ). PROTOCOL VERSION Version 1.3 dated 12 July 2023.
Collapse
Affiliation(s)
- Leeberk Raja Inbaraj
- Department of Clinical Research, ICMR- National Institute for Research in Tuberculosis, Chethpet, Chennai, 600031, India.
| | - Abi Manesh
- Department of Infectious Diseases, Christian Medical College, Vellore, India
| | - C Ponnuraja
- Department of Statistics, ICMR- National Institute for Research in Tuberculosis, Chethpet, Chennai, 600031, India
| | - Adhin Bhaskar
- Department of Statistics, ICMR- National Institute for Research in Tuberculosis, Chethpet, Chennai, 600031, India
| | - Vignes Anand Srinivasalu
- Department of Clinical Research, ICMR- National Institute for Research in Tuberculosis, Chethpet, Chennai, 600031, India
| | - Bella Devaleenal Daniel
- Department of Statistics, ICMR- National Institute for Research in Tuberculosis, Chethpet, Chennai, 600031, India.
| |
Collapse
|
13
|
Han L, Tieliwaerdi N, Li X. METTL3-deficiency m6A-dependently degrades MALAT1 to suppress NLRP3-mediated pyroptotic cell death and inflammation in Mycobacterium tuberculosis (H37Ra strain)-infected mouse macrophages. Tuberculosis (Edinb) 2024; 146:102502. [PMID: 38458103 DOI: 10.1016/j.tube.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/27/2023] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Mycobacterium tuberculosis (Mtb)-infected macrophages aggravated the development of pulmonary tuberculosis, but its detailed molecular mechanisms are still largely unknown. Here, the mouse primary peritoneal macrophages were infected with the attenuated strain of Mtb H37Ra, and we firstly verified that targeting a novel METTL3/N6-Methyladenosine (m6A)/LncRNA MALAT1/miR-125b/TLR4 axis was effective to suppress pyroptotic cell death in the Mtb-infected macrophages. Specifically, through performing Real-Time qPCR and Western Blot analysis, we validated that METTL3, LncRNA MALAT1 and TLR4 were elevated, whereas miR-125b and the anti-oxidant agents (Nrf2 and HO-1) were downregulated in Mtb-infected mouse macrophages. In addition, functional experiments confirmed that both ROS scavenger NAC and METTL3-ablation downregulated NLRP3, GSDMD-C, cleaved Caspase-1 and ASC to restrain pyroptotic cell death and decreased the expression levels of IL-1β, IL-18, IL-6 and TNF-α to restrain inflammatory cytokines expression in Mtb-infected macrophages. Next, METTL3-ablation induced m6A-demethylation and instability in LncRNA MALAT1, and low-expressed LncRNA MALAT1 caused TLR4 downregulation through sponging miR-125b, resulting in the inactivation of NLRP3 inflammasome. Finally, silencing of METTL3-induced protective effects in Mtb-infected macrophages were all abrogated by overexpressing LncRNA MALAT1 and downregulating miR-125b. Thus, we concluded that targeting METTL3-mediated m6A modifications suppressed Mtb-induced pyroptotic cell death in mouse macrophages, and the downstream LncRNA MALAT1/miR-125b/TLR4 axis played critical role in this process.
Collapse
Affiliation(s)
- Limei Han
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xinjiang Medical University, Nanhu Eastern Road No. 38, Urumchi, Xinjiang, China.
| | - Nueramina Tieliwaerdi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xinjiang Medical University, Nanhu Eastern Road No. 38, Urumchi, Xinjiang, China.
| | - Xin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xinjiang Medical University, Nanhu Eastern Road No. 38, Urumchi, Xinjiang, China.
| |
Collapse
|
14
|
Negi A, Perveen S, Gupta R, Singh PP, Sharma R. Unraveling Dilemmas and Lacunae in the Escalating Drug Resistance of Mycobacterium tuberculosis to Bedaquiline, Delamanid, and Pretomanid. J Med Chem 2024; 67:2264-2286. [PMID: 38351709 DOI: 10.1021/acs.jmedchem.3c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Delamanid, bedaquiline, and pretomanid have been recently added in the anti-tuberculosis (anti-TB) treatment regimens and have emerged as potential solutions for combating drug-resistant TB. These drugs have proven to be effective in treating drug-resistant TB when used in combination. However, concerns have been raised about the eventual loss of these drugs due to evolving resistance mechanisms and certain adverse effects such as prolonged QT period, gastrointestinal problems, hepatotoxicity, and renal disorders. This Perspective emphasizes the properties of these first-in-class drugs, including their mechanism of action, pharmacokinetics/pharmacodynamics profiles, clinical studies, adverse events, and underlying resistance mechanisms. A brief coverage of efforts toward the generation of best-in-class leads in each class is also provided. The ongoing clinical trials of new combinations of these drugs are discussed, thus providing a better insight into the use of these drugs while designing an effective treatment regimen for resistant TB cases.
Collapse
Affiliation(s)
- Anjali Negi
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ria Gupta
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Parvinder Pal Singh
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
15
|
Suresh S, Begum RF, Singh SA, Vellapandian C. An Update to Novel Therapeutic Options for Combating Tuberculosis: Challenges and Future Prospectives. Curr Pharm Biotechnol 2024; 25:1778-1790. [PMID: 38310450 DOI: 10.2174/0113892010246389231012041120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 02/05/2024]
Abstract
Drug repurposing is an ongoing and clever strategy that is being developed to eradicate tuberculosis amid challenges, of which one of the major challenges is the resistance developed towards antibiotics used in standard directly observed treatment, short-course regimen. Surpassing the challenges in developing anti-tuberculous drugs, some novel host-directed therapies, repurposed drugs, and drugs with novel targets are being studied, and few are being approved too. After almost 4 decades since the approval of rifampicin as a potent drug for drugsusceptible tuberculosis, the first drug to be approved for drug-resistant tuberculosis is bedaquiline. Ever since the urge to drug discovery has been at a brisk as this milestone in tuberculosis treatment has provoked the hunt for novel targets in tuberculosis. Host-directed therapy and repurposed drugs are in trend as their pharmacological and toxicological properties have already been researched for some other diseases making the trial facile. This review discusses the remonstrance faced by researchers in developing a drug candidate with a novel target, the furtherance in tuberculosis research, novel anti-tuberculosis agents approved so far, and candidates on trial including the host-directed therapy, repurposed drug and drug combinations that may prove to be potential in treating tuberculosis soon, aiming to augment the awareness in this context to the imminent researchers.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - S Ankul Singh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| |
Collapse
|
16
|
Nagdev PK, Agnivesh PK, Roy A, Sau S, Kalia NP. Exploring and exploiting the host cell autophagy during Mycobacterium tuberculosis infection. Eur J Clin Microbiol Infect Dis 2023; 42:1297-1315. [PMID: 37740791 DOI: 10.1007/s10096-023-04663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is a fatal infectious disease that prevails to be the second leading cause of death from a single infectious agent despite the availability of multiple drugs for treatment. The current treatment regimen involves the combination of several drugs for 6 months that remain ineffective in completely eradicating the infection because of several drawbacks, such as the long duration of treatment and the side effects of drugs causing non-adherence of patients to the treatment regimen. Autophagy is an intracellular degradative process that eliminates pathogens at the early stages of infection. Mycobacterium tuberculosis's unique autophagy-blocking capability makes it challenging to eliminate compared to usual pathogens. The present review discusses recent advances in autophagy-inhibiting factors and mechanisms that could be exploited to identify autophagy-inducing chemotherapeutics that could be used as adjunctive therapy with the existing first-line anti-TB agent to shorten the duration of therapy and enhance cure rates from multidrug-resistant tuberculosis (MDR-TB) and extreme drug-resistant tuberculosis (XDR-TB).
Collapse
Affiliation(s)
- Pavan Kumar Nagdev
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Arnab Roy
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Shashikanta Sau
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
17
|
Putera I, Schrijver B, Ten Berge JCEM, Gupta V, La Distia Nora R, Agrawal R, van Hagen PM, Rombach SM, Dik WA. The immune response in tubercular uveitis and its implications for treatment: From anti-tubercular treatment to host-directed therapies. Prog Retin Eye Res 2023:101189. [PMID: 37236420 DOI: 10.1016/j.preteyeres.2023.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Tubercular uveitis (TB-uveitis) remains a conundrum in the uveitis field, which is mainly related to the diverse clinical phenotypes of TB-uveitis. Moreover, it remains difficult to differentiate whether Mycobacterium tuberculosis (Mtb) is present in the ocular tissues, elicits a heightened immune response without Mtb invasion in ocular tissues, or even induces an anti-retinal autoimmune response. Gaps in the immuno-pathological knowledge of TB-uveitis likely delay timely diagnosis and appropriate management. In the last decade, the immunopathophysiology of TB-uveitis and its clinical management, including experts' consensus to treat or not to treat certain conditions with anti-tubercular treatment (ATT), have been extensively investigated. In the meantime, research on TB treatment, in general, is shifting more toward host-directed therapies (HDT). Given the complexities of the host-Mtb interaction, enhancement of the host immune response is expected to boost the effectiveness of ATT and help overcome the rising burden of drug-resistant Mtb strains in the population. This review will summarize the current knowledge on the immunopathophysiology of TB-uveitis and recent advances in treatment modalities and outcomes of TB-uveitis, capturing results gathered from high- and low-burden TB countries with ATT as the mainstay of treatment. Moreover, we outline the recent progress of HDT development in the pulmonary TB field and discuss the possibility of its applicability to TB-uveitis. The concept of HDT might help direct future development of efficacious therapy for TB-uveitis, although more in-depth research on the immunoregulation of this disease is still necessary.
Collapse
Affiliation(s)
- Ikhwanuliman Putera
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Vishali Gupta
- Retina and Uvea Services, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rina La Distia Nora
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke NUS University, Singapore; Singapore Eye Research Institute, Singapore; Moorfields Eye Hospital, London, United Kingdom
| | - P Martin van Hagen
- Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S M Rombach
- Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
18
|
Queiroz ATL, Vinhaes CL, Fukutani ER, Gupte AN, Kumar NP, Fukutani KF, Arriaga MB, Sterling TR, Babu S, Gaikwad S, Karyakarte R, Mave V, Paradhkar M, Viswanathan V, Gupta A, Andrade BB, Kornfeld H. A multi-center, prospective cohort study of whole blood gene expression in the tuberculosis-diabetes interaction. Sci Rep 2023; 13:7769. [PMID: 37173394 PMCID: PMC10180618 DOI: 10.1038/s41598-023-34847-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetes mellitus (DM) increases tuberculosis (TB) severity. We compared blood gene expression in adults with pulmonary TB, with or without diabetes mellitus (DM) from sites in Brazil and India. RNA sequencing (RNAseq) performed at baseline and during TB treatment. Publicly available baseline RNAseq data from South Africa and Romania reported by the TANDEM Consortium were also analyzed. Across the sites, differentially expressed genes varied for each condition (DM, TB, and TBDM) and no pattern classified any one group across all sites. A concise signature of TB disease was identified but this was expressed equally in TB and TBDM. Pathway enrichment analysis failed to distinguish TB from TBDM, although there was a trend for greater neutrophil and innate immune pathway activation in TBDM participants. Pathways associated with insulin resistance, metabolic dysfunction, diabetic complications, and chromosomal instability were positively correlated with glycohemoglobin. The immune response to pulmonary TB as reflected by whole blood gene expression is substantially similar with or without comorbid DM. Gene expression pathways associated with the microvascular and macrovascular complications of DM are upregulated during TB, supporting a syndemic interaction between these coprevalent diseases.
Collapse
Affiliation(s)
- Artur T L Queiroz
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810‑710, Brazil
| | - Caian L Vinhaes
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810‑710, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, 40290-150, Brazil
| | - Eduardo R Fukutani
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Akshay N Gupte
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nathella Pavan Kumar
- National Institutes of Health- NIRT - International Center for Excellence in Research, Chennai, India
| | - Kiyoshi F Fukutani
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - María B Arriaga
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810‑710, Brazil
| | - Timothy R Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Subash Babu
- National Institutes of Health- NIRT - International Center for Excellence in Research, Chennai, India
| | - Sanjay Gaikwad
- Department of Pulmonary Medicine, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
| | - Rajesh Karyakarte
- Department of Microbiology, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
| | - Vidya Mave
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, India
| | - Mandar Paradhkar
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, India
| | | | - Amita Gupta
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bruno B Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810‑710, Brazil.
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, 40290-150, Brazil.
- Faculdade de Tecnologia e Ciências, Instituto de Pesquisa Clínica e Translacional, Salvador, 41741-590, Brazil.
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
- UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
19
|
Wallis RS, O'Garra A, Sher A, Wack A. Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nat Rev Immunol 2023; 23:121-133. [PMID: 35672482 PMCID: PMC9171745 DOI: 10.1038/s41577-022-00734-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 02/06/2023]
Abstract
The advent of COVID-19 and the persistent threat of infectious diseases such as tuberculosis, malaria, influenza and HIV/AIDS remind us of the marked impact that infections continue to have on public health. Some of the most effective protective measures are vaccines but these have been difficult to develop for some of these infectious diseases even after decades of research. The development of drugs and immunotherapies acting directly against the pathogen can be equally challenging, and such pathogen-directed therapeutics have the potential disadvantage of selecting for resistance. An alternative approach is provided by host-directed therapies, which interfere with host cellular processes required for pathogen survival or replication, or target the host immune response to infection (immunotherapies) to either augment immunity or ameliorate immunopathology. Here, we provide a historical perspective of host-directed immunotherapeutic interventions for viral and bacterial infections and then focus on SARS-CoV-2 and Mycobacterium tuberculosis, two major human pathogens of the current era, to indicate the key lessons learned and discuss candidate immunotherapeutic approaches, with a focus on drugs currently in clinical trials.
Collapse
Affiliation(s)
- Robert S Wallis
- The Aurum Institute, Johannesburg, South Africa.
- Vanderbilt University, Nashville, TN, USA.
- Rutgers University, Newark, NJ, USA.
- Case Western Reserve University, Cleveland, OH, USA.
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
20
|
Udinia S, Suar M, Kumar D. Host-directed therapy against tuberculosis: Concept and recent developments. J Biosci 2023; 48:54. [PMID: 38088376 DOI: 10.1007/s12038-023-00374-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/28/2023] [Indexed: 01/04/2025]
Abstract
Tuberculosis (TB) continues to remain at the forefront of the infectious disease burden globally, albeit with some aberrations during the COVID-19 pandemic. Among many factors, the emergence of drug resistance or antimicrobial resistance (AMR) has necessitated a renewed focus on developing novel and repurposed drugs against TB. Host-directed therapy (HDT) has emerged as an attractive alternative and a complementary strategy to the conventional antibiotic-based therapy of tuberculosis since HDT enjoys the advantage of disarming the pathogen of its ability to develop drug resistance. Considering the imminent threat of AMR across the spectrum of bacterial pathogens, HDT promises to overcome the drug shortage against superbugs. While all these make HDT a very attractive strategy, identifying the right set of host targets to develop HDT remains a challenge, despite remarkable development in the field over the past decade. In this review, we examine the host mechanisms, that either inadvertently or through targeted perturbation by the pathogen, help TB pathogenesis, and we discuss the latest developments in the targeting of some of the key pathways to achieve newer TB therapeutics.
Collapse
Affiliation(s)
- Sonakshi Udinia
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
21
|
Perretti M, Subramanian M. Resolution pharmacology - A fresh approach to the clinical management of human inflammatory diseases. Semin Immunol 2023; 65:101669. [PMID: 36565567 DOI: 10.1016/j.smim.2022.101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Manikandan Subramanian
- The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| |
Collapse
|
22
|
Jeong EK, Lee HJ, Jung YJ. Host-Directed Therapies for Tuberculosis. Pathogens 2022; 11:1291. [PMID: 36365041 PMCID: PMC9697779 DOI: 10.3390/pathogens11111291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 02/04/2024] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, consistently threatening public health. Conventional tuberculosis treatment requires a long-term treatment regimen and is associated with side effects. The efficacy of antitubercular drugs has decreased with the emergence of drug-resistant TB; therefore, the development of new TB treatment strategies is urgently needed. In this context, we present host-directed therapy (HDT) as an alternative to current tuberculosis therapy. Unlike antitubercular drugs that directly target Mycobacterium tuberculosis (Mtb), the causative agent of TB, HDT is an approach for treating TB that appropriately modulates host immune responses. HDT primarily aims to enhance the antimicrobial activity of the host in order to control Mtb infection and attenuate excessive inflammation in order to minimize tissue damage. Recently, research based on the repositioning of drugs for use in HDT has been in progress. Based on the overall immune responses against Mtb infection and the immune-evasion mechanisms of Mtb, this review examines the repositioned drugs available for HDT and their mechanisms of action.
Collapse
Affiliation(s)
- Eui-Kwon Jeong
- BIT Medical Convergence Graduate Program, Kangwon National University, Chuncheon 24341, Korea
| | - Hyo-Ji Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Yu-Jin Jung
- BIT Medical Convergence Graduate Program, Kangwon National University, Chuncheon 24341, Korea
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
23
|
Meregildo-Rodriguez ED, Asmat-Rubio MG, Zavaleta-Alaya P, Vásquez-Tirado GA. Effect of Oral Antidiabetic Drugs on Tuberculosis Risk and Treatment Outcomes: Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:343. [PMID: 36355885 PMCID: PMC9694577 DOI: 10.3390/tropicalmed7110343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/22/2022] [Accepted: 10/29/2022] [Indexed: 05/10/2024] Open
Abstract
Tuberculosis and diabetes mellitus are two global pandemics and rising public health problems. Recent studies suggest that oral antidiabetic drugs (OADs) could reduce the risk of tuberculosis and improve clinical outcomes. However, the evidence is controversial. Therefore, we aimed to assess the effect of OADs on the risk of tuberculosis and treatment outcomes. We systematically searched for six databases from inception to 31 August 2022. We followed a predefined PICO/PECO strategy and included two randomized controlled trials and sixteen observational studies. This study collects 1,109,660 participants, 908,211 diabetic patients, and at least 13,841 tuberculosis cases. Our results show that metformin decreases the risk of active tuberculosis by 40% (RR 0.60; 95% CI 0.47-0.77) in diabetic patients. In addition, metformin exhibits a dose-response gradient (medium doses reduce the risk of active tuberculosis by 45%, while high doses reduce this risk by 52%). On the other hand, DPP IV inhibitors increase the risk of active tuberculosis by 43% (RR 1.43; 95% CI 1.02-2.02). Subgroup analysis showed that study design and metformin dose accounted for the heterogeneity. We conclude that metformin significantly protects against active tuberculosis among diabetic patients. On the contrary, DPP IV inhibitors could increase the risk of developing active tuberculosis.
Collapse
|
24
|
Ha R, Keynan Y, Rueda ZV. Increased susceptibility to pneumonia due to tumour necrosis factor inhibition and prospective immune system rescue via immunotherapy. Front Cell Infect Microbiol 2022; 12:980868. [PMID: 36159650 PMCID: PMC9489861 DOI: 10.3389/fcimb.2022.980868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Immunomodulators such as tumour necrosis factor (TNF) inhibitors are used to treat autoimmune conditions by reducing the magnitude of the innate immune response. Dampened innate responses pose an increased risk of new infections by opportunistic pathogens and reactivation of pre-existing latent infections. The alteration in immune response predisposes to increased severity of infections. TNF inhibitors are used to treat autoimmune conditions such as rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, transplant recipients, and inflammatory bowel disease. The efficacies of immunomodulators are shown to be varied, even among those that target the same pathways. Monoclonal antibody-based TNF inhibitors have been shown to induce stronger immunosuppression when compared to their receptor-based counterparts. The variability in activity also translates to differences in risk for infection, moreover, parallel, or sequential use of immunosuppressive drugs and corticosteroids makes it difficult to accurately attribute the risk of infection to a single immunomodulatory drug. Among recipients of TNF inhibitors, Mycobacterium tuberculosis has been shown to be responsible for 12.5-59% of all infections; Pneumocystis jirovecii has been responsible for 20% of all non-viral infections; and Legionella pneumophila infections occur at 13-21 times the rate of the general population. This review will outline the mechanism of immune modulation caused by TNF inhibitors and how they predispose to infection with a focus on Mycobacterium tuberculosis, Legionella pneumophila, and Pneumocystis jirovecii. This review will then explore and evaluate how other immunomodulators and host-directed treatments influence these infections and the severity of the resulting infection to mitigate or treat TNF inhibitor-associated infections alongside antibiotics.
Collapse
Affiliation(s)
- Ryan Ha
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Community-Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| |
Collapse
|
25
|
Quantitative Systems Pharmacology Modeling Framework of Autophagy in Tuberculosis: Application to Adjunctive Metformin Host-Directed Therapy. Antimicrob Agents Chemother 2022; 66:e0036622. [PMID: 35862740 PMCID: PMC9380544 DOI: 10.1128/aac.00366-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Quantitative systems pharmacology (QSP) modeling of the host immune response against Mycobacterium tuberculosis can inform the rational design of host-directed therapies (HDTs). We aimed to develop a QSP framework to evaluate the effects of metformin-associated autophagy induction in combination with antibiotics. A QSP framework for autophagy was developed by extending a model for host immune response to include adenosine monophosphate-activated protein kinase (AMPK)-mTOR-autophagy signaling. This model was combined with pharmacokinetic-pharmacodynamic models for metformin and antibiotics against M. tuberculosis. We compared the model predictions to mice infection experiments and derived predictions for the pathogen- and host-associated dynamics in humans treated with metformin in combination with antibiotics. The model adequately captured the observed bacterial load dynamics in mice M. tuberculosis infection models treated with metformin. Simulations for adjunctive metformin therapy in newly diagnosed patients suggested a limited yet dose-dependent effect of metformin on reduction of the intracellular bacterial load when the overall bacterial load is low, late during antibiotic treatment. We present the first QSP framework for HDTs against M. tuberculosis, linking cellular-level autophagy effects to disease progression and adjunctive HDT treatment response. This framework may be extended to guide the design of HDTs against M. tuberculosis.
Collapse
|
26
|
Zeng J, Zhao GL, Yi JC, Liu DD, Jiang YQ, Lu X, Liu YB, Xue F, Dong J. Clinical diagnosis, treatment, and medical identification of specific pulmonary infection in naval pilots: Four case reports. World J Clin Cases 2022; 10:5487-5494. [PMID: 35812691 PMCID: PMC9210901 DOI: 10.12998/wjcc.v10.i16.5487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Specific pulmonary infection could seriously threaten the health of pilots and their companions. The consequences are serious. We investigated the clinical diagnosis, treatment, and medical identification of specific pulmonary infections in naval pilots.
CASE SUMMARY We analyzed the medical waiver and clinical data of four pilots with specific pulmonary infections, who had accepted treatment at the Naval Medical Center of Chinese People’s Liberation Army between January 2020 and November 2021, including three cases of tuberculosis and one of cryptococcal pneumonia. All cases underwent a series of comprehensive treatment courses. Three cases successfully obtained medical waiver for flight after being cured, while one was grounded after reaching the maximum flight life after being cured.
CONCLUSION Chest computed tomography scanning should be used instead of chest radiography in pilots’ physical examination. Most pilots with specific pulmonary infection can be cured and return to flight.
Collapse
Affiliation(s)
- Jia Zeng
- Department of Aviation Disease, Naval Medical Center of PLA, Shanghai 200052, China
| | - Guo-Li Zhao
- Department of Radiology, Naval Medical Center of PLA, Shanghai 200052, China
| | - Jia-Cheng Yi
- Department of Clinical Medicine, School of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Dan-Dan Liu
- Department of Aviation Disease, Naval Medical Center of PLA, Shanghai 200052, China
| | - Yan-Qing Jiang
- Department of Aviation Disease, Naval Medical Center of PLA, Shanghai 200052, China
| | - Xiang Lu
- Department of Aviation Disease, Naval Medical Center of PLA, Shanghai 200052, China
| | - Yan-Bing Liu
- Department of Aviation Disease, Naval Medical Center of PLA, Shanghai 200052, China
| | - Fei Xue
- Department of Aviation Disease, Naval Medical Center of PLA, Shanghai 200052, China
| | - Jie Dong
- Department of Respiratory Medicine, Changhai Hospital, Naval Military Medical University, Shanghai 200081, China
| |
Collapse
|