1
|
Freeman J, Sanders IMJG, Harmanus C, Clark EV, Berry AM, Smits WK. Antimicrobial susceptibility testing of Clostridioides difficile: a dual-site study of three different media and three therapeutic antimicrobials. Clin Microbiol Infect 2025:S1198-743X(25)00036-9. [PMID: 39884503 DOI: 10.1016/j.cmi.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVES Increasing resistance to antimicrobials used for the treatment of Clostridioides difficile infections necessitates reproducible antimicrobial susceptibility testing. Current guidelines take a one-size-fits-all approach and/or offer limited guidance. We investigated how the choice of medium affects measured MIC values across two sites. METHODS We determined MIC values for the antimicrobials fidaxomicin, metronidazole, and vancomycin for a representative collection of European C. difficile strains (n = 235) using agar dilution on three different media: Brucella Blood Agar (BBA), Fastidious Anaerobe Agar supplemented with horse blood (FAA-HB), and Wilkins-Chalgren (WC) agar. The study was conducted at two sites to compare reproducibility. Usability (ease of preparation of the media as well as read-out of the assay) was assessed through a survey. RESULTS We found that all media result in highly consistent aggregated MIC data for all antibiotics, with MIC50 and MIC90 within two-fold of each other across sites. For fidaxomin, MIC values on WC were lower than on the other media (MIC90: WC = 0.125-0.25 mg/L; BBA and FAA-HB = 0.5 mg/L). Metronidazole showed the lowest MIC on BBA and the highest on WC (MIC90: WC = 2 mg/L; BBA = 0.5-1 mg/L; FAA-HB: 1-2 mg/L). For vancomycin, MIC values were similar across media (MIC90: all media = 1-2 mg/L). Though absolute values for individual isolates differed between sites, identified resistant isolates were similar. Results obtained on FAA-HB were most consistent between sites and results obtained on WC showed the most divergence. FAA-HB was positively evaluated in the usability survey. DISCUSSION This study shows medium-dependent differences in C. difficile MICs for at least two antimicrobials across two sites. We suggest the use of FAA-HB to align with general European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations for susceptibility testing of anaerobic bacteria and deposited reference strains for standard susceptibility testing of C. difficile to increase interlaboratory reproducibility.
Collapse
Affiliation(s)
- Jane Freeman
- Healthcare Associated Infections Research Group, University of Leeds and Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; European Society of Clinical Microbiology and Infectious Diseases Study Group on Clostridioides difficile, Basel, Switzerland.
| | - Ingrid M J G Sanders
- Experimental Bacteriology Research Group, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Céline Harmanus
- European Society of Clinical Microbiology and Infectious Diseases Study Group on Clostridioides difficile, Basel, Switzerland; Experimental Bacteriology Research Group, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma V Clark
- Healthcare Associated Infections Research Group, University of Leeds and Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Andrea M Berry
- Healthcare Associated Infections Research Group, University of Leeds and Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Wiep Klaas Smits
- European Society of Clinical Microbiology and Infectious Diseases Study Group on Clostridioides difficile, Basel, Switzerland; Experimental Bacteriology Research Group, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Ngbede EO, Junker V, Kolte B, Frentrup M, Boldt J, Fawley WN, Wilcox MH, Kuijper EJ, Smits WK, Nübel U. Clostridioides difficile recovered from hospital patients, livestock and dogs in Nigeria share near-identical genome sequences. Microb Genom 2025; 11. [PMID: 39883484 DOI: 10.1099/mgen.0.001342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Genomic data on Clostridioides difficile from the African continent are currently lacking, resulting in the region being under-represented in global analyses of C. difficile infection (CDI) epidemiology. For the first time in Nigeria, we utilized whole-genome sequencing and phylogenetic tools to compare C. difficile isolates from diarrhoeic human patients (n=142), livestock (n=38), poultry manure (n=5) and dogs (n=9) in the same geographic area (Makurdi, north-central Nigeria) and relate them to the global C. difficile population. In addition, selected isolates were tested for antimicrobial susceptibility (n=33) and characterized by PCR ribotyping (n=53). Hierarchical clustering of core-genome multilocus sequence typing (cgMLST) allelic profiles revealed large diversity at the level HC150 (i.e. clusters of related genomes with maximally 150 pairwise allelic differences), which was previously shown to correlate with PCR ribotypes (RT). While several globally disseminated strains were detected, including HC150_1 (associated with RT078), HC150_3 (RT001) and HC150_3622 (RT014), 42 HC150 clusters (79%) represented unique genotypes that were new to the public genomic record, and 16 (30%) of these were novel PCR ribotypes. Considerable proportions of the C. difficile isolates displayed resistance to fluoroquinolones, macrolides and linezolid, potentially reflecting human and animal antibiotic consumption patterns in the region. Notably, our comparative phylogenomic analyses revealed human-human, human-livestock and farm-farm sharing of near-identical C. difficile genomes (≤2 core-genome allelic differences), suggesting the continued spread of multiple strains across human and animal (pig, poultry, cattle and dog) host populations. Our findings highlight the interconnectivity between livestock production and the epidemiology of human CDI and inform the need for increased CDI awareness among clinicians in this region. A large proportion of C. difficile strains appeared to be unique to the region, reflecting both the significant geographic patterning present in the C. difficile population and a general need for additional pathogen sequencing data from Africa.
Collapse
Affiliation(s)
- Emmanuel O Ngbede
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- Department of Veterinary Microbiology, Federal University of Agriculture, Makurdi, Nigeria
- Present address: Institute of Medical Microbiology and Hygiene University of Saarland, Homburg, Germany
| | - Vera Junker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
| | - Baban Kolte
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
| | - Martinique Frentrup
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
| | - Judith Boldt
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Warren N Fawley
- School of Medicine, Leeds Teaching Hospitals and University of Leeds, Leeds, UK
| | - Mark H Wilcox
- School of Medicine, Leeds Teaching Hospitals and University of Leeds, Leeds, UK
| | - Ed J Kuijper
- Leiden University Medical Center, National Expertise Center for C. difficile Infections, Leiden, Netherlands
| | - Wiep Klaas Smits
- Leiden University Medical Center, National Expertise Center for C. difficile Infections, Leiden, Netherlands
| | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| |
Collapse
|
3
|
Tiecco G, De Francesco MA, Lenzi A, Pellizzeri S, Rossini F, Sollima A, Signorini L, Castelli F, Caruso A, Quiros-Roldan E. Clostridioides difficile infections caused by hypervirulent strains: a single-centre real-life study. Eur J Clin Microbiol Infect Dis 2025; 44:99-107. [PMID: 39527170 DOI: 10.1007/s10096-024-04982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND PURPOSE Clostridioides difficile infection (CDI) is a leading cause of healthcare-associated infections worldwide, with hypervirulent strains linked to severe disease and higher mortality. This study aims to analyze the epidemiology of CDI at a tertiary-care hospital in Italy and compare clinical outcomes between patients infected with hypervirulent and non-hypervirulent strains. METHODS A retrospective comparative study was conducted on patients diagnosed with CDI at ASST Spedali Civili di Brescia, Italy, from January 2015 to June 2023. Hypervirulent strains were identified using the GeneXpert assay as positive for cytotoxin gene (tcdB), binary toxin genes (tcdA and tcdB) and a single nucleotide deletion at position 117 in the tcdC gene and compared to a randomized matched control group with non-hypervirulent CDI. Clinical data were collected and analyzed, with multivariate logistic regression employed to identify risk factors for hypervirulent CDI. RESULTS Of 1,059 positive C. difficile specimens, a statistically significant trend between January 2015 to June 2023 was found in the increasing incidence of CDI cases per 1,000 hospital admissions and 10,000 bed-days. Notably, a remarkable increase of hypervirulent strains was recorded in 2021 and 2022 when compared to previous years. A total of 130 patients were analyzed: 62 (47.7%) with hypervirulent CDI and 68 (52.3%) controls. Hypervirulent CDI was associated with higher 30-day mortality (18% vs. 5.8%, p = 0.03). Multivariate analysis showed that hypervirulent CDI significantly increased 30-day mortality risk (OR = 9.915, CI = 2.37-61.05, p = 0.005) and that prior antibiotic therapy was a significant risk factor (OR = 5.49, CI = 1.19-39.96, p = 0.047). DISCUSSION Our epidemiological data, while suggesting a potential resurgence in CDI transmission during COVID-19 pandemic, are derived from a single-center experience with limited generalizability to the broader population. Nonetheless, they highlight the need for strengthened antimicrobial stewardship and national surveillance systems to effectively monitor and manage these strains.
Collapse
Affiliation(s)
- Giorgio Tiecco
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Maria Antonia De Francesco
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Angelica Lenzi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Simone Pellizzeri
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
| | - Francesco Rossini
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Alessio Sollima
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Liana Signorini
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Francesco Castelli
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Arnaldo Caruso
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Di Brescia, 25123, Brescia, Italy.
| |
Collapse
|
4
|
Kolte B, Nübel U. Genetic determinants of resistance to antimicrobial therapeutics are rare in publicly available Clostridioides difficile genome sequences. J Antimicrob Chemother 2024; 79:1320-1328. [PMID: 38598696 PMCID: PMC11144481 DOI: 10.1093/jac/dkae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVES To determine the frequencies and clonal distributions of putative genetic determinants of resistance to antimicrobials applied for treatment of Clostridioides difficile infection (CDI), as documented in the genomic record. METHODS We scanned 26 557 C. difficile genome sequences publicly available from the EnteroBase platform for plasmids, point mutations and gene truncations previously reported to reduce susceptibility to vancomycin, fidaxomicin or metronidazole, respectively. We measured the antimicrobial susceptibility of 143 selected C. difficile isolates. RESULTS The frequency of mutations causing reduced susceptibility to vancomycin and metronidazole, respectively, increased strongly after 2000, peaking at up to 52% of all sequenced C. difficile genomes. However, both mutations declined sharply more recently, reflecting major changes in CDI epidemiology. We detected mutations associated with fidaxomicin resistance in several major genotypes, but found no evidence of international spread of resistant clones. The pCD-METRO plasmid, conferring metronidazole resistance, was detected in a single previously unreported C. difficile isolate, recovered from a hospital patient in Germany in 2008. The pX18-498 plasmid, putatively associated with decreased vancomycin susceptibility, was confined to related, recent isolates from the USA. Phenotype measurements confirmed that most of those genetic features were useful predictors of antibiotic susceptibility, even though ranges of MICs typically overlapped among isolates with and without specific mutations. CONCLUSIONS Genomic data suggested that resistance to therapeutic antimicrobial drugs is rare in C. difficile. Public antimicrobial resistance marker databases were not equipped to detect most of the genetic determinants relevant to antibiotic therapy of CDI.
Collapse
Affiliation(s)
- Baban Kolte
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Inhoffenstr. 7B, 38124, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Inhoffenstr. 7B, 38124, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| |
Collapse
|
5
|
Markantonis JE, Fallon JT, Madan R, Alam MZ. Clostridioides difficile Infection: Diagnosis and Treatment Challenges. Pathogens 2024; 13:118. [PMID: 38392856 PMCID: PMC10891949 DOI: 10.3390/pathogens13020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Clostridioides difficile is the most important cause of healthcare-associated diarrhea in the United States. The high incidence and recurrence rates of C. difficile infection (CDI), associated with high morbidity and mortality, pose a public health challenge. Although antibiotics targeting C. difficile bacteria are the first treatment choice, antibiotics also disrupt the indigenous gut flora and, therefore, create an environment that is favorable for recurrent CDI. The challenge of treating CDI is further exacerbated by the rise of antibiotic-resistant strains of C. difficile, placing it among the top five most urgent antibiotic resistance threats in the USA. The evolution of antibiotic resistance in C. difficile involves the acquisition of new resistance mechanisms, which can be shared among various bacterial species and different C. difficile strains within clinical and community settings. This review provides a summary of commonly used diagnostic tests and antibiotic treatment strategies for CDI. In addition, it discusses antibiotic treatment and its resistance mechanisms. This review aims to enhance our current understanding and pinpoint knowledge gaps in antimicrobial resistance mechanisms in C. difficile, with an emphasis on CDI therapies.
Collapse
Affiliation(s)
- John E. Markantonis
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | - John T. Fallon
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | - Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| |
Collapse
|
6
|
Johnstone MA, Holman MA, Self WT. Inhibition of selenoprotein synthesis is not the mechanism by which auranofin inhibits growth of Clostridioides difficile. Sci Rep 2023; 13:14733. [PMID: 37679389 PMCID: PMC10484987 DOI: 10.1038/s41598-023-36796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/12/2023] [Indexed: 09/09/2023] Open
Abstract
Clostridioides difficile infections (CDIs) are responsible for a significant number of antibiotic-associated diarrheal cases. The standard-of-care antibiotics for C. difficile are limited to fidaxomicin and vancomycin, with the recently obsolete metronidazole recommended if both are unavailable. No new antimicrobials have been approved for CDI since fidaxomicin in 2011, despite varying rates of treatment failure among all standard-of-care drugs. Drug repurposing is a rational strategy to generate new antimicrobials out of existing therapeutics approved for other indications. Auranofin is a gold-containing anti-rheumatic drug with antimicrobial activity against C. difficile and other microbes. In a previous report, our group hypothesized that inhibition of selenoprotein biosynthesis was auranofin's primary mechanism of action against C. difficile. However, in this study, we discovered that C. difficile mutants lacking selenoproteins are still just as sensitive to auranofin as their respective wild-type strains. Moreover, we found that selenite supplementation dampens the activity of auranofin against C. difficile regardless of the presence of selenoproteins, suggesting that selenite's neutralization of auranofin is not because of compensation for a chemically induced selenium deficiency. Our results clarify the findings of our original study and may aid drug repurposing efforts in discovering the compound's true mechanism of action against C. difficile.
Collapse
Affiliation(s)
- Michael A Johnstone
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Matthew A Holman
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - William T Self
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA.
| |
Collapse
|
7
|
Boyanova L, Dimitrov G, Gergova R, Hadzhiyski P, Markovska R. Clostridioides difficile resistance to antibiotics, including post-COVID-19 data. Expert Rev Clin Pharmacol 2023; 16:925-938. [PMID: 37642560 DOI: 10.1080/17512433.2023.2252331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Updating data on Clostridioides difficile antibiotic resistance is important for treatment improvement of C. difficile infections (CDIs). AREAS COVERED Results from 20 countries were included. The mean resistance to 2 mg/l vancomycin, 2 mg/l metronidazole, 4 mg/l moxifloxacin, and 4 mg/l clindamycin was 4.7% (0 to ≥ 26% in two studies), 2.6% (0 to ≥ 40% in 3 studies), 34.9% (6.6->80%), and 61.0% (30->90%), respectively. Resistance to erythromycin (>60-88%), rifampin (>23-55.0%), imipenem (0.6 to > 78% in a clone), tigecycline (0-<5.0%), and fidaxomicin (0-2%) was also found. Resistance to ≥ 5 antibiotics of different classes was reported in some countries. High resistance and multidrug resistance were observed in hypervirulent and epidemic strains. Although only 1% of COVID-19 patients had CDIs, the proportion might be underestimated. EXPERT OPINION C. difficile antimicrobial susceptibility varied by country/region, study period, and circulating ribotypes. For CDI treatment, fidaxomicin (preferably) or vancomycin is recommended, while metronidazole is suitable for mild infections. New approaches, including biotherapeutics (Rebyota), strains, antibiotics (ridinilazole and ibezapolstat), and monoclonal antibodies/cocktails merit further evaluation. Because of the resistance rate variations, C. difficile antibiotic susceptibility should be regularly monitored. Post-COVID-19 resistance should be separately presented. Some discrepancies between vancomycin and metronidazole results need to be clarified.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Dimitrov
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Raina Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Petyo Hadzhiyski
- Specialized Hospital for Active Pediatric Treatment, Medical University of Sofia, Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
8
|
Gargis AS, Karlsson M, Paulick AL, Anderson KF, Adamczyk M, Vlachos N, Kent AG, McAllister G, McKay SL, Halpin AL, Albrecht V, Campbell D, Korhonen LC, Elkins CA, Rasheed JK, Guh AY, McDonald LC, Lutgring JD. Reference Susceptibility Testing and Genomic Surveillance of Clostridioides difficile, United States, 2012-17. Clin Infect Dis 2023; 76:890-896. [PMID: 36208202 PMCID: PMC10839785 DOI: 10.1093/cid/ciac817] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Antimicrobial susceptibility testing (AST) is not routinely performed for Clostridioides difficile and data evaluating minimum inhibitory concentrations (MICs) are limited. We performed AST and whole genome sequencing (WGS) for 593 C. difficile isolates collected between 2012 and 2017 through the Centers for Disease Control and Prevention's Emerging Infections Program. METHODS MICs to 6 antimicrobial agents (ceftriaxone, clindamycin, meropenem, metronidazole, moxifloxacin, and vancomycin) were determined using the reference agar dilution method according to Clinical and Laboratory Standards Institute guidelines. Whole genome sequencing was performed on all isolates to detect the presence of genes or mutations previously associated with resistance. RESULTS Among all isolates, 98.5% displayed a vancomycin MIC ≤2 μg/mL and 97.3% displayed a metronidazole MIC ≤2 μg/mL. Ribotype 027 (RT027) isolates displayed higher vancomycin MICs (MIC50: 2 μg/mL; MIC90: 2 μg/mL) than non-RT027 isolates (MIC50: 0.5 μg/mL; MIC90: 1 μg/mL) (P < .01). No vanA/B genes were detected. RT027 isolates also showed higher MICs to clindamycin and moxifloxacin and were more likely to harbor associated resistance genes or mutations. CONCLUSIONS Elevated MICs to antibiotics used for treatment of C. difficile infection were rare, and there was no increase in MICs over time. The lack of vanA/B genes or mutations consistently associated with elevated vancomycin MICs suggests there are multifactorial mechanisms of resistance. Ongoing surveillance of C. difficile using reference AST and WGS to monitor MIC trends and the presence of antibiotic resistance mechanisms is essential.
Collapse
Affiliation(s)
- Amy S Gargis
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria Karlsson
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt C6, LLC, Chesapeake, Virginia, USA
| | - Ashley L Paulick
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Karen F Anderson
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michelle Adamczyk
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nicholas Vlachos
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alyssa G Kent
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gillian McAllister
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susannah L McKay
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alison L Halpin
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Valerie Albrecht
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Davina Campbell
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lauren C Korhonen
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christopher A Elkins
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J Kamile Rasheed
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alice Y Guh
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - L Clifford McDonald
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joseph D Lutgring
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|