1
|
Mahamar A, Smit MJ, Sanogo K, Sinaba Y, Niambele SM, Sacko A, Dicko OM, Diallo M, Maguiraga SO, Sankaré Y, Keita S, Samake S, Dembele A, Lanke K, Ter Heine R, Bradley J, Dicko Y, Traore SF, Drakeley C, Dicko A, Bousema T, Stone W. Artemether-lumefantrine with or without single-dose primaquine and sulfadoxine-pyrimethamine plus amodiaquine with or without single-dose tafenoquine to reduce Plasmodium falciparum transmission: a phase 2, single-blind, randomised clinical trial in Ouelessebougou, Mali. THE LANCET. MICROBE 2024; 5:633-644. [PMID: 38705163 PMCID: PMC11217006 DOI: 10.1016/s2666-5247(24)00023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Artemether-lumefantrine is widely used for uncomplicated Plasmodium falciparum malaria; sulfadoxine-pyrimethamine plus amodiaquine is used for seasonal malaria chemoprevention. We aimed to determine the efficacy of artemether-lumefantrine with and without primaquine and sulfadoxine-pyrimethamine plus amodiaquine with and without tafenoquine for reducing gametocyte carriage and transmission to mosquitoes. METHODS In this phase 2, single-blind, randomised clinical trial conducted in Ouelessebougou, Mali, asymptomatic individuals aged 10-50 years with P falciparum gametocytaemia were recruited from the community and randomly assigned (1:1:1:1) to receive either artemether-lumefantrine, artemether-lumefantrine with a single dose of 0·25 mg/kg primaquine, sulfadoxine-pyrimethamine plus amodiaquine, or sulfadoxine-pyrimethamine plus amodiaquine with a single dose of 1·66 mg/kg tafenoquine. All trial staff other than the pharmacist were masked to group allocation. Participants were not masked to group allocation. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. The primary outcome was the median within-person percent change in mosquito infection rate in infectious individuals from baseline to day 2 (artemether-lumefantrine groups) or day 7 (sulfadoxine-pyrimethamine plus amodiaquine groups) after treatment, assessed by direct membrane feeding assay. All participants who received any trial drug were included in the safety analysis. This study is registered with ClinicalTrials.gov, NCT05081089. FINDINGS Between Oct 13 and Dec 16, 2021, 1290 individuals were screened and 80 were enrolled and randomly assigned to one of the four treatment groups (20 per group). The median age of participants was 13 (IQR 11-20); 37 (46%) of 80 participants were female and 43 (54%) were male. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 2 days after treatment was 100·0% (IQR 100·0-100·0; n=19; p=0·0011) with artemether-lumefantrine and 100·0% (100·0-100·0; n=19; p=0·0001) with artemether-lumefantrine with primaquine. Only two individuals who were infectious at baseline infected mosquitoes on day 2 after artemether-lumefantrine and none at day 5. By contrast, the median percentage reduction in mosquito infection rate 7 days after treatment was 63·6% (IQR 0·0-100·0; n=20; p=0·013) with sulfadoxine-pyrimethamine plus amodiaquine and 100% (100·0-100·0; n=19; p<0·0001) with sulfadoxine-pyrimethamine plus amodiaquine with tafenoquine. No grade 3-4 or serious adverse events occurred. INTERPRETATION These data support the effectiveness of artemether-lumefantrine alone for preventing nearly all mosquito infections. By contrast, there was considerable post-treatment transmission after sulfadoxine-pyrimethamine plus amodiaquine; therefore, the addition of a transmission-blocking drug might be beneficial in maximising its community impact. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali.
| | - Merel J Smit
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Youssouf Sinaba
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sidi M Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Sacko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Oumar M Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Makonon Diallo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Seydina O Maguiraga
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Yaya Sankaré
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekouba Keita
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Siaka Samake
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Dembele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Kjerstin Lanke
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rob Ter Heine
- Department of Pharmacy and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Yahia Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekou F Traore
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Will Stone
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Barber BE, Abd-Rahman AN, Webster R, Potter AJ, Llewellyn S, Marquart L, Sahai N, Leelasena I, Birrell GW, Edstein MD, Shanks GD, Wesche D, Moehrle JJ, McCarthy JS. Characterizing the Blood-Stage Antimalarial Activity of Tafenoquine in Healthy Volunteers Experimentally Infected With Plasmodium falciparum. Clin Infect Dis 2023; 76:1919-1927. [PMID: 36795050 PMCID: PMC10249991 DOI: 10.1093/cid/ciad075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND The long-acting 8-aminoquinoline tafenoquine may be a good candidate for mass drug administration if it exhibits sufficient blood-stage antimalarial activity at doses low enough to be tolerated by glucose 6-phosphate dehydrogenase (G6PD)-deficient individuals. METHODS Healthy adults with normal levels of G6PD were inoculated with Plasmodium falciparum 3D7-infected erythrocytes on day 0. Different single oral doses of tafenoquine were administered on day 8. Parasitemia and concentrations of tafenoquine and the 5,6-orthoquinone metabolite in plasma/whole blood/urine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 48 ± 2. Outcomes were parasite clearance kinetics, pharmacokinetic and pharmacokinetic/pharmacodynamic (PK/PD) parameters from modelling, and dose simulations in a theoretical endemic population. RESULTS Twelve participants were inoculated and administered 200 mg (n = 3), 300 mg (n = 4), 400 mg (n = 2), or 600 mg (n = 3) tafenoquine. The parasite clearance half-life with 400 mg or 600 mg (5.4 hours and 4.2 hours, respectively) was faster than with 200 mg or 300 mg (11.8 hours and 9.6 hours, respectively). Parasite regrowth occurred after dosing with 200 mg (3/3 participants) and 300 mg (3/4 participants) but not after 400 mg or 600 mg. Simulations using the PK/PD model predicted that 460 mg and 540 mg would clear parasitaemia by a factor of 106 and 109, respectively, in a 60-kg adult. CONCLUSIONS Although a single dose of tafenoquine exhibits potent P. falciparum blood-stage antimalarial activity, the estimated doses to effectively clear asexual parasitemia will require prior screening to exclude G6PD deficiency. Clinical Trials Registration. Australian and New Zealand Clinical Trials Registry (ACTRN12620000995976).
Collapse
Affiliation(s)
- Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of the Sunshine Coast, Morayfield, Australia
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Rebecca Webster
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Adam J Potter
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Nischal Sahai
- University of the Sunshine Coast, Morayfield, Australia
| | | | - Geoffrey W Birrell
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Michael D Edstein
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - G Dennis Shanks
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | | | | | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
3
|
Calit J, Araújo JE, Deng B, Miura K, Gaitán XA, Araújo MDS, Medeiros JF, Long CA, Simeonov A, Eastman RT, Bargieri DY. Novel Transmission-Blocking Antimalarials Identified by High-Throughput Screening of Plasmodium berghei Ookluc. Antimicrob Agents Chemother 2023; 67:e0146522. [PMID: 36856421 PMCID: PMC10112123 DOI: 10.1128/aac.01465-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Safe and effective malaria transmission-blocking chemotherapeutics would allow a community-level approach to malaria control and eradication efforts by targeting the mosquito sexual stage of the parasite life cycle. However, only a single drug, primaquine, is currently approved for use in reducing transmission, and drug toxicity limits its widespread implementation. To address this limitation in antimalarial chemotherapeutics, we used a recently developed transgenic Plasmodium berghei line, Ookluc, to perform a series of high-throughput in vitro screens for compounds that inhibit parasite fertilization, the initial step of parasite development within the mosquito. Screens of antimalarial compounds, approved drug collections, and drug-like molecule libraries identified 185 compounds that inhibit parasite maturation to the zygote form. Seven compounds were further characterized to block gametocyte activation or to be cytotoxic to formed zygotes. These were further validated in mosquito membrane-feeding assays using Plasmodium falciparum and P. vivax. This work demonstrates that high-throughput screens using the Ookluc line can identify compounds that are active against the two most relevant human Plasmodium species and provides a list of compounds that can be explored for the development of new antimalarials to block transmission.
Collapse
Affiliation(s)
- Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jessica E. Araújo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Xiomara A. Gaitán
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maisa da Silva Araújo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Jansen F. Medeiros
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Richard T. Eastman
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Daniel Y. Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Kanai M, Hagenah LM, Ashley EA, Chibale K, Fidock DA. Keystone Malaria Symposium 2022: a vibrant discussion of progress made and challenges ahead from drug discovery to treatment. Trends Parasitol 2022; 38:711-718. [PMID: 35864072 PMCID: PMC9631389 DOI: 10.1016/j.pt.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
In recent years, the field of malaria research has made substantial progress in the areas of antimalarial drug resistance and discovery. These efforts are essential to combatting the devastating impact of malaria, which, in 2020, resulted in an estimated 241 million cases and 627 000 deaths. Recent advances in this area were presented at a Keystone Symposium entitled ‘Malaria: Confronting Challenges from Drug Discovery to Treatment’, held in person in Breckenridge, Colorado, in April 2022. Herein, we present a summary of the proceedings of this vibrant scientific exchange, which brought together a superb group of faculty, postdocs, and students from around the globe.
Collapse
Affiliation(s)
- Mariko Kanai
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Elizabeth A Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Laos.
| | - Kelly Chibale
- Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa; Department of Chemistry, University of Cape Town, Rondebosch, South Africa.
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|