1
|
Tang Y, Chen L, Xiao J, Yan K, Qi J, Zhou K, Liu H. A single-center retrospective study of pathogen distribution and antibiotic resistance of bloodstream infections in emergency department. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1799-1807. [PMID: 40177763 PMCID: PMC11964804 DOI: 10.11817/j.issn.1672-7347.2024.240333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Indexed: 04/05/2025]
Abstract
OBJECTIVES Bloodstream infections in emergency patients have a high incidence, severe disease progression, and rapid deterioration. Early administration of appropriate antimicrobial agents is crucial for improving patient outcomes. This study aims to investigate the incidence, pathogen distribution, and antimicrobial resistance patterns of bloodstream infections in emergency patients, providing a reference for rational antibiotic use in clinical practice. METHODS Medical records of patients diagnosed with bloodstream infections in the emergency department of a hospital in Hunan Province between January 2018 and October 2022 were retrospectively collected. Clinical characteristics of bloodstream infection patients were analyzed, and the distribution trends and antimicrobial susceptibility of clinical isolates were examined. RESULTS During the study period, 2 215 blood culture samples were submitted from the emergency department, with a positivity rate of 13.27%. After excluding eight cases with missing data or suspected contamination, 286 patients with bloodstream infections were included, with community-acquired infections accounting for the majority (85.66%). The most common primary infection site was the urinary tract (24.48%), followed by respiratory tract infections (20.28%) and biliary and intra-abdominal infections (17.13%). The 30-day mortality rate of bloodstream infections was 16.08%. A total of 286 pathogens were isolated, including 181 (63.29%) Gram-negative bacteria, primarily Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa; 101 (35.31%) Gram-positive bacteria, mainly Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pneumoniae; and only 4 (1.40%) fungal isolates. Antimicrobial susceptibility testing showed that the key Enterobacteriaceae strains exhibited resistance rates of 2.4% to carbapenems, 16.3% to piperacillin sodium and tazobactam sodium, and 15.3% to ceftazidime, with no detected resistance to tigecycline or polymyxins. The main non-fermentative bacteria showed resistance rates of 29.6% to piperacillin sodium and tazobactam sodium, 13.3% to cefoperazone sodium and sulbactam sodium, and 27.1% to quinolones. Among Gram-negative bacteria, multidrug-resistant strains accounted for 40.9% (74/181), with carbapenem-resistant Escherichia coli and Klebsiella pneumoniae detected in 5.4% (5/92) and 13.6% (6/44) of cases, respectively. No carbapenem-resistant Pseudomonas aeruginosa was identified. Among Gram-positive bacteria, resistance rates to penicillin G, rifampicin, and cefoxitin were 74.7%, 4.2%, and 50%, respectively, with only 3 cases of resistant to glycopeptide antibiotics. CONCLUSIONS Bloodstream infections in emergency patients are predominantly community-acquired, with Gram-negative bacteria being the most common pathogens. The isolated pathogens exhibited relatively low resistance rates to commonly used clinical antibiotics.
Collapse
Affiliation(s)
- Yishu Tang
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Lihua Chen
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jie Xiao
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Kun Yan
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Jing Qi
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Kefu Zhou
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Huaizheng Liu
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha 410013.
| |
Collapse
|
2
|
Qin L, Hu N, Zhang Y, Yang J, Zhao L, Zhang X, Yang Y, Zhang J, Zou Y, Wei K, Zhao C, Li Y, Zeng H, Huang W, Zou Q. Antibody-antibiotic conjugate targeted therapy for orthopedic implant-associated intracellular S. aureus infections. J Adv Res 2024; 65:239-255. [PMID: 38048846 PMCID: PMC11519013 DOI: 10.1016/j.jare.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
INTRODUCTION Treating orthopedic implant-associated infections, especially those caused by Staphylococcus aureus (S. aureus), remains a significant challenge. S. aureus has the ability to invade host cells, enabling it to evade both antibiotics and immune responses during infection, which may result in clinical treatment failures. Therefore, it is critical to identify the host cell type of implant-associated intracellular S. aureus infections and to develop a strategy for highly targeted delivery of antibiotics to the host cells. OBJECTIVES Introduced an antibody-antibiotic conjugate (AAC) for the targeted elimination of intracellular S. aureus. METHODS The AAC comprises of a human monoclonal antibody (M0662) directly recognizes the surface antigen of S. aureus, Staphylococcus protein A, which is conjugated with vancomycin through cathepsin-sensitive linkers that are cleavable in the proteolytic environment of the intracellular phagolysosome. AAC, vancomycin and vancomycin combined with AAC were used in vitro intracellular infection and mice implant infection models. We then tested the effect of AAC in vivo and in vivo by fluorescence imaging, in vivo imaging, bacterial quantitative analysis and bacterial biofilm imaging. RESULTS In vitro, it was observed that AAC captured extracellular S. aureus and co-entered the cells, and subsequently released vancomycin to induce rapid elimination of intracellular S. aureus. In the implant infection model, AAC significantly improved the bactericidal effect of vancomycin. Scanning electron microscopy showed that the application of AAC effectively blocked the formation of bacterial biofilm. Further histochemical and micro-CT analysis showed AAC significantly reduced the level of bone marrow density (BMD) and bone volume fraction (BV/TV) reduction caused by bacterial infection in the distal femur of mice compared to vancomycin treatment alone. CONCLUSIONS The application of AAC in an implant infection model showed that it significantly improved the bactericidal effects of vancomycin and effectively blocked the formation of bacterial biofilms, without apparent toxicity to the host.
Collapse
Affiliation(s)
- Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Yanhao Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Liqun Zhao
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yun Yang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Jinyong Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yinshuang Zou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Keyu Wei
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Chen Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Yujian Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Hao Zeng
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
3
|
Davis KP, McDermott LA, Snydman DR, Aldridge BB. In vitro identification of underutilized β-lactam combinations against methicillin-resistant Staphylococcus aureus bacteremia isolates. Microbiol Spectr 2024; 12:e0097624. [PMID: 38916355 PMCID: PMC11302340 DOI: 10.1128/spectrum.00976-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is a serious clinical challenge with high mortality rates. Antibiotic combination therapy is currently used in cases of persistent infection; however, the limited development of new antibiotics will likely increase the need for combination therapy, and better methods are needed for identifying effective combinations for treating persistent bacteremia. To identify pairwise combinations with the most consistent potential for benefit compared to monotherapy with a primary anti-MRSA agent, we conducted a systematic study with an in vitro high-throughput methodology. We tested daptomycin and vancomycin each in combination with gentamicin, rifampicin, cefazolin, and oxacillin, and ceftaroline with daptomycin, gentamicin, and rifampicin. Combining cefazolin with daptomycin lowered the daptomycin concentration required to reach 95% growth inhibition (IC95) for all isolates tested and lowered daptomycin IC95 below the sensitivity breakpoint for five out of six isolates that had daptomycin minimum inhibitory concentrations at or above the sensitivity breakpoint. Similarly, vancomycin IC95s were decreased when vancomycin was combined with cefazolin for 86.7% of the isolates tested. This was a higher percentage than was achieved by adding any other secondary antibiotic to vancomycin. Adding rifampicin to daptomycin or vancomycin did not always reduce IC95s and failed to produce synergistic interaction in any of the isolates tested; the addition of rifampicin to ceftaroline was frequently synergistic and always lowered the amount of ceftaroline required to reach the IC95. These analyses rationalize further in vivo evaluation of three drug pairs for MRSA bacteremia: daptomycin+cefazolin, vancomycin+cefazolin, and ceftaroline+rifampicin.IMPORTANCEBloodstream infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have a high mortality rate despite the availability of vancomycin, daptomycin, and newer antibiotics including ceftaroline. With the slow output of the antibiotic pipeline and the serious clinical challenge posed by persistent MRSA infections, better strategies for utilizing combination therapy are becoming increasingly necessary. We demonstrated the value of a systematic high-throughput approach, adapted from prior work testing antibiotic combinations against tuberculosis and other mycobacteria, by using this approach to test antibiotic pairs against a panel of MRSA isolates with diverse patterns of antibiotic susceptibility. We identified three antibiotic pairs-daptomycin+cefazolin, vancomycin+cefazolin, and ceftaroline+rifampicin-where the addition of the second antibiotic improved the potency of the first antibiotic across all or most isolates tested. Our results indicate that these pairs warrant further evaluation in the clinical setting.
Collapse
Affiliation(s)
- Kathleen P. Davis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- The Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Laura A. McDermott
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - David R. Snydman
- The Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University School of Medicine, Boston, Massachusetts, USA
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- The Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, Massachusetts, USA
| |
Collapse
|