1
|
Kolte B, Nübel U. Genetic determinants of resistance to antimicrobial therapeutics are rare in publicly available Clostridioides difficile genome sequences. J Antimicrob Chemother 2024; 79:1320-1328. [PMID: 38598696 PMCID: PMC11144481 DOI: 10.1093/jac/dkae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVES To determine the frequencies and clonal distributions of putative genetic determinants of resistance to antimicrobials applied for treatment of Clostridioides difficile infection (CDI), as documented in the genomic record. METHODS We scanned 26 557 C. difficile genome sequences publicly available from the EnteroBase platform for plasmids, point mutations and gene truncations previously reported to reduce susceptibility to vancomycin, fidaxomicin or metronidazole, respectively. We measured the antimicrobial susceptibility of 143 selected C. difficile isolates. RESULTS The frequency of mutations causing reduced susceptibility to vancomycin and metronidazole, respectively, increased strongly after 2000, peaking at up to 52% of all sequenced C. difficile genomes. However, both mutations declined sharply more recently, reflecting major changes in CDI epidemiology. We detected mutations associated with fidaxomicin resistance in several major genotypes, but found no evidence of international spread of resistant clones. The pCD-METRO plasmid, conferring metronidazole resistance, was detected in a single previously unreported C. difficile isolate, recovered from a hospital patient in Germany in 2008. The pX18-498 plasmid, putatively associated with decreased vancomycin susceptibility, was confined to related, recent isolates from the USA. Phenotype measurements confirmed that most of those genetic features were useful predictors of antibiotic susceptibility, even though ranges of MICs typically overlapped among isolates with and without specific mutations. CONCLUSIONS Genomic data suggested that resistance to therapeutic antimicrobial drugs is rare in C. difficile. Public antimicrobial resistance marker databases were not equipped to detect most of the genetic determinants relevant to antibiotic therapy of CDI.
Collapse
Affiliation(s)
- Baban Kolte
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Inhoffenstr. 7B, 38124, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Inhoffenstr. 7B, 38124, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| |
Collapse
|
2
|
Markantonis JE, Fallon JT, Madan R, Alam MZ. Clostridioides difficile Infection: Diagnosis and Treatment Challenges. Pathogens 2024; 13:118. [PMID: 38392856 PMCID: PMC10891949 DOI: 10.3390/pathogens13020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Clostridioides difficile is the most important cause of healthcare-associated diarrhea in the United States. The high incidence and recurrence rates of C. difficile infection (CDI), associated with high morbidity and mortality, pose a public health challenge. Although antibiotics targeting C. difficile bacteria are the first treatment choice, antibiotics also disrupt the indigenous gut flora and, therefore, create an environment that is favorable for recurrent CDI. The challenge of treating CDI is further exacerbated by the rise of antibiotic-resistant strains of C. difficile, placing it among the top five most urgent antibiotic resistance threats in the USA. The evolution of antibiotic resistance in C. difficile involves the acquisition of new resistance mechanisms, which can be shared among various bacterial species and different C. difficile strains within clinical and community settings. This review provides a summary of commonly used diagnostic tests and antibiotic treatment strategies for CDI. In addition, it discusses antibiotic treatment and its resistance mechanisms. This review aims to enhance our current understanding and pinpoint knowledge gaps in antimicrobial resistance mechanisms in C. difficile, with an emphasis on CDI therapies.
Collapse
Affiliation(s)
- John E. Markantonis
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | - John T. Fallon
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | - Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| |
Collapse
|
3
|
Johnstone MA, Holman MA, Self WT. Inhibition of selenoprotein synthesis is not the mechanism by which auranofin inhibits growth of Clostridioides difficile. Sci Rep 2023; 13:14733. [PMID: 37679389 PMCID: PMC10484987 DOI: 10.1038/s41598-023-36796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/12/2023] [Indexed: 09/09/2023] Open
Abstract
Clostridioides difficile infections (CDIs) are responsible for a significant number of antibiotic-associated diarrheal cases. The standard-of-care antibiotics for C. difficile are limited to fidaxomicin and vancomycin, with the recently obsolete metronidazole recommended if both are unavailable. No new antimicrobials have been approved for CDI since fidaxomicin in 2011, despite varying rates of treatment failure among all standard-of-care drugs. Drug repurposing is a rational strategy to generate new antimicrobials out of existing therapeutics approved for other indications. Auranofin is a gold-containing anti-rheumatic drug with antimicrobial activity against C. difficile and other microbes. In a previous report, our group hypothesized that inhibition of selenoprotein biosynthesis was auranofin's primary mechanism of action against C. difficile. However, in this study, we discovered that C. difficile mutants lacking selenoproteins are still just as sensitive to auranofin as their respective wild-type strains. Moreover, we found that selenite supplementation dampens the activity of auranofin against C. difficile regardless of the presence of selenoproteins, suggesting that selenite's neutralization of auranofin is not because of compensation for a chemically induced selenium deficiency. Our results clarify the findings of our original study and may aid drug repurposing efforts in discovering the compound's true mechanism of action against C. difficile.
Collapse
Affiliation(s)
- Michael A Johnstone
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Matthew A Holman
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - William T Self
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA.
| |
Collapse
|
4
|
Boyanova L, Dimitrov G, Gergova R, Hadzhiyski P, Markovska R. Clostridioides difficile resistance to antibiotics, including post-COVID-19 data. Expert Rev Clin Pharmacol 2023; 16:925-938. [PMID: 37642560 DOI: 10.1080/17512433.2023.2252331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Updating data on Clostridioides difficile antibiotic resistance is important for treatment improvement of C. difficile infections (CDIs). AREAS COVERED Results from 20 countries were included. The mean resistance to 2 mg/l vancomycin, 2 mg/l metronidazole, 4 mg/l moxifloxacin, and 4 mg/l clindamycin was 4.7% (0 to ≥ 26% in two studies), 2.6% (0 to ≥ 40% in 3 studies), 34.9% (6.6->80%), and 61.0% (30->90%), respectively. Resistance to erythromycin (>60-88%), rifampin (>23-55.0%), imipenem (0.6 to > 78% in a clone), tigecycline (0-<5.0%), and fidaxomicin (0-2%) was also found. Resistance to ≥ 5 antibiotics of different classes was reported in some countries. High resistance and multidrug resistance were observed in hypervirulent and epidemic strains. Although only 1% of COVID-19 patients had CDIs, the proportion might be underestimated. EXPERT OPINION C. difficile antimicrobial susceptibility varied by country/region, study period, and circulating ribotypes. For CDI treatment, fidaxomicin (preferably) or vancomycin is recommended, while metronidazole is suitable for mild infections. New approaches, including biotherapeutics (Rebyota), strains, antibiotics (ridinilazole and ibezapolstat), and monoclonal antibodies/cocktails merit further evaluation. Because of the resistance rate variations, C. difficile antibiotic susceptibility should be regularly monitored. Post-COVID-19 resistance should be separately presented. Some discrepancies between vancomycin and metronidazole results need to be clarified.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Dimitrov
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Raina Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Petyo Hadzhiyski
- Specialized Hospital for Active Pediatric Treatment, Medical University of Sofia, Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
5
|
Gargis AS, Karlsson M, Paulick AL, Anderson KF, Adamczyk M, Vlachos N, Kent AG, McAllister G, McKay SL, Halpin AL, Albrecht V, Campbell D, Korhonen LC, Elkins CA, Rasheed JK, Guh AY, McDonald LC, Lutgring JD. Reference Susceptibility Testing and Genomic Surveillance of Clostridioides difficile, United States, 2012-17. Clin Infect Dis 2023; 76:890-896. [PMID: 36208202 PMCID: PMC10839785 DOI: 10.1093/cid/ciac817] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Antimicrobial susceptibility testing (AST) is not routinely performed for Clostridioides difficile and data evaluating minimum inhibitory concentrations (MICs) are limited. We performed AST and whole genome sequencing (WGS) for 593 C. difficile isolates collected between 2012 and 2017 through the Centers for Disease Control and Prevention's Emerging Infections Program. METHODS MICs to 6 antimicrobial agents (ceftriaxone, clindamycin, meropenem, metronidazole, moxifloxacin, and vancomycin) were determined using the reference agar dilution method according to Clinical and Laboratory Standards Institute guidelines. Whole genome sequencing was performed on all isolates to detect the presence of genes or mutations previously associated with resistance. RESULTS Among all isolates, 98.5% displayed a vancomycin MIC ≤2 μg/mL and 97.3% displayed a metronidazole MIC ≤2 μg/mL. Ribotype 027 (RT027) isolates displayed higher vancomycin MICs (MIC50: 2 μg/mL; MIC90: 2 μg/mL) than non-RT027 isolates (MIC50: 0.5 μg/mL; MIC90: 1 μg/mL) (P < .01). No vanA/B genes were detected. RT027 isolates also showed higher MICs to clindamycin and moxifloxacin and were more likely to harbor associated resistance genes or mutations. CONCLUSIONS Elevated MICs to antibiotics used for treatment of C. difficile infection were rare, and there was no increase in MICs over time. The lack of vanA/B genes or mutations consistently associated with elevated vancomycin MICs suggests there are multifactorial mechanisms of resistance. Ongoing surveillance of C. difficile using reference AST and WGS to monitor MIC trends and the presence of antibiotic resistance mechanisms is essential.
Collapse
Affiliation(s)
- Amy S Gargis
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria Karlsson
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt C6, LLC, Chesapeake, Virginia, USA
| | - Ashley L Paulick
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Karen F Anderson
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michelle Adamczyk
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nicholas Vlachos
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alyssa G Kent
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gillian McAllister
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susannah L McKay
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alison L Halpin
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Valerie Albrecht
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Davina Campbell
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lauren C Korhonen
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christopher A Elkins
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J Kamile Rasheed
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alice Y Guh
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - L Clifford McDonald
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joseph D Lutgring
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|