1
|
Laghlali G, Wiest MJ, Karadag D, Warang P, O'Konek JJ, Chang LA, Park SC, Yan V, Farazuddin M, Janczak KW, García-Sastre A, Baker JR, Wong PT, Schotsaert M. Enhanced mucosal SARS-CoV-2 immunity after heterologous intramuscular mRNA prime/intranasal protein boost vaccination with a combination adjuvant. Mol Ther 2024:S1525-0016(24)00676-2. [PMID: 39489918 DOI: 10.1016/j.ymthe.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime, was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Matthew J Wiest
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dilara Karadag
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica J O'Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivian Yan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohammad Farazuddin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katarzyna W Janczak
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James R Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pamela T Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Sun T, Li L, Mues KE, Georgieva MV, Kirk B, Mansi JA, Van de Velde N, Beck EC. Real-World Effectiveness of a Third Dose of mRNA-1273 Versus BNT162b2 on Inpatient and Medically Attended COVID-19 Among Immunocompromised US Adults. Infect Dis Ther 2024; 13:1771-1787. [PMID: 38916690 PMCID: PMC11266318 DOI: 10.1007/s40121-024-01005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
INTRODUCTION Recent data have shown elevated infection rates in several subpopulations at risk of SARS-CoV-2 infection and COVID-19, including immunocompromised (IC) individuals. Previous research suggests that IC persons have reduced risks of hospitalization and medically attended COVID-19 with two doses of mRNA-1273 (SpikeVax; Moderna) compared to two doses of BNT162b2 (Comirnaty; Pfizer/BioNTech). The main objective of this retrospective cohort study was to compare real-world effectiveness of third doses of mRNA-1273 versus BNT162b2 at multiple time points on occurrence of COVID-19 hospitalization and medically attended COVID-19 among IC adults in the United States (US). METHODS This retrospective, observational comparative effectiveness study identified patients from the US HealthVerity database from December 11, 2020, through August 31, 2022. Medically attended SARS-CoV-2 infections and hospitalizations were assessed following a three-dose mRNA-1273 versus BNT162b2 regimen. Inverse probability weighting was applied to balance baseline confounders between vaccine groups. Relative risk (RR) and risk difference were calculated for subgroup and sensitivity analyses using a non-parametric method. RESULTS In propensity score-adjusted analyses, receiving mRNA-1273 vs. BNT162b2 as third dose was associated with 32.4% (relative risk 0.676; 95% confidence interval 0.506-0.887), 29.3% (0.707; 0.573-0.858), and 23.4% (0.766; 0.626-0.927) lower risk of COVID-19 hospitalization after 90, 180, and 270 days, respectively. Corresponding reductions in medically attended COVID-19 were 8.4% (0.916; 0.860-0.976), 6.4% (0.936; 0.895-0.978), and 2.4% (0.976; 0.935-1.017), respectively. CONCLUSIONS Our findings suggest a third dose of mRNA-1273 is more effective than a third dose of BNT162b2 in preventing COVID-19 hospitalization and breakthrough medically attended COVID-19 among IC adults in the US.
Collapse
Affiliation(s)
- Tianyu Sun
- Moderna, Inc., 325 Binney Street, Cambridge, MA, 02142, USA.
| | - Linwei Li
- Moderna, Inc., 325 Binney Street, Cambridge, MA, 02142, USA
| | | | | | | | - James A Mansi
- Moderna, Inc., 325 Binney Street, Cambridge, MA, 02142, USA
| | | | | |
Collapse
|
3
|
Laghlali G, Wiest MJ, Karadag D, Warang P, O'Konek JJ, Chang LA, Park S, Farazuddin M, Landers JJ, Janczak KW, García-Sastre A, Baker JR, Wong PT, Schotsaert M. Enhanced mucosal B- and T-cell responses against SARS-CoV-2 after heterologous intramuscular mRNA prime/intranasal protein boost vaccination with a combination adjuvant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587260. [PMID: 38586014 PMCID: PMC10996704 DOI: 10.1101/2024.03.28.587260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as SARS-CoV-2, by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection to SARS-CoV-2.
Collapse
|
4
|
Priddy F, Chalkias S, Essink B, Whatley J, Brosz A, Lee IT, Feng J, Tracy L, Deng W, Zhou W, Zhou H, Dixit A, Schnyder-Ghamloush S, Girard B, de Windt E, Yeakey A, Miller J, Das R, Kuter BJ. A review of the immunogenicity and safety of booster doses of omicron variant-containing mRNA-1273 COVID-19 vaccines in adults and children. Expert Rev Vaccines 2024; 23:862-878. [PMID: 39234779 DOI: 10.1080/14760584.2024.2397026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Vaccination against SARS-CoV-2 is an integral pillar of the public health approach to COVID-19. With the emergence of variants of concern that increase transmissibility and escape from vaccine- or infection-induced protection, vaccines have been developed to more closely match the newly circulating SARS-CoV-2 strains to improve protection. The safety and immunogenicity of multiple authorized messenger RNA (mRNA)-based COVID-19 vaccines targeting the omicron sublineage (BA.1, BA.4/BA.5, and XBB.1.5) have been demonstrated in several clinical trials among adults and children. AREAS COVERED This review will comprehensively detail the available evidence (published through July 2024) from ongoing clinical trials on omicron variant-containing mRNA-1273 vaccines administered as additional doses in previously vaccinated target demographics. EXPERT OPINION Across three clinical trials, omicron variant-containing mRNA-1273 vaccines induced immune responses to vaccine-matched omicron strains as well as ancestral SARS-CoV-2, with a safety and reactogenicity profile comparable to the original mRNA-1273 vaccine. Combined with pivotal data demonstrating the safety, efficacy, and effectiveness of the original mRNA-1273 vaccine, these findings support the use of variant-containing mRNA-1273 vaccines and provide confidence that expeditious development of updated vaccines using this established mRNA platform can maintain protection against COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Adam Brosz
- Meridian Clinical Research, Savannah, GA, USA
| | | | | | | | | | - Wen Zhou
- Moderna, Inc, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Meah S, Shi X, Fritsche LG, Salvatore M, Wagner A, Martin ET, Mukherjee B. Design and analysis heterogeneity in observational studies of COVID-19 booster effectiveness: A review and case study. SCIENCE ADVANCES 2023; 9:eadj3747. [PMID: 38117882 PMCID: PMC10732535 DOI: 10.1126/sciadv.adj3747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
We investigated the design and analysis of observational booster vaccine effectiveness (VE) studies by performing a scoping review of booster VE literature with a focus on study design and analytic choices. We then applied 20 different approaches, including those found in the literature, to a single dataset from Michigan Medicine. We identified 80 studies in our review, including over 150 million observations in total. We found that while protection against infection is variable and dependent on several factors including the study population and time period, both monovalent boosters and particularly the bivalent booster offer strong protection against severe COVID-19. In addition, VE analyses with a severe disease outcome (hospitalization, intensive care unit admission, or death) appear to be more robust to design and analytic choices than an infection endpoint. In terms of design choices, we found that test-negative designs and their variants may offer advantages in statistical efficiency compared to cohort designs.
Collapse
Affiliation(s)
- Sabir Meah
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Department of Urology, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Xu Shi
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Lars G. Fritsche
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Maxwell Salvatore
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Abram Wagner
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Nuraini N, Soekotjo FN, Alifia A, Sukandar KK, Lestari BW. Assessing potential surge of COVID-19 cases and the need for booster vaccine amid emerging SARS-CoV-2 variants in Indonesia: A modelling study from West Java. Heliyon 2023; 9:e20009. [PMID: 37809646 PMCID: PMC10559733 DOI: 10.1016/j.heliyon.2023.e20009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Objectives Primary and booster vaccinations are crucial in COVID-19 control. This study aimed to assess the minimum booster coverage to hamper potential surge of COVID-19 cases in 2023 in Indonesia, a low-resource setting country. Methods We used a modified SEIR compartment model to assess different scenarios in booster coverage across West Java population: 35%, 50%, and 70%. We fitted the model, then we calculated the potential active cases in 2023 if each scenario was met before 2022 ends. A heat map of predicted cases from various booster coverages and time frames was produced and matched with vaccination rate's function to determine feasible time frames. Results A minimum of 70% booster coverage in West Java is needed to reduce 90% of potential COVID-19 cases and avert possible surge in 2023. The booster doses should be distributed before February 2023 to achieve its optimum preventive effect. Delays in achieving minimum booster coverage is acceptable, but higher booster coverage will be required. Conclusions For better COVID-19 control in Indonesia, booster vaccination is warranted, as presented by a case study in West Java. Sufficient vaccine supplies, infrastructure, and healthcare workers should be ensured to support a successful booster vaccination program.
Collapse
Affiliation(s)
- Nuning Nuraini
- Department of Mathematics, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Fadiya Nadhilah Soekotjo
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - Almira Alifia
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | | | - Bony Wiem Lestari
- Epidemiology Group of COVID-19 Task Force for West Java, Bandung, 40171, Indonesia
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, 40161, Indonesia
- Department of Internal Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Meah S, Shi X, Fritsche LG, Salvatore M, Wagner A, Martin ET, Mukherjee B. Design and Analysis Heterogeneity in Observational Studies of COVID-19 Booster Effectiveness: A Review and Case Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.22.23291692. [PMID: 37425863 PMCID: PMC10327238 DOI: 10.1101/2023.06.22.23291692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Observational vaccine effectiveness (VE) studies based on real-world data are a crucial supplement to initial randomized clinical trials of Coronavirus Disease 2019 (COVID-19) vaccines. However, there exists substantial heterogeneity in study designs and statistical methods for estimating VE. The impact of such heterogeneity on VE estimates is not clear. Methods We conducted a two-step literature review of booster VE: a literature search for first or second monovalent boosters on January 1, 2023, and a rapid search for bivalent boosters on March 28, 2023. For each study identified, study design, methods, and VE estimates for infection, hospitalization, and/or death were extracted and summarized via forest plots. We then applied methods identified in the literature to a single dataset from Michigan Medicine (MM), providing a comparison of the impact of different statistical methodologies on the same dataset. Results We identified 53 studies estimating VE of the first booster, 16 for the second booster. Of these studies, 2 were case-control, 17 were test-negative, and 50 were cohort studies. Together, they included nearly 130 million people worldwide. VE for all outcomes was very high (around 90%) in earlier studies (i.e., in 2021), but became attenuated and more heterogeneous over time (around 40%-50% for infection, 60%-90% for hospitalization, and 50%-90% for death). VE compared to the previous dose was lower for the second booster (10-30% for infection, 30-60% against hospitalization, and 50-90% against death). We also identified 11 bivalent booster studies including over 20 million people. Early studies of the bivalent booster showed increased effectiveness compared to the monovalent booster (VE around 50-80% for hospitalization and death).Our primary analysis with MM data using a cohort design included 186,495 individuals overall (including 153,811 boosted and 32,684 with only a primary series vaccination), and a secondary test-negative design included 65,992 individuals tested for SARS-CoV-2. When different statistical designs and methods were applied to MM data, VE estimates for hospitalization and death were robust to analytic choices, with test-negative designs leading to narrower confidence intervals. Adjusting either for the propensity of getting boosted or directly adjusting for covariates reduced the heterogeneity across VE estimates for the infection outcome. Conclusion While the advantage of the second monovalent booster is not obvious from the literature review, the first monovalent booster and the bivalent booster appear to offer strong protection against severe COVID-19. Based on both the literature view and data analysis, VE analyses with a severe disease outcome (hospitalization, ICU admission, or death) appear to be more robust to design and analytic choices than an infection endpoint. Test-negative designs can extend to severe disease outcomes and may offer advantages in statistical efficiency when used properly.
Collapse
Affiliation(s)
- Sabir Meah
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Xu Shi
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Lars G. Fritsche
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Maxwell Salvatore
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Abram Wagner
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Ku JH, Sy LS, Qian L, Ackerson BK, Luo Y, Tubert JE, Lee GS, Florea A, Bruxvoort KJ, Xie F, Qiu S, Chavers S, Talarico CA, Tseng HF. Effectiveness of a fourth dose of mRNA-1273 against COVID-19 among older adults in the United States: Interim results from an observational cohort study. Vaccine 2023:S0264-410X(23)00668-0. [PMID: 37301708 DOI: 10.1016/j.vaccine.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
We evaluated relative vaccine effectiveness (rVE) of 4- vs. 3-dose mRNA-1273 against SARS-CoV-2 infection, and COVID-19 hospitalization and death in immunocompetent adults aged ≥50 years at Kaiser Permanente Southern California. We included 178,492 individuals who received a fourth dose of mRNA-1273, and 178,492 randomly selected 3-dose recipients who were matched to 4-dose recipients by age, sex, race/ethnicity, and third dose date. Adjusted 4- vs. 3-dose rVE against SARS-CoV-2 infection, COVID-19 hospitalization, and COVID-19 hospitalization death were 25.9 % (23.5 %, 28.2 %), 67.3 % (58.7 %, 74.1 %), and 72.5 % (-35.9 %, 95.2 %), respectively. Adjusted rVE against SARS-CoV-2 infection ranged between 19.8 % and 39.1 % across subgroups. Adjusted rVE against SARS-CoV-2 infection and COVID-19 hospitalization decreased 2-4 months after the fourth dose. Four mRNA-1273 doses provided significant protection against COVID-19 outcomes compared with 3 doses, consistent in various subgroups of demographic and clinical characteristics, although rVE varied and waned over time.
Collapse
Affiliation(s)
- Jennifer H Ku
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA.
| | - Lina S Sy
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA
| | - Lei Qian
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA
| | - Bradley K Ackerson
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA
| | - Yi Luo
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA
| | - Julia E Tubert
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA
| | - Gina S Lee
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA
| | - Ana Florea
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA
| | - Katia J Bruxvoort
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA; Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Fagen Xie
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA
| | - Sijia Qiu
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA
| | | | | | - Hung Fu Tseng
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA; Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA
| |
Collapse
|
9
|
Petrie JG, King JP, McClure DL, Rolfes MA, Meece JK, Pattinson D, Neumann G, Kawaoka Y, Belongia EA, McLean HQ. Effectiveness of first and second COVID-19 mRNA vaccine monovalent booster doses during a period of circulation of Omicron variant sublineages: December 2021-July 2022. Influenza Other Respir Viruses 2023; 17:e13104. [PMID: 36875208 PMCID: PMC9975792 DOI: 10.1111/irv.13104] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 03/06/2023] Open
Abstract
Background US recommendations for COVID-19 vaccine boosters have expanded in terms of age groups covered and numbers of doses recommended, whereas evolution of Omicron sublineages raises questions about ongoing vaccine effectiveness. Methods We estimated effectiveness of monovalent COVID-19 mRNA booster vaccination versus two-dose primary series during a period of Omicron variant virus circulation in a community cohort with active illness surveillance. Hazard ratios comparing SARS-CoV-2 infection between booster versus primary series vaccinated individuals were estimated using Cox proportional hazards models with time-varying booster status. Models were adjusted for age and prior SARS-CoV-2 infection. The effectiveness of a second booster among adults ≥50 years of age was similarly estimated. Results The analysis included 883 participants ranging in age, from 5 to >90 years. Relative effectiveness was 51% (95% CI: 34%, 64%) favoring the booster compared with primary series vaccination and did not vary by prior infection status. Relative effectiveness was 74% (95% CI: 57%, 84%) at 15 to 90 days after booster receipt, but declined to 42% (95% CI: 16%, 61%) after 91 to 180 days, and to 36% (95% CI: 3%, 58%) after 180 days. The relative effectiveness of a second booster compared to a single booster was 24% (95% CI: -40% to 61%). Conclusions An mRNA vaccine booster dose added significant protection against SARS-CoV-2 infection, but protection decreased over time. A second booster did not add significant protection for adults ≥50 years of age. Uptake of recommended bivalent boosters should be encouraged to increase protection against Omicron BA.4/BA.5 sublineages.
Collapse
Affiliation(s)
| | | | | | - Melissa A. Rolfes
- Influenza DivisionCenters for Disease Control and PreventionAtlantaGeorgiaUSA
| | | | - David Pattinson
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonWisconsinUSA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonWisconsinUSA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonWisconsinUSA
| | | | | |
Collapse
|