1
|
Ge X, Zhou H, Shen F, Yang G, Zhang Y, Zhang X, Li H. SARS-CoV-2 subgenomic RNA: formation process and rapid molecular diagnostic methods. Clin Chem Lab Med 2024; 62:1019-1028. [PMID: 38000044 DOI: 10.1515/cclm-2023-0846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which caused coronavirus disease-2019 (COVID-19) is spreading worldwide and posing enormous losses to human health and socio-economic. Due to the limitations of medical and health conditions, it is still a huge challenge to develop appropriate discharge standards for patients with COVID-19 and to use medical resources in a timely and effective manner. Similar to other coronaviruses, SARS-CoV-2 has a very complex discontinuous transcription process to generate subgenomic RNA (sgRNA). Some studies support that sgRNA of SARS-CoV-2 can only exist when the virus is active and is an indicator of virus replication. The results of sgRNA detection in patients can be used to evaluate the condition of hospitalized patients, which is expected to save medical resources, especially personal protective equipment. There have been numerous investigations using different methods, especially molecular methods to detect sgRNA. Here, we introduce the process of SARS-CoV-2 sgRNA formation and the commonly used molecular diagnostic methods to bring a new idea for clinical detection in the future.
Collapse
Affiliation(s)
- Xiao Ge
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Huizi Zhou
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Fangyuan Shen
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Guimao Yang
- Department of Medical Laboratory, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P.R. China
| | - Yubo Zhang
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Xiaoyu Zhang
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Heng Li
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| |
Collapse
|
2
|
Lakhal-Naouar I, Hack HR, Moradel E, Jarra A, Grove HL, Ismael RM, Padilla S, Coleman D, Ouellette J, Darden J, Storme C, Peachman KK, Hall TL, Huhtanen ME, Scott PT, Hakre S, Jagodzinski LL, Peel SA. Analytical validation of quantitative SARS-CoV-2 subgenomic and viral load laboratory developed tests conducted on the Panther Fusion® (Hologic) with preliminary application to clinical samples. PLoS One 2023; 18:e0287576. [PMID: 37384714 PMCID: PMC10309597 DOI: 10.1371/journal.pone.0287576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
OBJECTIVE Validate the performance characteristics of two analyte specific, laboratory developed tests (LDTs) for the quantification of SARS-CoV-2 subgenomic RNA (sgRNA) and viral load on the Hologic Panther Fusion® using the Open Access functionality. METHODS Custom-designed primers/probe sets targeting the SARS-CoV-2 Envelope gene (E) and subgenomic E were optimized. A 20-day performance validation following laboratory developed test requirements was conducted to assess assay precision, accuracy, analytical sensitivity/specificity, lower limit of detection and reportable range. RESULTS Quantitative SARS-CoV-2 sgRNA (LDT-Quant sgRNA) assay, which measures intermediates of replication, and viral load (LDT-Quant VLCoV) assay demonstrated acceptable performance. Both assays were linear with an R2 and slope equal to 0.99 and 1.00, respectively. Assay precision was evaluated between 4-6 Log10 with a maximum CV of 2.6% and 2.5% for LDT-Quant sgRNA and LDT-Quant VLCoV respectively. Using negative or positive SARS-CoV-2 human nasopharyngeal swab samples, both assays were accurate (kappa coefficient of 1.00 and 0.92). Common respiratory flora and other viral pathogens were not detected and did not interfere with the detection or quantification by either assay. Based on 95% detection, the assay LLODs were 729 and 1206 Copies/mL for the sgRNA and VL load LDTs, respectively. CONCLUSION The LDT-Quant sgRNA and LDT-Quant VLCoV demonstrated good analytical performance. These assays could be further investigated as alternative monitoring assays for viral replication; and thus, medical management in clinical settings which could inform isolation/quarantine requirements.
Collapse
Affiliation(s)
- Ines Lakhal-Naouar
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Holly R. Hack
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Edgar Moradel
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Amie Jarra
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Hannah L. Grove
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Rani M. Ismael
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Steven Padilla
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Dante Coleman
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Jason Ouellette
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Janice Darden
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Casey Storme
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kristina K. Peachman
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Tara L. Hall
- Moncrief Army Health Clinic, Fort Jackson, South Carolina, United States of America
| | - Mark E. Huhtanen
- Moncrief Army Health Clinic, Fort Jackson, South Carolina, United States of America
| | - Paul T. Scott
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Shilpa Hakre
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Linda L. Jagodzinski
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sheila A. Peel
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
3
|
Aiello TF, García-Vidal C, Soriano A. Antiviral drugs against SARS-CoV-2. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2022; 35 Suppl 3:10-15. [PMID: 36285850 PMCID: PMC9717461 DOI: 10.37201/req/s03.03.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The use of antiviral drugs represents an important progress in the therapeutic management of COVID-19, leading to a substantial reduction of SARS-CoV-2-related complications and mortality. In immunocompetent host, peak viral replication occurs around the symptom's onset, and it prolongs for 5 to 7 days that is the window of opportunity for giving an antiviral. Accordingly, early and rapid diagnostic of the infection in the outpatient clinic is essential as well as the availability of oral agents that can be easily prescribe. Remdesivir has demonstrated its efficacy in hospitalized patients requiring oxygen support and in mild/moderate cases to avoid the hospitalization, however, the intravenous administration limits its use among outpatients. Molnupiravir and nirmatrelvir/ritonavir are potent oral antiviral agents. In the present review we discuss the potential targets against SARS-CoV-2, and an overview of the main characteristics and clinical results with the available antiviral agents for the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - A Soriano
- Alex Soriano, Department of Infectious Diseases, Hospital Clínic of Barcelona, C/Villarroel 170, Barcelona 08036, Spain.
| |
Collapse
|