1
|
Arzika AM, Mindo-Panusis D, Abdou A, Kadri B, Nassirou B, Maliki R, Alsoudi AF, Zhang T, Cotter SY, Lebas E, O’Brien KS, Callahan EK, Bailey RL, West SK, Goodhew EB, Martin DL, Arnold BF, Porco TC, Lietman TM, Keenan JD. Effect of Biannual Mass Azithromycin Distributions to Preschool-Aged Children on Trachoma Prevalence in Niger: A Cluster Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2228244. [PMID: 35997979 PMCID: PMC9399865 DOI: 10.1001/jamanetworkopen.2022.28244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
IMPORTANCE Because transmission of ocular strains of Chlamydia trachomatis is greatest among preschool-aged children, limiting azithromycin distributions to this age group may conserve resources and result in less antimicrobial resistance, which is a potential advantage in areas with hypoendemic trachoma and limited resources. OBJECTIVE To determine the efficacy of mass azithromycin distributions to preschool-aged children as a strategy for trachoma elimination in areas with hypoendemic disease. DESIGN, SETTING, AND PARTICIPANTS In this cluster randomized clinical trial performed from November 23, 2014, until July 31, 2017, thirty rural communities in Niger were randomized at a 1:1 ratio to biannual mass distributions of either azithromycin or placebo to children aged 1 to 59 months. Participants and study personnel were masked to treatment allocation. Data analyses for trachoma outcomes were performed from October 19, 2021, through June 10, 2022. INTERVENTIONS Every 6 months, a single dose of either oral azithromycin (20 mg/kg using height-based approximation for children who could stand or weight calculation for small children) or oral placebo was provided to all children aged 1 to 59 months. MAIN OUTCOMES AND MEASURES Trachoma was a prespecified outcome of the trial, assessed as the community-level prevalence of trachomatous inflammation-follicular and trachomatous inflammation-intense through masked grading of conjunctival photographs from a random sample of 40 children per community each year during the 2-year study period. A secondary outcome was the seroprevalence of antibodies to C trachomatis antigens. RESULTS At baseline, 4726 children in 30 communities were included; 1695 children were enrolled in 15 azithromycin communities and 3031 children were enrolled in 15 placebo communities (mean [SD] proportions of boys, 51.8% [4.7%] vs 52.0% [4.2%]; mean [SD] age, 30.8 [2.8] vs 30.6 [2.6] months). The mean coverage of study drug for the 4 treatments was 79% (95% CI, 75%-83%) in the azithromycin group and 82% (95% CI, 79%-85%) in the placebo group. The mean prevalence of trachomatous inflammation-follicular at baseline was 1.9% (95% CI, 0.5%-3.5%) in the azithromycin group and 0.9% (95% CI, 0-1.9%) in the placebo group. At 24 months, trachomatous inflammation-follicular prevalence was 0.2% (95% CI, 0-0.5%) in the azithromycin group and 0.8% (95% CI, 0.2%-1.6%) in the placebo group (incidence rate ratio adjusted for baseline: 0.18 [95% CI, 0.01-1.20]; permutation P = .07). CONCLUSIONS AND RELEVANCE The findings of this trial do not show that biannual mass azithromycin distributions to preschool-aged children were more effective than placebo, although the underlying prevalence of trachoma was low. The sustained absence of trachoma even in the placebo group suggests that trachoma may have been eliminated as a public health problem in this part of Niger. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02048007.
Collapse
Affiliation(s)
- Ahmed M. Arzika
- The Carter Center, Niamey, Niger
- Centre de Recherche et Interventions en Santé Publique, Birni N’Gaoure, Niger
| | | | - Amza Abdou
- Programme Nationale de Santé Oculaire, Niamey, Niger
| | | | | | - Ramatou Maliki
- The Carter Center, Niamey, Niger
- Centre de Recherche et Interventions en Santé Publique, Birni N’Gaoure, Niger
| | - Amer F. Alsoudi
- Francis I. Proctor Foundation, University of California, San Francisco
| | - Tianyi Zhang
- Francis I. Proctor Foundation, University of California, San Francisco
| | - Sun Y. Cotter
- Francis I. Proctor Foundation, University of California, San Francisco
| | - Elodie Lebas
- Francis I. Proctor Foundation, University of California, San Francisco
| | - Kieran S. O’Brien
- Francis I. Proctor Foundation, University of California, San Francisco
| | | | - Robin L. Bailey
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sheila K. West
- Dana Center for Preventive Ophthalmology, The Johns Hopkins University, Baltimore, Maryland
| | - E. Brook Goodhew
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Diana L. Martin
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Benjamin F. Arnold
- Francis I. Proctor Foundation, University of California, San Francisco
- Department of Ophthalmology, University of California, San Francisco
| | - Travis C. Porco
- Francis I. Proctor Foundation, University of California, San Francisco
- Department of Ophthalmology, University of California, San Francisco
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Thomas M. Lietman
- Francis I. Proctor Foundation, University of California, San Francisco
- Department of Ophthalmology, University of California, San Francisco
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Institute for Global Health Sciences, University of California, San Francisco
| | - Jeremy D. Keenan
- Francis I. Proctor Foundation, University of California, San Francisco
- Department of Ophthalmology, University of California, San Francisco
| |
Collapse
|
2
|
Comparison of the Respiratory Resistomes and Microbiota in Children Receiving Short versus Standard Course Treatment for Community-Acquired Pneumonia. mBio 2022; 13:e0019522. [PMID: 35323040 PMCID: PMC9040816 DOI: 10.1128/mbio.00195-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pediatric community-acquired pneumonia (CAP) is often treated with 10 days of antibiotics. Shorter treatment strategies may be effective and lead to less resistance. The impact of duration of treatment on the respiratory microbiome is unknown. Data are from children (n = 171), ages 6 to 71 months, enrolled in the SCOUT-CAP trial (NCT02891915). Children with CAP were randomized to a short (5 days) versus standard (10 days) beta-lactam treatment strategy. Throat swabs were collected at enrollment and the end of the study and used for shotgun metagenomic sequencing. The number of beta-lactam and multidrug efflux resistance genes per prokaryotic cell (RGPC) was significantly lower in children receiving the short compared to standard treatment strategy at the end of the study (Wilcoxon rank sum test, P < 0.05 for each). Wilcoxon effect sizes were small for beta-lactam (r: 0.15; 95% confidence interval [CI], 0.01 to 0.29) and medium for multidrug efflux RGPC (r: 0.23; 95% CI, 0.09 to 0.37). Analyses comparing the resistome at the beginning and end of the trial indicated that in contrast to the standard strategy group, the resistome significantly differed in children receiving the short course strategy. Relative abundances of commensals such as Neisseria subflava were higher in children receiving the standard strategy, and Prevotella species and Veillonella parvula were higher in children receiving the short course strategy. We conclude that children receiving 5 days of beta-lactam therapy for CAP had a significantly lower abundance of antibiotic resistance determinants than those receiving standard 10-day treatment. These data provide an additional rationale for reductions in antibiotic use when feasible. IMPORTANCE Antibiotic resistance is a major threat to public health. Treatment strategies involving shorter antibiotic courses have been proposed as a strategy to lower the potential for antibiotic resistance. We examined relationships between the duration of antibiotic treatment and its impact on resistance genes and bacteria in the respiratory microbiome using data from a randomized controlled trial of beta-lactam therapy for pediatric pneumonia. The randomized design provides reliable evidence of the effectiveness of interventions and minimizes the potential for confounding. Children receiving 5 days of therapy for pneumonia had a lower prevalence of two different types of resistance genes than did those receiving the 10-day treatment. Our data also suggest that children receiving longer durations of therapy have a greater abundance of antibiotic resistance genes for a longer period of time than do children receiving shorter durations of therapy. These data provide an additional rationale for reductions in antibiotic use.
Collapse
|
3
|
Bojang A, Baines SL, Camara B, Guerillot R, Donovan L, Marqués RS, Secka O, D'Alessandro U, Bottomley C, Howden BP, Roca A. Impact of Intrapartum Oral Azithromycin on the Acquired Macrolide Resistome of Infants' Nasopharynx: A Randomized Controlled Trial. Clin Infect Dis 2021; 71:3222-3225. [PMID: 32445474 PMCID: PMC7819521 DOI: 10.1093/cid/ciaa609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/19/2020] [Indexed: 11/14/2022] Open
Abstract
In a post hoc analysis of samples from an intrapartum azithromycin randomized clinical trial, we found that children whose mothers had been treated with the drug had higher prevalence of macrolide-resistance genes msr(A) and ermC at 28 days but not at 12 months. The 2 genes were positively associated in the nasopharynx. CLINICAL TRIALS REGISTRATION NCT1800942.
Collapse
Affiliation(s)
- Abdoulie Bojang
- Medical Research Council Unit, The Gambia, at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Sarah L Baines
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Bully Camara
- Medical Research Council Unit, The Gambia, at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Romain Guerillot
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Liam Donovan
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Raquel Sánchez Marqués
- Medical Research Council Unit, The Gambia, at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Ousman Secka
- Medical Research Council Unit, The Gambia, at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit, The Gambia, at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Christian Bottomley
- Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Anna Roca
- Medical Research Council Unit, The Gambia, at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
4
|
Mack I, Sharland M, Berkley JA, Klein N, Malhotra-Kumar S, Bielicki J. Antimicrobial Resistance Following Azithromycin Mass Drug Administration: Potential Surveillance Strategies to Assess Public Health Impact. Clin Infect Dis 2021; 70:1501-1508. [PMID: 31633161 DOI: 10.1093/cid/ciz893] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022] Open
Abstract
The reduction in childhood mortality noted in trials investigating azithromycin mass drug administration (MDA) for trachoma control has been confirmed by a recent large randomized controlled trial. Population-level implementation of azithromycin MDA may lead to selection of multiresistant pathogens. Evidence suggests that repeated azithromycin MDA may result in a sustained increase in macrolide and other antibiotic resistance in gut and respiratory bacteria. Current evidence comes from standard microbiological techniques in studies focused on a time-limited intervention, while MDA implemented for mortality benefits would likely repeatedly expose the population over a prolonged period and may require a different surveillance approach. Targeted short-term and long-term surveillance of resistance emergence to key antibiotics, especially those from the World Health Organization Access group, is needed throughout any implementation of azithromycin MDA, focusing on a genotypic approach to overcome the limitations of resistance surveillance in indicator bacteria.
Collapse
Affiliation(s)
- Ines Mack
- Pediatric Infectious Diseases, University Children's Hospital Basel, Basel, Switzerland
| | - Mike Sharland
- Pediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| | - James A Berkley
- Center for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,KEMRI/Wellcome Trust Research Program, Kilifi, Kenya
| | - Nigel Klein
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | - Julia Bielicki
- Pediatric Infectious Diseases, University Children's Hospital Basel, Basel, Switzerland.,Pediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| |
Collapse
|
5
|
Gladstone RA, Bojang E, Hart J, Harding-Esch EM, Mabey D, Sillah A, Bailey RL, Burr SE, Roca A, Bentley SD, Holland MJ. Mass drug administration with azithromycin for trachoma elimination and the population structure of Streptococcus pneumoniae in the nasopharynx. Clin Microbiol Infect 2020; 27:864-870. [PMID: 32750538 PMCID: PMC8203556 DOI: 10.1016/j.cmi.2020.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 11/18/2022]
Abstract
Objective Mass drug administration (MDA) with azithromycin for trachoma elimination reduces nasopharyngeal carriage of Streptococcus pneumoniae in the short term. We evaluated S. pneumoniae carried in the nasopharynx before and after a round of azithromycin MDA to determine whether MDA was associated with changes in pneumococcal population structure and resistance. Methods We analysed 514 pneumococcal whole genomes randomly selected from nasopharyngeal samples collected in two Gambian villages that received three annual rounds of MDA for trachoma elimination. The 514 samples represented 293 participants, of which 75% were children aged 0–9 years, isolated during three cross-sectional surveys (CSSs) conducted before the third round of MDA (CSS-1) and at 1 (CSS-2) and 6 (CSS-3) months after MDA. Bayesian Analysis of Population Structure (BAPS) was used to cluster related isolates by capturing variation in the core genome. Serotype and multilocus sequence type were inferred from the genotype. Antimicrobial resistance determinants were identified from assemblies, including known macrolide resistance genes. Results Twenty-seven BAPS clusters were assigned. These consisted of 81 sequence types (STs). Two BAPS clusters not observed in CSS-1 (n = 109) or CSS-2 (n = 69), increased in frequency in CSS-3 (n = 126); BAPS20 (8.73%, p 0.016) and BAPS22 (7.14%, p 0.032) but were not associated with antimicrobial resistance. Macrolide resistance within BAPS17 increased after treatment (CSS-1 n = 0/6, CSS-2/3 n = 5/5, p 0.002) and was carried on a mobile transposable element that also conferred resistance to tetracycline. Discussion Limited changes in pneumococcal population structure were observed after the third round of MDA, suggesting treatment had little effect on the circulating lineages. An increase in macrolide resistance within one BAPS highlights the need for antimicrobial resistance surveillance in treated villages.
Collapse
Affiliation(s)
| | - Ebrima Bojang
- Medical Research Council Unit The Gambia at LSHTM, Fajara, Banjul, Gambia
| | - John Hart
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | | | - David Mabey
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Ansumana Sillah
- National Eye Health Programme, Ministry of Health and Social Welfare, Kanifing, Gambia
| | - Robin L Bailey
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Sarah E Burr
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Anna Roca
- Medical Research Council Unit The Gambia at LSHTM, Fajara, Banjul, Gambia; London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | | | - Martin J Holland
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK.
| |
Collapse
|
6
|
Hema-Ouangraoua S, Zongo I, Kabore NF, Frédéric N, Yerbanga RS, Tinto H, Compaore YD, Kuepfer I, Chandramohan D, Greenwood B, Ouedraogo JB. Serotype Profile of Nasopharyngeal Isolates of Streptococcus pneumoniae Obtained from Children in Burkina Faso before and after Mass Administration of Azithromycin. Am J Trop Med Hyg 2020; 103:679-683. [PMID: 32524945 PMCID: PMC7410481 DOI: 10.4269/ajtmh.19-0944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mass drug administration (MDA) with azithromycin (AZ) has been used successfully to control trachoma. However, several studies have shown that MDA with AZ has led to the emergence of resistance to AZ in Streptococcus pneumoniae. The emergence of resistance to AZ has also been observed when this antibiotic was combined with the antimalarials used for seasonal malaria chemoprevention (SMC). The development of antibiotic resistance, including resistance to AZ, is sometimes associated with the emergence of a bacterial clone that belongs to a specific serotype. We hypothesize that the increase in resistance of S. pneumoniae observed after 3 years of SMC with AZ might be associated with a change in the distribution of pneumococcal serotypes. Therefore, 698 randomly selected isolates from among the 1,468 isolates of S. pneumoniae obtained during carriage studies undertaken during an SMC plus AZ trial were serotyped. A polymerase chain reaction (PCR) multiplex assay using an algorithm adapted to the detection of the pneumococcal serotypes most prevalent in African countries was used for initial serotyping, and the Quellung technique was used to complement the PCR technique when necessary. Fifty-six serotypes were detected among the 698 isolates of S. pneumoniae. A swift appearance and disappearance of many serotypes was observed, but some serotypes including 6A, 19F, 19A, 23F, and 35B were persistent. The distribution of serotypes between isolates obtained from children who had received AZ or placebo was similar. An increase in AZ resistance was seen in several serotypes following exposure to AZ. Mass drug administration with AZ led to the emergence of resistance in pneumococci of several different serotypes and did not appear to be linked to the emergence of a single serotype.
Collapse
Affiliation(s)
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | | | - Nikiema Frédéric
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | | | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Yves Daniel Compaore
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Irene Kuepfer
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Brian Greenwood
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jean Bosco Ouedraogo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
7
|
Hema‐Ouangraoua S, Aziz Maiga A, Cairns M, Zongo I, Frédéric N, Serge Yerbanga R, Tamboura B, Badji H, Gore‐Langton G, Kuepfer I, Tinto H, Sagara I, Dicko A, Sow SO, Chandrahoman D, Greenwood B, Bosco Ouedraogo J. Impact of the addition of azithromycin to antimalarials used for seasonal malaria chemoprevention on antimicrobial resistance of Streptococcus pneumoniae. Trop Med Int Health 2019; 24:1442-1454. [PMID: 31655020 PMCID: PMC7687265 DOI: 10.1111/tmi.13321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE A trial was conducted in Burkina Faso and Mali to investigate whether addition of azithromycin to the antimalarials used for seasonal malaria chemoprevention reduces mortality and hospital admissions of children. We tested the sensitivity of nasal isolates of Streptococcus pneumoniae obtained during this trial to azithromycin and other antibiotics. METHODS Azithromycin or placebo was administered monthly, in combination with the antimalarials used for seasonal malaria chemoprevention, for four months, over the annual malaria transmission seasons of 2014, 2015, and 2016. Nasopharyngeal swabs were collected from 2773 Burkinabe and 2709 Malian children on seven occasions: in July and December each year prior to and after drug administration, and at a final survey in early 2018. Pneumococci were isolated from nasopharyngeal swabs and tested for sensitivity to azithromycin and other antibiotics. RESULTS A total of 5482 samples were collected. In Burkina Faso, the percentage of pneumococcal isolates resistant to azithromycin among children who had received it increased from 4.9% (95% CI: 2.4%, 9.9%) before the intervention to 25.6% (95% CI: 17.6%, 35.7%) afterward. In Mali, the increase was from 7.6% (95% CI: 3.8%, 14.4%) to 68.5% (95% CI: 55.1%, 79.4%). The percentage of resistant isolates remained elevated (17.7% (95% CI: 11.1%, 27.1%) in Burkina Faso and 19.1% (95% CI: 13.5%, 26.3%) in Mali) among children who had received azithromycin 1 year after stopping the intervention. An increase in resistance to azithromycin was also observed in children who had received a placebo but it was less marked. CONCLUSION Addition of azithromycin to the antimalarial combination used for seasonal malaria chemoprevention was associated with an increase in resistance of pneumococci to azithromycin and erythromycin, which persisted 1 year after the last administration of azithromycin.
Collapse
Affiliation(s)
- Soumeya Hema‐Ouangraoua
- Centre MURAZBobo‐DioulassoBurkina Faso
- Institut de Recherche en Sciences de la SantéBobo‐DioulassoBurkina Faso
| | | | | | - Issaka Zongo
- Institut de Recherche en Sciences de la SantéBobo‐DioulassoBurkina Faso
| | - Nikiema Frédéric
- Institut de Recherche en Sciences de la SantéBobo‐DioulassoBurkina Faso
| | | | | | - Henry Badji
- Centre pour le Développement des Vaccins du MaliBamakoMali
| | | | - Irene Kuepfer
- London School of Hygiene & Tropical MedicineLondonUK
| | - Halidou Tinto
- Institut de Recherche en Sciences de la SantéBobo‐DioulassoBurkina Faso
| | - Issaka Sagara
- Malaria Research and Training Centre (MRTC)University of Science, Techniques and Technologies of BamakoBamakoMali
| | - Alassane Dicko
- Malaria Research and Training Centre (MRTC)University of Science, Techniques and Technologies of BamakoBamakoMali
| | - Samba O. Sow
- Malaria Research and Training Centre (MRTC)University of Science, Techniques and Technologies of BamakoBamakoMali
| | | | | | | |
Collapse
|
8
|
Evans JR, Solomon AW, Kumar R, Perez Á, Singh BP, Srivastava RM, Harding‐Esch E. Antibiotics for trachoma. Cochrane Database Syst Rev 2019; 9:CD001860. [PMID: 31554017 PMCID: PMC6760986 DOI: 10.1002/14651858.cd001860.pub4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Trachoma is the world's leading infectious cause of blindness. In 1996, WHO launched the Alliance for the Global Elimination of Trachoma by the year 2020, based on the 'SAFE' strategy (surgery, antibiotics, facial cleanliness, and environmental improvement). OBJECTIVES To assess the evidence supporting the antibiotic arm of the SAFE strategy by assessing the effects of antibiotics on both active trachoma (primary objective), Chlamydia trachomatis infection of the conjunctiva, antibiotic resistance, and adverse effects (secondary objectives). SEARCH METHODS We searched relevant electronic databases and trials registers. The date of the last search was 4 January 2019. SELECTION CRITERIA We included randomised controlled trials (RCTs) that satisfied either of two criteria: (a) trials in which topical or oral administration of an antibiotic was compared to placebo or no treatment in people or communities with trachoma, (b) trials in which a topical antibiotic was compared with an oral antibiotic in people or communities with trachoma. We also included studies addressing different dosing strategies in the population. DATA COLLECTION AND ANALYSIS: We used standard methods expected by Cochrane. We assessed the certainty of the evidence using the GRADE approach. MAIN RESULTS We identified 14 studies where individuals with trachoma were randomised and 12 cluster-randomised studies. Any antibiotic versus control (individuals)Nine studies (1961 participants) randomised individuals with trachoma to antibiotic or control (no treatment or placebo). All of these studies enrolled children and young people with active trachoma. The antibiotics used in these studies included topical (oxy)tetracycline (5 studies), doxycycline (2 studies), and sulfonamides (4 studies). Four studies had more than two study arms. In general these studies were poorly reported, and it was difficult to judge risk of bias.These studies provided low-certainty evidence that people with active trachoma treated with antibiotics experienced a reduction in active trachoma at three months (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.69 to 0.89; 1961 people; 9 RCTs; I2 = 73%) and 12 months (RR 0.74, 95% CI 0.55 to 1.00; 1035 people; 4 RCTs; I2 = 90%). Low-certainty evidence was available for ocular infection at three months (RR 0.81, 95% CI 0.63 to 1.04; 297 people; 4 RCTs; I2 = 0%) and 12 months (RR 0.25, 95% CI 0.08 to 0.78; 129 people; 1 RCT). None of these studies assessed antimicrobial resistance. In those studies that reported harms, no serious adverse effects were reported (low-certainty evidence).Oral versus topical antibiotics (individuals)Eight studies (1583 participants) compared oral and topical antibiotics. Only one study included people older than 21 years of age. Oral antibiotics included azithromycin (5 studies), sulfonamides (2 studies), and doxycycline (1 study). Topical antibiotics included (oxy)tetracycline (6 studies), azithromycin (1 study), and sulfonamide (1 study). These studies were poorly reported, and it was difficult to judge risk of bias.There was low-certainty evidence of little or no difference in effect between oral and topical antibiotics on active trachoma at three months (RR 0.97, 95% CI 0.81 to 1.16; 953 people; 6 RCTs; I2 = 63%) and 12 months (RR 0.93, 95% CI 0.75 to 1.15; 886 people; 5 RCTs; I2 = 56%). There was very low-certainty evidence for ocular infection at three or 12 months. Antimicrobial resistance was not assessed. In those studies that reported adverse effects, no serious adverse effects were reported; one study reported abdominal pain with azithromycin; one study reported a couple of cases of nausea with azithromycin; and one study reported three cases of reaction to sulfonamides (low-certainty evidence).Oral azithromycin versus control (communities)Four cluster-randomised studies compared antibiotic with no or delayed treatment. Data were available on active trachoma at 12 months from two studies but could not be pooled because of reporting differences. One study at low risk of bias found a reduced prevalence of active trachoma 12 months after a single dose of azithromycin in communities with a high prevalence of infection (RR 0.58, 95% CI 0.52 to 0.65; 1247 people). The other, lower quality, study in low-prevalence communities reported similar median prevalences of infection at 12 months: 9.3% in communities treated with azithromycin and 8.2% in untreated communities. We judged this moderate-certainty evidence for a reduction in active trachoma with treatment, downgrading one level for inconsistency between the two studies. Two studies reported ocular infection at 12 months and data could be pooled. There was a reduction in ocular infection (RR 0.36, 0.31 to 0.43; 2139 people) 12 months after mass treatment with a single dose compared with no treatment (moderate-certainty evidence). There was high-certainty evidence of an increased risk of resistance of Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli to azithromycin, tetracycline, and clindamycin in communities treated with azithromycin, with approximately 5-fold risk ratios at 12 months. The evidence did not support increased resistance to penicillin or trimethoprim-sulfamethoxazole. None of the studies measured resistance to C trachomatis. No serious adverse events were reported. The main adverse effect noted for azithromycin (˜10%) was abdominal pain, vomiting, and nausea.Oral azithromycin versus topical tetracycline (communities)Three cluster-randomised studies compared oral azithromycin with topical tetracycline. The evidence was inconsistent for active trachoma and ocular infection at three and 12 months (low-certainty evidence) and was not pooled due to considerable heterogeneity. Antimicrobial resistance and adverse effects were not reported.Different dosing strategiesSix studies compared different strategies for dosing. There were: mass treatment at different dosing intervals; applying cessation or stopping rules to mass treatment; strategies to increase mass treatment coverage. There was no strong evidence to support any variation in the recommended annual mass treatment. AUTHORS' CONCLUSIONS Antibiotic treatment may reduce the risk of active trachoma and ocular infection in people infected with C trachomatis, compared to no treatment/placebo, but the size of the treatment effect in individuals is uncertain. Mass antibiotic treatment with single dose oral azithromycin reduces the prevalence of active trachoma and ocular infection in communities. There is no strong evidence to support any variation in the recommended periodicity of annual mass treatment. There is evidence of an increased risk of antibiotic resistance at 12 months in communities treated with antibiotics.
Collapse
Affiliation(s)
- Jennifer R Evans
- London School of Hygiene & Tropical MedicineCochrane Eyes and Vision, ICEHKeppel StreetLondonUKWC1E 7HT
| | - Anthony W Solomon
- World Health OrganizationDepartment of Control of Neglected Tropical DiseasesGenevaSwitzerland
| | - Rahul Kumar
- King George's Medical UniversityDepartment of PharmacologyLucknowUPIndia226003
| | - Ángela Perez
- Health Technology Assessment InstituteDeveloping Clinical Practice GuidelinesAutopista Norte # 118‐30 Off 201BogotáColombia110111
| | - Balendra P Singh
- King George's Medical UniversityDepartment of Prosthodontics, Crowns and BridgesShahmina RoadFaculty of Dental SciencesLucknowUttar PradeshIndia226003
| | | | - Emma Harding‐Esch
- London School of Hygiene & Tropical MedicineClinical Research Department, Facullty of Infectious and Tropical DiseasesLondonUK
| | | |
Collapse
|
9
|
Bogoch II, Utzinger J, Lo NC, Andrews JR. Antibacterial mass drug administration for child mortality reduction: Opportunities, concerns, and possible next steps. PLoS Negl Trop Dis 2019; 13:e0007315. [PMID: 31120903 PMCID: PMC6532835 DOI: 10.1371/journal.pntd.0007315] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Isaac I. Bogoch
- Divisions of General Internal Medicine and Infectious Diseases, Toronto General Hospital, University Health Network, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- * E-mail:
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nathan C. Lo
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Division of Epidemiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jason R. Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
10
|
O'Brien KS, Emerson P, Hooper PJ, Reingold AL, Dennis EG, Keenan JD, Lietman TM, Oldenburg CE. Antimicrobial resistance following mass azithromycin distribution for trachoma: a systematic review. THE LANCET. INFECTIOUS DISEASES 2019; 19:e14-e25. [PMID: 30292480 DOI: 10.1016/s1473-3099(18)30444-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/21/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023]
Abstract
Mass azithromycin distribution is a core component of trachoma control programmes and could reduce mortality in children younger than 5 years in some settings. In this systematic review we synthesise evidence on the emergence of antimicrobial resistance after mass azithromycin distribution. We searched electronic databases for publications up to June 14, 2018. We included studies of any type (excluding modelling studies, surveillance reports, and review articles) on community-wide distribution of oral azithromycin for the prevention and treatment of trachoma that assessed macrolide resistance, without restrictions to the type of organism. We extracted prevalence of resistance from published reports and requested unpublished data from authors of included studies. Of 213 identified studies, 19 met inclusion criteria (12 assessed Streptococcus pneumoniae) and were used for qualitative synthesis. Macrolide resistance after azithromycin distribution was reported in three of the five organisms studied. The lack of resistance in Chlamydia trachomatis suggests that azithromycin might remain effective for trachoma programmes, but evidence is scarce. As mass azithromycin distribution for trachoma continues and is considered for other indications, ongoing monitoring of antimicrobial resistance will be required.
Collapse
Affiliation(s)
- Kieran S O'Brien
- Francis I Proctor Foundation, University of California, San Francisco, CA, USA; Division of Epidemiology, University of California, Berkeley, CA, USA
| | - Paul Emerson
- International Trachoma Initiative, Decatur, GA, USA
| | - P J Hooper
- International Trachoma Initiative, Decatur, GA, USA
| | - Arthur L Reingold
- Division of Epidemiology, University of California, Berkeley, CA, USA
| | - Elena G Dennis
- Francis I Proctor Foundation, University of California, San Francisco, CA, USA
| | - Jeremy D Keenan
- Francis I Proctor Foundation, University of California, San Francisco, CA, USA; Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Thomas M Lietman
- Francis I Proctor Foundation, University of California, San Francisco, CA, USA; Department of Ophthalmology, University of California, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Catherine E Oldenburg
- Francis I Proctor Foundation, University of California, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|