1
|
Mazzone F, Klischan MKT, Greb J, Smits SHJ, Pietruszka J, Pfeffer K. Synthesis and In vitro evaluation of bichalcones as novel anti-toxoplasma agents. Front Chem 2024; 12:1406307. [PMID: 39104777 PMCID: PMC11298430 DOI: 10.3389/fchem.2024.1406307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii, an apicomplexan parasite that infects approximately a third of the world's human population. This disease can cause serious complications during pregnancy and can be fatal in immunocompromised hosts. The current treatment options for toxoplasmosis face several limitations. Thus, to address the urgent medical need for the discovery of novel anti-toxoplasma potential drug candidates, our research focused on exploring a series of monomeric and dimeric chalcones, polyphenolic molecules belonging to the class of flavonoids. Chalcones 1aa-1bg and axially chiral A-A'-connected bichalcones 2aa-2bg were evaluated in vitro against the proliferation of the parasite in a cell-based assay. A comparison of the efficacy demonstrated that, in several cases, bichalcones exhibited increased bioactivity compared to their corresponding monomeric counterparts. Among these compounds, a bichalcone with a phenyl substituent and a methyl moiety 2ab showed the most potent and selective inhibitory activity in the nanomolar range. Both enantiomers of this bichalcone were synthesized using an axially chiral biphenol building block. The biaryl bond was forged using Suzuki cross-coupling in water under micellar catalysis conditions. Separation of the atropisomers of this biphenol building block was conducted by chiral HPLC on a preparative scale. The biological evaluation of the enantiomers revealed that the (R a)-enantiomer (R a)-2ab is the eutomer. These studies suggest that bichalcones may be important drug candidates for further in vivo evaluations for the discovery of anti-toxoplasma drugs.
Collapse
Affiliation(s)
- Flaminia Mazzone
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Moritz K. T. Klischan
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Julian Greb
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Akoolo L, Rocha SC, Parveen N. Protozoan co-infections and parasite influence on the efficacy of vaccines against bacterial and viral pathogens. Front Microbiol 2022; 13:1020029. [PMID: 36504775 PMCID: PMC9732444 DOI: 10.3389/fmicb.2022.1020029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
A wide range of protozoan pathogens either transmitted by vectors (Plasmodium, Babesia, Leishmania and Trypanosoma), by contaminated food or water (Entamoeba and Giardia), or by sexual contact (Trichomonas) invade various organs in the body and cause prominent human diseases, such as malaria, babesiosis, leishmaniasis, trypanosomiasis, diarrhea, and trichomoniasis. Humans are frequently exposed to multiple pathogens simultaneously, or sequentially in the high-incidence regions to result in co-infections. Consequently, synergistic or antagonistic pathogenic effects could occur between microbes that also influences overall host responses and severity of diseases. The co-infecting organisms can also follow independent trajectory. In either case, co-infections change host and pathogen metabolic microenvironments, compromise the host immune status, and affect microbial pathogenicity to influence tissue colonization. Immunomodulation by protozoa often adversely affects cellular and humoral immune responses against co-infecting bacterial pathogens and promotes bacterial persistence, and result in more severe disease symptoms. Although co-infections by protozoa and viruses also occur in humans, extensive studies are not yet conducted probably because of limited animal model systems available that can be used for both groups of pathogens. Immunosuppressive effects of protozoan infections can also attenuate vaccines efficacy, weaken immunological memory development, and thus attenuate protection against co-infecting pathogens. Due to increasing occurrence of parasitic infections, roles of acute to chronic protozoan infection on immunological changes need extensive investigations to improve understanding of the mechanistic details of specific immune responses alteration. In fact, this phenomenon should be seriously considered as one cause of breakthrough infections after vaccination against both bacterial and viral pathogens, and for the emergence of drug-resistant bacterial strains. Such studies would facilitate development and implementation of effective vaccination and treatment regimens to prevent or significantly reduce breakthrough infections.
Collapse
Affiliation(s)
- Lavoisier Akoolo
- Biorepository and Tissue Research Facility, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Sandra C. Rocha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States,*Correspondence: Nikhat Parveen,
| |
Collapse
|
3
|
Li Y, Zeng YM, Lu YQ, Qin YY, Chen YK. A study for precision diagnosing and treatment strategies in difficult-to-treat AIDS cases and HIV-infected patients with highly fatal or highly disabling opportunistic infections. Medicine (Baltimore) 2020; 99:e20146. [PMID: 32443329 PMCID: PMC7253700 DOI: 10.1097/md.0000000000020146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND An increased frequency of toxoplasma encephalitis, caused by Toxoplasma gondii, has been reported in AIDS patients, especially in those with CD4+ T cell counts <100 cells/μL. Several guidelines recommend the combination of pyrimethamine, sulfadiazine, and leucovorin as the preferred regimen for AIDS-associated toxoplasma encephalitis. However, it is not commonly used in China due to limited access to pyrimethamine and sulfadiazine. The synergistic sulfonamides tablet formulation is a combination of trimethoprim (TMP), sulfadiazine and sulfamethoxazole (SMX), and is readily available in China. Considering its constituent components, we hypothesize that this drug may be used as a substitute for sulfadiazine and TMP-SMX. We have therefore designed the present trial, and propose to investigate the efficacy and safety of synergistic sulfonamides combined with clindamycin for the treatment of toxoplasma encephalitis. METHODS/DESIGN This study will be an open-labeled, multi-center, prospective, randomized, and controlled trial. A total of 200 patients will be randomized into TMP-SMX plus azithromycin group, and synergistic sulfonamides plus clindamycin group at a ratio of 1:1. All participants will be invited to participate in a 48-week follow-up schedule once enrolled. The primary outcomes will be clinical response rate and all-cause mortality at 12 weeks. The secondary outcomes will be clinical response rate and all-cause mortality at 48 weeks, and adverse events at each visit during the follow-up period. DISCUSSION We hope that the results of this study will be able to provide reliable evidence for the efficacy and safety of synergistic sulfonamides for its use in AIDS patients with toxoplasma encephalitis. TRIAL REGISTRATION This study was registered as one of 12 clinical trials under the name of a general project at chictr.gov on February 1, 2019, and the registration number of the general project is ChiCTR1900021195. This study is still recruiting now, and the first patient was screened on March 22, 2019.
Collapse
|
4
|
Soriano V, Ramos JM, Barreiro P, Fernandez-Montero JV. AIDS Clinical Research in Spain-Large HIV Population, Geniality of Doctors, and Missing Opportunities. Viruses 2018; 10:v10060293. [PMID: 29848987 PMCID: PMC6024378 DOI: 10.3390/v10060293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
The first cases of AIDS in Spain were reported in 1982. Since then over 85,000 persons with AIDS have been cumulated, with 60,000 deaths. Current estimates for people living with HIV are of 145,000, of whom 20% are unaware of it. This explains the still high rate of late HIV presenters. Although the HIV epidemic in Spain was originally driven mostly by injection drug users, since the year 2000 men having sex with men (MSM) account for most new incident HIV cases. Currently, MSM represent over 80% of new yearly HIV diagnoses. In the 80s, a subset of young doctors and nurses working at Internal Medicine hospital wards became deeply engaged in attending HIV-infected persons. Before the introduction of antiretrovirals in the earlier 1990s, diagnosis and treatment of opportunistic infections was their major task. A new wave of infectious diseases specialists was born. Following the wide introduction of triple combination therapy in the late 1990s, drug side effects and antiretroviral resistance led to built a core of highly devoted HIV specialists across the country. Since then, HIV medicine has improved and currently is largely conducted by multidisciplinary teams of health care providers working at hospital-based outclinics, where HIV-positive persons are generally seen every six months. Antiretroviral therapy is currently prescribed to roughly 75,000 persons, almost all attended at clinics belonging to the government health public system. Overall, the impact of HIV/AIDS publications by Spanish teams is the third most important in Europe. HIV research in Spain has classically been funded mostly by national and European public agencies along with pharma companies. Chronologically, some of the major contributions of Spanish HIV research are being in the field of tuberculosis, toxoplasmosis, leishmaniasis, HIV variants including HIV-2, drug resistance, pharmacology, antiretroviral drug-related toxicities, coinfection with viral hepatitis, design and participation in clinical trials with antiretrovirals, immunopathogenesis, ageing, and vaccine development.
Collapse
Affiliation(s)
- Vicente Soriano
- Infectious Diseases Unit, La Paz University Hospital, 28046 Madrid, Spain.
- UNIR Health Sciences School, 28040 Madrid, Spain.
| | - José M Ramos
- Department of Internal Medicine, General University Hospital, 03010 Alicante, Spain.
| | - Pablo Barreiro
- Infectious Diseases Unit, La Paz University Hospital, 28046 Madrid, Spain.
| | | |
Collapse
|
5
|
Moretto MM, Hwang S, Khan IA. Downregulated IL-21 Response and T Follicular Helper Cell Exhaustion Correlate with Compromised CD8 T Cell Immunity during Chronic Toxoplasmosis. Front Immunol 2017; 8:1436. [PMID: 29163509 PMCID: PMC5671557 DOI: 10.3389/fimmu.2017.01436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
CD8 T cells are important for maintaining the chronicity of Toxoplasma gondii infection. In a T. gondii encephalitis susceptible model, we recently demonstrated that CD4 T cells play an essential helper role in the maintenance of the effector response and CD8 T cell dysfunctionality was linked to CD4 T cell exhaustion. However, CD4 T cells are constituted of different subsets with various functions and the population(s) providing help to the CD8 T cells has not yet been determined. In the present study, T follicular helper cells (Tfh), which are known to be essential for B cell maturation and are one of the main sources of IL-21, were significantly increased during chronic toxoplasmosis. However, at week 7 p.i., when CD8 T cells are exhausted, the Tfh population exhibited increased expression of several inhibitory receptors and levels of IL-21 in the serum were decreased. The importance of IL-21 in the maintenance of CD8 T cells function after T. gondii infection was further demonstrated in IL-21R KO mouse model. Interestingly, while CD8 T cells from both knockout (KO) and wild-type mice expressed similar levels of PD-1, animals with defective IL-21 signaling exhibited lower polyfunctionality than wild-type controls. This reduced polyfunctional ability observed in CD8 T cells from KO mice was associated with a significant increase in other inhibitory receptors like Tim-3, LAG-3, and 2B4. Furthermore, the animals exhibited greater signs of Toxoplasma reactivation manifested by the reduced number of cysts and increased expression of tachyzoite (replicative form of the parasite) specific genes (SAG1 and ENO2) in the brain. Also, IL-21R KO mice displayed a higher frequency of tachyzoite-infected monocytes in the blood and spleen. Our findings suggest the importance of Tfh and IL-21 during chronic toxoplasmosis and establish a critical role for this cytokine in regulating CD8 T cell dysfunction by preventing the co-expression of multiple inhibitory receptors during chronic parasitic infection.
Collapse
Affiliation(s)
- Magali M Moretto
- Department Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - SuJin Hwang
- Department Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Imtiaz A Khan
- Department Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| |
Collapse
|
6
|
Wang ZD, Wang SC, Liu HH, Ma HY, Li ZY, Wei F, Zhu XQ, Liu Q. Prevalence and burden of Toxoplasma gondii infection in HIV-infected people: a systematic review and meta-analysis. LANCET HIV 2017; 4:e177-e188. [DOI: 10.1016/s2352-3018(17)30005-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022]
|
7
|
Iribarren JA, Rubio R, Aguirrebengoa K, Arribas JR, Baraia-Etxaburu J, Gutiérrez F, Lopez Bernaldo de Quirós JC, Losa JE, Miró JM, Moreno S, Pérez Molina J, Podzamczer D, Pulido F, Riera M, Rivero A, Sanz Moreno J, Amador C, Antela A, Arazo P, Arrizabalaga J, Bachiller P, Barros C, Berenguer J, Caylá J, Domingo P, Estrada V, Knobel H, Locutura J, López Aldeguer J, Llibre JM, Lozano F, Mallolas J, Malmierca E, Miralles C, Miralles P, Muñoz A, Ocampo A, Olalla J, Pérez I, Pérez Elías MJ, Pérez Arellano JL, Portilla J, Ribera E, Rodríguez F, Santín M, Sanz Sanz J, Téllez MJ, Torralba M, Valencia E, Von Wichmann MA. Prevention and treatment of opportunistic infections and other coinfections in HIV-infected patients: May 2015. Enferm Infecc Microbiol Clin 2016; 34:516.e1-516.e18. [PMID: 26976381 DOI: 10.1016/j.eimc.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/04/2016] [Indexed: 01/04/2023]
Abstract
Despite the huge advance that antiretroviral therapy represents for the prognosis of infection by the human immunodeficiency virus (HIV), opportunistic infections (OIs) continue to be a cause of morbidity and mortality in HIV-infected patients. OIs often arise because of severe immunosuppression resulting from poor adherence to antiretroviral therapy, failure of antiretroviral therapy, or unawareness of HIV infection by patients whose first clinical manifestation of AIDS is an OI. The present article updates our previous guidelines on the prevention and treatment of various OIs in HIV-infected patients, namely, infections by parasites, fungi, viruses, mycobacteria, and bacteria, as well as imported infections. The article also addresses immune reconstitution inflammatory syndrome.
Collapse
|
8
|
The Effect of Latent Toxoplasma gondii Infection on the Immune Response in HIV-Infected Patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:271842. [PMID: 26247013 PMCID: PMC4515273 DOI: 10.1155/2015/271842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 01/14/2023]
Abstract
A relationship between latent toxoplasmosis and the immune system during HIV disease is poorly understood. Therefore, the aim of this follow-up study was to characterize immunological parameters in HIV-infected patients with latent toxoplasmosis and noninfected individuals. A total of 101 HIV-infected patients were enrolled in the study. The patients were classified into two groups based on anti-Toxoplasma gondii antibodies: a group of 55 toxoplasma-positive persons (TP) and a group of 46 toxoplasma-negative persons (TN). Absolute counts of several lymphocyte subsets decreased in the TP group, namely, T cells (p = 0.007), B cells (p = 0.002), NK cells (p = 0.009), CD4 T cells (p = 0.028), and CD8 T cells (p = 0.004). On the other hand, the percentage of CD8 T cells expressing CD38 and HLA-DR significantly increased during the follow-up in the TP group (p = 0.003, p = 0.042, resp.) as well as the intensity of CD38 and HLA-DR expression (MFI) on CD8 T cells (p = 0.001, p = 0.057, resp.). In the TN group, analysis of the kinetics of immunological parameters revealed no significant changes over time. In conclusion, the results suggest that latent T. gondii infection modulates the immune response during HIV infection.
Collapse
|
9
|
Sahu A, Kumar S, Sreenivasamurthy SK, Selvan LDN, Madugundu AK, Yelamanchi SD, Puttamallesh VN, Dey G, Anil AK, Srinivasan A, Mukherjee KK, Gowda H, Satishchandra P, Mahadevan A, Pandey A, Prasad TSK, Shankar SK. Host response profile of human brain proteome in toxoplasma encephalitis co-infected with HIV. Clin Proteomics 2014; 11:39. [PMID: 25404878 PMCID: PMC4232683 DOI: 10.1186/1559-0275-11-39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 09/02/2014] [Indexed: 01/27/2023] Open
Abstract
Background Toxoplasma encephalitis is caused by the opportunistic protozoan parasite Toxoplasma gondii. Primary infection with T. gondii in immunocompetent individuals remains largely asymptomatic. In contrast, in immunocompromised individuals, reactivation of the parasite results in severe complications and mortality. Molecular changes at the protein level in the host central nervous system and proteins associated with pathogenesis of toxoplasma encephalitis are largely unexplored. We used a global quantitative proteomic strategy to identify differentially regulated proteins and affected molecular networks in the human host during T. gondii infection with HIV co-infection. Results We identified 3,496 proteins out of which 607 proteins were differentially expressed (≥1.5-fold) when frontal lobe of the brain from patients diagnosed with toxoplasma encephalitis was compared to control brain tissues. We validated differential expression of 3 proteins through immunohistochemistry, which was confirmed to be consistent with mass spectrometry analysis. Pathway analysis of differentially expressed proteins indicated deregulation of several pathways involved in antigen processing, immune response, neuronal growth, neurotransmitter transport and energy metabolism. Conclusions Global quantitative proteomic approach adopted in this study generated a comparative proteome profile of brain tissues from toxoplasma encephalitis patients co-infected with HIV. Differentially expressed proteins include previously reported and several new proteins in the context of T. gondii and HIV infection, which can be further investigated. Molecular pathways identified to be associated with the disease should enhance our understanding of pathogenesis in toxoplasma encephalitis. Electronic supplementary material The online version of this article (doi:10.1186/1559-0275-11-39) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apeksha Sahu
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Satwant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
| | - Sreelakshmi K Sreenivasamurthy
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Lakshmi Dhevi N Selvan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Anil K Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Soujanya D Yelamanchi
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | | | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Manipal University, Madhav Nagar, Manipal, 576104 India
| | | | - Anand Srinivasan
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Kanchan K Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
| | | | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India ; Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 1205 USA ; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry, 605014 India ; Manipal University, Madhav Nagar, Manipal, 576104 India ; Amrita School of Biotechnology, Amrita University, Kollam, 690525 India ; NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India ; Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| |
Collapse
|
10
|
Incidence, immunological and clinical characteristics of reactivation of latent Toxoplasma gondii infection in HIV-infected patients. Epidemiol Infect 2014; 143:600-7. [PMID: 24850323 DOI: 10.1017/s0950268814001253] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To determine changes in incidence of reactivation of Toxoplasma gondii infection, manifesting as toxoplasmic encephalitis, and to assess the immunological mechanisms controlling reactivation in HIV-infected patients, a Czech cohort of 502 HIV/T. gondii co-infected patients was followed for 2909·3 person-years. The incidence of toxoplasmic encephalitis between the periods before and after the introduction of combination antiretroviral therapy (cART) was compared. Toxoplasmic encephalitis was diagnosed in 21 patients. In those patients the geometric mean value of CD4+ T lymphocytes was 12·6 times lower than in patients with non-reactivated T. gondii infection but an additionally significant decline in CD8+ T lymphocytes (3·3-fold) and natural killer cells (4·3-fold) was observed. This confirms the significance of these parameters. A twelvefold decrease in Toxoplasma reactivation incidence (40·2 vs. 3·4/1000 person-years) between monitored periods was seen. In the cART era, Toxoplasma reactivation was observed only in patients with unrecognized HIV infection or refusing therapy.
Collapse
|
11
|
Atreya AR, Arora S, Gadiraju VT, Martagon-Villamil J, Skiest DJ. Toxoplasma encephalitis in an HIV-infected patient on highly active antiretroviral therapy despite sustained immune response. Int J STD AIDS 2013; 25:383-6. [DOI: 10.1177/0956462413506891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toxoplasma encephalitis (TE) is usually diagnosed in advanced stages of HIV infection when the CD4+ count is <100–200 cells/µl. A 55-year-old woman with HIV/AIDS, well controlled on antiretroviral therapy (ART), CD4+ count in the 300 cells/μl range for >1 year presented with acute onset of headache, nausea and vomiting. She had been on her current ART regimen consisting of raltegravir, co-formulated emtricitabine/tenofovir and etravirine for three years and had been off Pneumocystis prophylaxis for 10 months (trimethoprim-sulfamethoxazole). Brain MRI showed multiple ring-enhancing, supratentorial and infra-tentorial parenchymal lesions suspicious for metastases. She had no other evidence of metastatic disease in her body. The possibilities of TE and primary CNS lymphoma were considered but deemed unlikely given the high CD4+ count. A brain biopsy demonstrated Toxoplasma tachyzoites. There was no evidence of lymphoma or carcinoma. Anti-toxoplasma treatment yielded good initial clinical and radiographic responses. While on TE maintenance therapy, she developed similar symptoms. Repeat MRI showed progression of lesions. Further work-up including CSF Epstein-Barr virus PCR and SPECT Th 201 imaging was not conclusive for CNS lymphoma. The patient’s clinical condition deteriorated and she died. We postulate that functional immunological dysfunction is a possible mechanism by which our patient developed TE despite demonstrating sustained immune response on ART.
Collapse
Affiliation(s)
- Auras R Atreya
- Department of Internal Medicine, Baystate Medical Center/Tufts University School of Medicine, Springfield, MA, USA
| | - Sonali Arora
- Department of Internal Medicine, Baystate Medical Center/Tufts University School of Medicine, Springfield, MA, USA
| | - Vijay T Gadiraju
- Department of Internal Medicine, Baystate Medical Center/Tufts University School of Medicine, Springfield, MA, USA
| | - José Martagon-Villamil
- Department of Internal Medicine, Baystate Medical Center/Tufts University School of Medicine, Springfield, MA, USA
- Division of Infectious Diseases, Baystate Medical Center/Tufts University School of Medicine, Springfield, MA, USA
| | - Daniel J Skiest
- Department of Internal Medicine, Baystate Medical Center/Tufts University School of Medicine, Springfield, MA, USA
- Division of Infectious Diseases, Baystate Medical Center/Tufts University School of Medicine, Springfield, MA, USA
| |
Collapse
|
12
|
Abstract
Toxoplasma gondii, an Apicomplexan, is a pathogic protozoan that can infect the central nervous system. Infection during pregnancy can result in a congenial infection with severe neurological sequelae. In immunocompromised individuals reactivation of latent neurological foci can result in encephalitis. Immunocompetent individuals infected with T. gondii are typically asymptomatic and maintain this infection for life. However, recent studies suggest that these asymptomatic infections may have effects on behavior and other physiological processes. Toxoplasma gondii infects approximately one-third of the world population, making it one of the most successful parasitic organisms. Cats and other felidae serve as the definite host producing oocysts, an environmentally resistant life cycle stage found in cat feces, which can transmit the infection when ingested orally. A wide variety of warm-blooded animals, including humans, can serve as the intermediate host in which tissue cysts (containing bradyzoites) develop. Transmission also occurs due to ingestion of the tissue cysts. There are three predominant clonal lineages, termed Types I, II and III, and an association with higher pathogenicity with the Type I strains in humans has emerged. This chapter presents a review of the biology of this infection including the life cycle, transmission, epidemiology, parasite strains, and the host immune response. The major clinical outcomes of congenital infection, chorioretinitis and encephalitis, and the possible association of infection of toxoplasmosis with neuropsychiatric disorders such as schizophrenia, are reviewed.
Collapse
Affiliation(s)
- Sandra K Halonen
- Department of Microbiology, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|
13
|
Vidal F, Domingo P, Viladés C, Peraire J, Arnedo M, Alcamí J, Leal M, Villarroya F, Gatell JM. Pharmacogenetics of the lipodystrophy syndrome associated with HIV infection and combination antiretroviral therapy. Expert Opin Drug Metab Toxicol 2012; 7:1365-82. [PMID: 21999362 DOI: 10.1517/17425255.2011.621941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Antiretroviral drugs have been associated with several toxicities that limit their success. Of the chronic toxicities, the lipodystrophy syndrome is of special concern due to the metabolic alterations that can accompany it. Why some patients treated with a particular antiretroviral regimen develop lipodystrophy, while others do not, is a medical mystery, but it has been suggested that individuals may (or may not) have a genetically conditioned predisposition. Pharmacogenetics is the science that studies how the genetic composition of individuals can give rise to interindividual variations in response to drugs and drug toxicity. AREAS COVERED This article reviews the published investigations on the association between host genetic determinants in treated HIV-infected patients and the presence of lipodystrophy. Studies were identified through a PubMed database search. Case-control and longitudinal studies into pharmacogenetic association were selected. Areas covered include the data on the genetic variants of mitochondrial parameters, cytokines, adipokines, proteins involved in adipocyte biology and proteins involved in stavudine metabolism. EXPERT OPINION Most studies provide inconsistent data due to partial genetic evaluation, different assessment of lipodystrophy and low number of patients evaluated. The pharmacogenetics of lipodystrophy in HIV-infected patients treated with antiretroviral drugs still belongs in the research laboratory.
Collapse
Affiliation(s)
- Francesc Vidal
- Infectious Diseases and HIV/AIDS Section, Department of Internal Medicine , Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Faucher B, Moreau J, Zaegel O, Franck J, Piarroux R. Failure of conventional treatment with pyrimethamine and sulfadiazine for secondary prophylaxis of cerebral toxoplasmosis in a patient with AIDS. J Antimicrob Chemother 2011; 66:1654-6. [PMID: 21459896 DOI: 10.1093/jac/dkr147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|