1
|
Media TS, Ramesh M, Lee OI, Ubaka LN, Harn DA, Norberg T, Quinn F, Garg A. The Human Milk Oligosaccharide Lacto-N-Fucopentaose III Conjugated to Dextran Inhibits HIV Replication in Primary Human Macrophages. Nutrients 2025; 17:890. [PMID: 40077760 PMCID: PMC11901455 DOI: 10.3390/nu17050890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Individuals with HIV on combined antiretroviral therapy (ART) with virologic suppression exhibit chronic immune activation and immune dysfunction. Numerous studies have shown that human milk oligosaccharide (HMO) controls the postnatal transmission of HIV-1, but its effect on adult HIV-1 infection is not known. The purpose of this study was to investigate the anti-HIV activity of Lacto-N-fucopentaose III (LNFPIII) in adult blood-borne macrophages. Methods: Primary human monocyte-derived macrophages from the blood of HIV-seronegative individuals were infected with HIV and treated with or without dextran-conjugated LNFPIII (P3DEX). HIV replication was measured by quantifying the accumulation of HIV Gag p24 in the culture supernatants by ELISA. The quantities of chemokines MIP-1α, MIP-1β, and CCL5 in the culture supernatant were also measured by ELISA. The expression of IL-1β, IL-18, TNFα, IL-10, BECN1, and housekeeping gene HuPO in the macrophages was determined by qRT PCR. The expression of NF-kB, LC3, p62, and β-actin was measured by immunoblotting. Results: We found that P3DEX controls HIV replication without affecting HIV binding and/or internalization by human macrophages. The treatment of HIV-infected macrophages with P3DEX increased the quantity of beta (β)-chemokines MIP-1α, CCL5, and MIP-1β, which are known to have anti-HIV activity. Furthermore, the treatment of HIV-infected macrophages with P3DEX increased autophagic flux in a TLR8-dependent manner and ameliorated the expression of proinflammatory cytokines. These results suggest that P3DEX is a prominent milk-derived sugar that simultaneously augments anti-viral mechanisms and controls immune activation. These findings prudently justify the use and clinical development of P3DEX as a host-directed therapeutic option for people living with HIV.
Collapse
Affiliation(s)
- Tablow Shwan Media
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (T.S.M.); (M.R.); (O.I.L.); (L.N.U.); (D.A.H.); (F.Q.)
| | - Medhini Ramesh
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (T.S.M.); (M.R.); (O.I.L.); (L.N.U.); (D.A.H.); (F.Q.)
| | - Olivia Isa Lee
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (T.S.M.); (M.R.); (O.I.L.); (L.N.U.); (D.A.H.); (F.Q.)
| | - Lucy Njideka Ubaka
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (T.S.M.); (M.R.); (O.I.L.); (L.N.U.); (D.A.H.); (F.Q.)
| | - Donald A. Harn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (T.S.M.); (M.R.); (O.I.L.); (L.N.U.); (D.A.H.); (F.Q.)
| | - Thomas Norberg
- Department of Biochemistry-BMC, Uppsala University, 753 10 Uppsala, Sweden;
| | - Frederick Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (T.S.M.); (M.R.); (O.I.L.); (L.N.U.); (D.A.H.); (F.Q.)
| | - Ankita Garg
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (T.S.M.); (M.R.); (O.I.L.); (L.N.U.); (D.A.H.); (F.Q.)
| |
Collapse
|
2
|
Català-Moll F, Paredes R. The rectal microbiome: understanding its role in HIV transmission. Curr Opin HIV AIDS 2025; 20:159-164. [PMID: 39773907 DOI: 10.1097/coh.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW Condomless receptive anal intercourse stands out as the sexual practice with highest risk of HIV-1 infection. Recent studies have suggested that the gut microbiome influences susceptibility to HIV transmission. This review explores recent research on host risk factors, the rectal microbiome composition, local inflammation, and bacteria-derived mediators that may affect HIV transmission. RECENT FINDINGS Constitutive host factors such as rectal mucosal structure and immune cell populations in the rectum contribute to increased susceptibility. Changes in the composition of the rectal microbiota, influenced by sexual practices and HIV infection modulate immune activation and inflammation, impacting HIV susceptibility. Bacteria-derived mediators may further influence immune responses and HIV replication in the rectal mucosa. SUMMARY Understanding the role of the rectal microbiome in HIV transmission has important clinical implications. Targeted interventions that modulate the microbiome may reduce susceptibility to HIV transmission by regulating immune responses and inflammation. Further research into the host-microbiome interactions could lead to novel preventive and therapeutic strategies to mitigate HIV transmission.
Collapse
Affiliation(s)
- Francesc Català-Moll
- IrsiCaixa, Badalona
- CIBER of Precision Medicine against Antimicrobial Resistance MePRAM, ISCIII
| | - Roger Paredes
- IrsiCaixa, Badalona
- CIBER of Precision Medicine against Antimicrobial Resistance MePRAM, ISCIII
- CIBER of Persistent COVID REiCOP
- CIBER of Infectious Diseases CIBERINFEC, ISCIII, Madrid
- Universitat Autònoma de Barcelona (UAB), Barcelona
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
- Center for Global Health and Diseases, Department of Pathology, Case Western. Reserve University, Cleveland, Ohio, USA
- Fundació Lluita contra les Infeccions
- Department of Infectious Diseases, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
3
|
Islam SMS, Singh S, Keshavarzian A, Abdel-Mohsen M. Intestinal Microbiota and Aging in People with HIV-What We Know and What We Don't. Curr HIV/AIDS Rep 2024; 22:9. [PMID: 39666149 PMCID: PMC11874070 DOI: 10.1007/s11904-024-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE OF REVIEW People with HIV (PWH) experience premature aging and an elevated risk of age-related comorbidities, even with viral suppression through antiretroviral therapy (ART). We examine gastrointestinal disruptions, specifically impaired intestinal barrier integrity and microbial dysbiosis, as contributors to these comorbidities. RECENT FINDINGS HIV infection compromises the intestinal epithelial barrier, increasing permeability and microbial translocation, which trigger inflammation and cellular stress. ART does not fully restore gut barrier integrity, leading to persistent inflammation and cellular stress. Additionally, HIV-associated microbial dysbiosis favors pro-inflammatory bacteria, intensifying inflammation and tissue damage, which may contribute to premature aging in PWH. Understanding the interactions between intestinal microbiota, chronic inflammation, cellular stress, and aging is essential to developing therapies aimed at reducing inflammation and slowing age-related diseases in PWH. In this review, we discuss critical knowledge gaps and highlight the therapeutic potential of microbiota-targeted interventions to mitigate inflammation and delay age-associated pathologies in PWH.
Collapse
Affiliation(s)
| | - Shalini Singh
- Northwestern University, 300 E Superior St, Chicago, IL, 60611, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
- Departments of Internal Medicine, physiology Rush University Medical Center, Anatomy & Cell Biology, Chicago, IL, USA
| | | |
Collapse
|
4
|
Díaz-García C, Moreno E, Talavera-Rodríguez A, Martín-Fernández L, González-Bodí S, Martín-Pedraza L, Pérez-Molina JA, Dronda F, Gosalbes MJ, Luna L, Vivancos MJ, Huerta-Cepas J, Moreno S, Serrano-Villar S. Fecal microbiota transplantation alters the proteomic landscape of inflammation in HIV: identifying bacterial drivers. MICROBIOME 2024; 12:214. [PMID: 39438902 PMCID: PMC11494993 DOI: 10.1186/s40168-024-01919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Despite effective antiretroviral therapy, people with HIV (PWH) experience persistent systemic inflammation and increased morbidity and mortality. Modulating the gut microbiome through fecal microbiota transplantation (FMT) represents a novel therapeutic strategy. We aimed to evaluate proteomic changes in inflammatory pathways following repeated, low-dose FMT versus placebo. METHODS This double-masked, placebo-controlled pilot study assessed the proteomic impacts of weekly FMT versus placebo treatment over 8 weeks on systemic inflammation in 29 PWH receiving stable antiretroviral therapy (ART). Three stool donors with high Faecalibacterium and butyrate profiles were selected, and their individual stools were used for FMT capsule preparation. Proteomic changes in 345 inflammatory proteins in plasma were quantified using the proximity extension assay, with samples collected at baseline and at weeks 1, 8, and 24. Concurrently, we characterized shifts in the gut microbiota composition and annotated functions through shotgun metagenomics. We fitted generalized additive models to evaluate the dynamics of protein expression. We selected the most relevant proteins to explore their correlations with microbiome composition and functionality over time using linear mixed models. RESULTS FMT significantly reduced the plasma levels of 45 inflammatory proteins, including established mortality predictors such as IL6 and TNF-α. We found notable reductions persisting up to 16 weeks after the final FMT procedure, including in the expression of proteins such as CCL20 and CD22. We identified changes in 46 proteins, including decreases in FT3LG, IL6, IL10RB, IL12B, and IL17A, which correlated with multiple bacterial species. We found that specific bacterial species within the Ruminococcaceae, Succinivibrionaceae, Prevotellaceae families, and the Clostridium genus, in addition to their associated genes and functions, were significantly correlated with changes in inflammatory markers. CONCLUSIONS Targeting the gut microbiome through FMT effectively decreased inflammatory proteins in PWH, with sustained effects. These findings suggest the potential of the microbiome as a therapeutic target to mitigate inflammation-related complications in this population, encouraging further research and development of microbiome-based interventions. Video Abstract.
Collapse
Affiliation(s)
- Claudio Díaz-García
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Alba Talavera-Rodríguez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lucía Martín-Fernández
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sara González-Bodí
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Laura Martín-Pedraza
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - José A Pérez-Molina
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Fernando Dronda
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María José Gosalbes
- Área de Genómica y Salud, Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBERESP, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Jesús Vivancos
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28223, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Rohani R, Malakismail J, Njoku E. Pharmacological and Behavioral Interventions to Mitigate Premature Aging in Patients with HIV. Curr HIV/AIDS Rep 2023; 20:394-404. [PMID: 37917387 DOI: 10.1007/s11904-023-00677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE OF REVIEW We sought to review pharmacological and behavioral interventions that have been publicly presented, published, or are currently ongoing to prevent or mitigate the effect of premature HIV-associated comorbidities. RECENT FINDINGS Multiple studies have been conducted in hopes of finding an effective intervention. While the choice of antiretroviral regimen influences recovery of immune function, several drugs used as adjunct treatments have proven effective to mitigate premature aging. Additionally, few behavioral interventions have exhibited some efficacy. Statins, angiotensin-receptor blockers, and anti-hyperglycemic agents as well as optimal adherence, exercise, and intermittent fasting among others have had beneficial impact on markers of immune activation and levels of inflammatory biomarkers. However, several investigations had inconclusive outcomes so further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Roxane Rohani
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road BSB 3.266, North Chicago, IL, USA.
- Department of Pharmacy, Captain James A. Lovell Federal Health Care Center, North Chicago, IL, USA.
| | - Jacob Malakismail
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Emmanuel Njoku
- Section of Infectious Disease, Captain James A. Lovell Federal Health Care Center, North Chicago, IL, USA
- Discipline of Internal Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
6
|
Moreno E, Ron R, Serrano-Villar S. The microbiota as a modulator of mucosal inflammation and HIV/HPV pathogenesis: From association to causation. Front Immunol 2023; 14:1072655. [PMID: 36756132 PMCID: PMC9900135 DOI: 10.3389/fimmu.2023.1072655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Although the microbiota has largely been associated with the pathogenesis of viral infections, most studies using omics techniques are correlational and hypothesis-generating. The mechanisms affecting the immune responses to viral infections are still being fully understood. Here we focus on the two most important sexually transmitted persistent viruses, HPV and HIV. Sophisticated omics techniques are boosting our ability to understand microbiota-pathogen-host interactions from a functional perspective by surveying the host and bacterial protein and metabolite production using systems biology approaches. However, while these strategies have allowed describing interaction networks to identify potential novel microbiota-associated biomarkers or therapeutic targets to prevent or treat infectious diseases, the analyses are typically based on highly dimensional datasets -thousands of features in small cohorts of patients-. As a result, we are far from getting to their clinical use. Here we provide a broad overview of how the microbiota influences the immune responses to HIV and HPV disease. Furthermore, we highlight experimental approaches to understand better the microbiota-host-virus interactions that might increase our potential to identify biomarkers and therapeutic agents with clinical applications.
Collapse
Affiliation(s)
- Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Blázquez-Bondia C, Parera M, Català-Moll F, Casadellà M, Elizalde-Torrent A, Aguiló M, Espadaler-Mazo J, Santos JR, Paredes R, Noguera-Julian M. Probiotic effects on immunity and microbiome in HIV-1 discordant patients. Front Immunol 2022; 13:1066036. [PMID: 36569851 PMCID: PMC9774487 DOI: 10.3389/fimmu.2022.1066036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Some HIV-1 infected patients are unable to completely recover normal CD4+ T-cell (CD4+) counts after achieving HIV-1 suppression with combined Antiretroviral Therapy (cART), hence being classified as immuno-discordant. The human microbiome plays a crucial role in maintaining immune homeostasis and is a potential target towards immune reconstitution. Setting RECOVER (NCT03542786) was a double-blind placebo-controlled clinical trial designed to evaluate if the novel probiotic i3.1 (AB-Biotics, Sant Cugat del Vallès, Spain) was able to improve immune reconstitution in HIV-1 infected immuno-discordant patients with stable cART and CD4+ counts <500 cells/mm3. The mixture consisted of two strains of L. plantarum and one of P. acidilactici, given with or without a fiber-based prebiotic. Methods 71 patients were randomized 1:2:2 to Placebo, Probiotic or probiotic + prebiotic (Synbiotic), and were followed over 6 months + 3-month washout period, in which changes on systemic immune status and gut microbiome were evaluated. Primary endpoints were safety and tolerability of the investigational product. Secondary endpoints were changes on CD4+ and CD8+ T-cell (CD8+) counts, inflammation markers and faecal microbiome structure, defined by alpha diversity (Gene Richness), beta diversity (Bray-Curtis) and functional profile. Comparisons across/within groups were performed using standard/paired Wilcoxon test, respectively. Results Adverse event (AE) incidence was similar among groups (53%, 33%, and 55% in the Placebo, Probiotic and Synbiotic groups, respectively, the most common being grade 1 digestive AEs: flatulence, bloating and diarrhoea. Two grade 3 AEs were reported, all in the Synbiotic group: abdominal distension (possibly related) and malignant lung neoplasm (unrelated), and 1 grade 4 AE in the Placebo: hepatocarcinoma (unrelated). Synbiotic exposure was associated with a higher increase in CD4+/CD8+ T-cell (CD4/CD8) ratio at 6 months vs baseline (median=0.76(IQR=0.51) vs 0.72(0. 45), median change= 0.04(IQR=0.19), p = 0.03). At month 9, the Synbiotic group had a significant increase in CD4/CD8 ratio (0.827(0.55) vs 0.825(0.53), median change = 0.04(IQR=0.15), p= 0.02) relative to baseline, and higher CD4+ counts (447 (157) vs. 342(73) counts/ml, p = 0.03), and lower sCD14 values (2.16(0.67) vs 3.18(0.8), p = 0.008) than Placebo. No effect in immune parameters was observed in the Probiotic arm. None of the two interventions modified microbial gene richness (alpha diversity). However, intervention as categorical variable was associated with slight but significant effect on Bray-Curtis distance variance (Adonis R2 = 0.02, p = 0.005). Additionally, at month 6, Synbiotic intervention was associated with lower pathway abundances vs Placebo of Assimilatory Sulphate Reduction (8.79·10-6 (1.25·10-5) vs. 1.61·10-5 (2.77·10-5), p = 0.03) and biosynthesis of methionine (2.3·10-5 (3.17·10-5) vs. 4·10-5 (5.66·10-5), p = 0.03) and cysteine (1.83·10-5 (2.56·10-5) vs. 3.3·10-5 (4.62·10-5), p = 0.03). At month 6, probiotic detection in faeces was associated with significant decreases in C Reactive Protein (CRP) vs baseline (11.1(22) vs. 19.2(66), median change= -2.7 (13.2) ug/ml, p = 0.04) and lower IL-6 values (0.58(1.13) vs. 1.17(1.59) ug/ml, p = 0.02) when compared with samples with no detectable probiotic. No detection of the probiotic was associated with higher CD4/CD8 ratio at month 6 vs baseline (0.718(0.57) vs. 0.58(0.4), median change = 0.4(0.2), p = 0.02). After washout, probiotic non-detection was also associated with a significant increase in CD4+ counts (457(153) vs. 416(142), median change = 45(75), counts/ml, p = 0.005) and CD4/CD8 ratio (0.67(0.5) vs 0.59(0.49), median change = 0.04 (0.18), p = 0.02). Conclusion A synbiotic intervention with L. plantarum and P. acidilactici was safe and led to small increases in CD4/CD8 ratio and minor reductions in sCD14 of uncertain clinical significance. A probiotic with the same composition was also safe but did not achieve any impact on immune parameters or faecal microbiome composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - José Ramon Santos
- Infectious Diseases Department and Fundació Lluita contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain,Infectious Diseases Department and Fundació Lluita contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain,Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Barcelona, Spain,Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain,Infectious Disease Networking Biomedical Research Center, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Badalona, Spain,Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Barcelona, Spain,Infectious Disease Networking Biomedical Research Center, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III Health Institute, Madrid, Spain,*Correspondence: Marc Noguera-Julian,
| |
Collapse
|
8
|
Biazzo M, Deidda G. Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. J Clin Med 2022; 11:jcm11144119. [PMID: 35887883 PMCID: PMC9320118 DOI: 10.3390/jcm11144119] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
The human body is home to a variety of micro-organisms. Most of these microbial communities reside in the gut and are referred to as gut microbiota. Over the last decades, compelling evidence showed that a number of human pathologies are associated with microbiota dysbiosis, thereby suggesting that the reinstatement of physiological microflora balance and composition might ameliorate the clinical symptoms. Among possible microbiota-targeted interventions, pre/pro-biotics supplementations were shown to provide effective results, but the main limitation remains in the limited microbial species available as probiotics. Differently, fecal microbiota transplantation involves the transplantation of a solution of fecal matter from a donor into the intestinal tract of a recipient in order to directly change the recipient's gut microbial composition aiming to confer a health benefit. Firstly used in the 4th century in traditional Chinese medicine, nowadays, it has been exploited so far to treat recurrent Clostridioides difficile infections, but accumulating data coming from a number of clinical trials clearly indicate that fecal microbiota transplantation may also carry the therapeutic potential for a number of other conditions ranging from gastrointestinal to liver diseases, from cancer to inflammatory, infectious, autoimmune diseases and brain disorders, obesity, and metabolic syndrome. In this review, we will summarize the commonly used preparation and delivery methods, comprehensively review the evidence obtained in clinical trials in different human conditions and discuss the variability in the results and the pivotal importance of donor selection. The final aim is to stimulate discussion and open new therapeutic perspectives among experts in the use of fecal microbiota transplantation not only in Clostridioides difficile infection but as one of the first strategies to be used to ameliorate a number of human conditions.
Collapse
Affiliation(s)
- Manuele Biazzo
- The BioArte Limited, Life Sciences Park, Triq San Giljan, SGN 3000 San Gwann, Malta;
- SienabioACTIVE, University of Siena, Via Aldo Moro 1, 53100 Siena, Italy
| | - Gabriele Deidda
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: ; Tel.: +39-049-827-6125
| |
Collapse
|
9
|
Preventing Bacterial Translocation in Patients with Leaky Gut Syndrome: Nutrition and Pharmacological Treatment Options. Int J Mol Sci 2022; 23:ijms23063204. [PMID: 35328624 PMCID: PMC8949204 DOI: 10.3390/ijms23063204] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Leaky gut syndrome is a medical condition characterized by intestinal hyperpermeability. Since the intestinal barrier is one of the essential components maintaining homeostasis along the gastrointestinal tract, loss of its integrity due to changes in bacterial composition, decreased expression levels of tight junction proteins, and increased concentration of pro-inflammatory cytokines may lead to intestinal hyperpermeability followed by the development of gastrointestinal and non-gastrointestinal diseases. Translocation of microorganisms and their toxic metabolites beyond the gastrointestinal tract is one of the fallouts of the leaky gut syndrome. The presence of intestinal bacteria in sterile tissues and distant organs may cause damage due to chronic inflammation and progression of disorders, including inflammatory bowel diseases, liver cirrhosis, and acute pancreatitis. Currently, there are no medical guidelines for the treatment or prevention of bacterial translocation in patients with the leaky gut syndrome; however, several studies suggest that dietary intervention can improve barrier function and restrict bacteria invasion. This review contains current literature data concerning the influence of diet, dietary supplements, probiotics, and drugs on intestinal permeability and bacterial translocation.
Collapse
|
10
|
Targeting the Gut Microbiota of Vertically HIV-Infected Children to Decrease Inflammation and Immunoactivation: A Pilot Clinical Trial. Nutrients 2022; 14:nu14050992. [PMID: 35267967 PMCID: PMC8912579 DOI: 10.3390/nu14050992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
Aims: Children with HIV exhibit chronic inflammation and immune dysfunction despite antiretroviral therapy (ART). Strategies targeting persistent inflammation are needed to improve health in people living with HIV. The gut microbiota likely interacts with the immune system, but the clinical implications of modulating the dysbiosis by nutritional supplementation are unclear. Methods: Pilot, double-blind, randomized placebo-controlled trial in which 24 HIV-infected on ART were randomized to supplementation with a daily mixture of symbiotics, omega-3/6 fatty acids and amino acids, or placebo four weeks, in combination with ART. We analyzed inflammatory markers and T-cell activation changes and their correlations with shifts in fecal microbiota. Results: Twenty-four HIV-infected children were recruited and randomized to receive a symbiotic nutritional supplement or placebo. Mean age was 12 ± 3.9 years, 62.5% were female. All were on ART and had HIV RNA < 50/mL. We did not detect changes in inflammatory (IL-6, IL-7, IP-10), microbial translocation (sCD14), mucosal integrity markers (IFABP, zonulin) or the kynurenine to tryptophan ratio, or changes in markers of the adaptive immune response in relation to the intervention. However, we found correlations between several key bacteria and the assessed inflammatory and immunological parameters, supporting a role of the microbiota in immune modulation in children with HIV. Conclusions: In this exploratory study, a four-week nutritional supplementation had no significant effects in terms of decreasing inflammation, microbial translocation, or T-cell activation in HIV-infected children. However, the correlations found support the interaction between gut microbiota and the immune system.
Collapse
|
11
|
Sainz T, Casas I, González-Esguevillas M, Escosa-Garcia L, Muñoz-Fernández MÁ, Prieto L, Gosalbes MJ, Jiménez-Hernández N, Ramos JT, Navarro ML, Mellado MJ, Serrano-Villar S, Calvo C. Nutritional Supplementation to Increase Influenza Vaccine Response in Children Living With HIV: A Pilot Clinical Trial. Front Pediatr 2022; 10:919753. [PMID: 35928688 PMCID: PMC9343631 DOI: 10.3389/fped.2022.919753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Vaccine response is poor among children living with HIV. The gut microbiota has been identified as a potential target to improve vaccine immunogenicity, but data are scarce in the context of HIV infection. METHODS Pilot, double-blind, randomized placebo-controlled trial in which 24 HIV-infected children were randomized to receive a mixture of symbiotics, omega-3/6 fatty acids, and amino acids or placebo for 4 weeks, each in combination with ART, and were then immunized against influenza. Vaccine response and safety of the nutritional supplementation were the primary outcomes. RESULTS Eighteen HIV-infected children completed the follow-up period (mean age 11.5 ± 4.14 years, 61% female). The nutritional supplement was safe but did not enhance the response to the influenza vaccine. A 4-fold rise in antibody titers was obtained in only 37.5% of participants in the intervention arm vs. 40% in the placebo. No immunological or inflammatory predictors of vaccine response were identified. CONCLUSIONS In this exploratory study, a 4-week course of symbiotics did not increase influenza vaccine immunogenicity in HIV-infected children. Larger studies are warranted to address the potential of modulating the microbiome in children living with HIV.
Collapse
Affiliation(s)
- Talía Sainz
- Servicio de Pediatría, Hospital Universitario La Paz and IdiPAZ, Madrid, Spain.,Red de Investigación Traslacional en Infectología Pediátrica (RITIP), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Casas
- Respiratory Virus and Influenza Unit, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Luis Escosa-Garcia
- Servicio de Pediatría, Hospital Universitario La Paz and IdiPAZ, Madrid, Spain.,Red de Investigación Traslacional en Infectología Pediátrica (RITIP), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Red de Investigación Traslacional en Infectología Pediátrica (RITIP), Madrid, Spain.,Laboratorio de InmunoBiología Molecular Hospital General Universitario Gregorio Marañón e IISHGM, Madrid, Spain
| | - Luis Prieto
- Red de Investigación Traslacional en Infectología Pediátrica (RITIP), Madrid, Spain.,Hospital 12 de Octubre, Madrid, Spain.,Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María José Gosalbes
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Área Genómica y Salud, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica (FISABIO), Valencia, Spain
| | - Nuria Jiménez-Hernández
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Área Genómica y Salud, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica (FISABIO), Valencia, Spain
| | - José Tomas Ramos
- Red de Investigación Traslacional en Infectología Pediátrica (RITIP), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Universidad Complutense de Madrid (UCM), Madrid, Spain.,Servicio de Pediatría, Hospital Clinico San Carlos and IdISSC, Madrid, Spain
| | - María Luisa Navarro
- Red de Investigación Traslacional en Infectología Pediátrica (RITIP), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Universidad Complutense de Madrid (UCM), Madrid, Spain.,Unidad de Investigación Materno-Infantil Familia Alonso (UDIMIFFA), IISGM, Servicio de Pediatría, Hospital General Universitario Gregorio Marañón e IISHGM, Madrid, Spain
| | - María José Mellado
- Servicio de Pediatría, Hospital Universitario La Paz and IdiPAZ, Madrid, Spain.,Red de Investigación Traslacional en Infectología Pediátrica (RITIP), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Serrano-Villar
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal, and IRYCIS, Madrid, Spain
| | - Cristina Calvo
- Servicio de Pediatría, Hospital Universitario La Paz and IdiPAZ, Madrid, Spain.,Red de Investigación Traslacional en Infectología Pediátrica (RITIP), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Sainz T, Pignataro V, Bonifazi D, Ravera S, Mellado MJ, Pérez-Martínez A, Escudero A, Ceci A, Calvo C. Human Microbiome in Children, at the Crossroad of Social Determinants of Health and Personalized Medicine. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121191. [PMID: 34943387 PMCID: PMC8700538 DOI: 10.3390/children8121191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The evolving field of microbiome research offers an excellent opportunity for biomarker identification, understanding drug metabolization disparities, and improving personalized medicine. However, the complexities of host-microbe ecological interactions hinder clinical transferability. Among other factors, the microbiome is deeply influenced by age and social determinants of health, including environmental factors such as diet and lifestyle conditions. In this article, the bidirectionality of social and host-microorganism interactions in health will be discussed. While the field of microbiome-related personalized medicine evolves, it is clear that social determinants of health should be mitigated. Furthermore, microbiome research exemplifies the need for specific pediatric investigation plans to improve children's health.
Collapse
Affiliation(s)
- Talía Sainz
- Hospital La Paz, Pº Castellana 261, 28046 Madrid, Spain; (M.J.M.); (A.P.-M.); (A.E.); (C.C.)
- La Paz Hospital Reserach Institute (IdiPAZ), Pº Castellana 261, 28046 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERInfec), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Valeria Pignataro
- Consorzio per Valutazioni Biologiche e Farmacologiche, Via N. Putignani n. 178, 70122 Bari, Italy; (V.P.); (D.B.); (A.C.)
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche, Via N. Putignani n. 178, 70122 Bari, Italy; (V.P.); (D.B.); (A.C.)
- TEDDY European Network of Excellence for Paediatric Research, Via Luigi Porta 14, 27100 Pavia, Italy
| | - Simona Ravera
- PHArmaceutical Research Management SRL, Via Albert Einstein, 26900 Lodi, Italy;
| | - María José Mellado
- Hospital La Paz, Pº Castellana 261, 28046 Madrid, Spain; (M.J.M.); (A.P.-M.); (A.E.); (C.C.)
- La Paz Hospital Reserach Institute (IdiPAZ), Pº Castellana 261, 28046 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERInfec), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- TEDDY European Network of Excellence for Paediatric Research, Via Luigi Porta 14, 27100 Pavia, Italy
| | - Antonio Pérez-Martínez
- Hospital La Paz, Pº Castellana 261, 28046 Madrid, Spain; (M.J.M.); (A.P.-M.); (A.E.); (C.C.)
- La Paz Hospital Reserach Institute (IdiPAZ), Pº Castellana 261, 28046 Madrid, Spain
- Departamento de Pediatría, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Adela Escudero
- Hospital La Paz, Pº Castellana 261, 28046 Madrid, Spain; (M.J.M.); (A.P.-M.); (A.E.); (C.C.)
- La Paz Hospital Reserach Institute (IdiPAZ), Pº Castellana 261, 28046 Madrid, Spain
| | - Adriana Ceci
- Consorzio per Valutazioni Biologiche e Farmacologiche, Via N. Putignani n. 178, 70122 Bari, Italy; (V.P.); (D.B.); (A.C.)
- TEDDY European Network of Excellence for Paediatric Research, Via Luigi Porta 14, 27100 Pavia, Italy
| | - Cristina Calvo
- Hospital La Paz, Pº Castellana 261, 28046 Madrid, Spain; (M.J.M.); (A.P.-M.); (A.E.); (C.C.)
- La Paz Hospital Reserach Institute (IdiPAZ), Pº Castellana 261, 28046 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERInfec), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Departamento de Pediatría, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|
13
|
Abstract
Viral infections represent a major health problem worldwide. Due to the wide variety of etiological agents and their increasing resistance to anti-virals and antibiotics treatments, new strategies for effective therapies need to be developed. Scientific evidence suggests that probiotics may have prophylactic and therapeutic effects in viral diseases. Indeed, these microorganisms interact harmoniously with the intestinal microbiota and protect the integrity of the intestinal barrier as well as modulate the host immune system. Currently, clinical trials with probiotics have been documented in respiratory tract infections, infections caused by human immunodeficiency viruses, herpes, human papillomavirus and hepatic encephalopathy. However, the benefits documented so far are difficult to extrapolate, due to the strain-dependent effect. In addition, the dose of the microorganism used as well as host characteristics are other parameters that should be consider when advocating the use of probiotics to treat viral infections. This review addresses the scientific evidence of the efficacy of probiotics in clinical strains perspective in viral infectious diseases in the last 10 years.
Collapse
|
14
|
Lights and Shadows of Microbiota Modulation and Cardiovascular Risk in HIV Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136837. [PMID: 34202210 PMCID: PMC8297340 DOI: 10.3390/ijerph18136837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Human immunodeficiency virus (HIV) infection is associated with premature aging and the development of aging-related comorbidities, such as cardiovascular disease (CVD). Gut microbiota (GM) disturbance is involved in these comorbidities and there is currently interest in strategies focused on modulating GM composition and/or functionality. Scientific evidence based on well-designed clinical trials is needed to support the use of prebiotics, probiotics, symbiotics, and fecal transplantation (FT) to modify the GM and reduce the incidence of CVD in HIV-infected patients. We reviewed the data obtained from three clinical trials focused on prebiotics, 25 trials using probiotics, six using symbiotics, and four using FT. None of the trials investigated whether these compounds could reduce CVD in HIV patients. The huge variability observed in the type of compound as well as the dose and duration of administration makes it difficult to adopt general recommendations and raise serious questions about their application in clinical practice.
Collapse
|
15
|
Ray S, Narayanan A, Giske CG, Neogi U, Sönnerborg A, Nowak P. Altered Gut Microbiome under Antiretroviral Therapy: Impact of Efavirenz and Zidovudine. ACS Infect Dis 2021; 7:1104-1115. [PMID: 33346662 PMCID: PMC8154435 DOI: 10.1021/acsinfecdis.0c00536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Millions
of individuals currently living with HIV globally are
receiving antiretroviral therapy (ART) that suppresses viral replication
and improves host immune responses. The involvement of gut microbiome
during HIV infection has been studied, exposing correlation with immune
status and inflammation. However, the direct effect of ART on gut
commensals of HIV-infected individuals has been mostly overlooked
in microbiome studies. We used 16S rRNA sequencing (Illumina MiSeq)
for determining the microbiota composition of stool samples from 16
viremic patients before and one year after ART. We also tested the
direct effect of 15 antiretrovirals against four gut microbes, namely, Escherichia coli, Enterococcus faecalis, Bacteroides, and Prevotella to assess their in vitro antibacterial effect. 16S rRNA analysis of fecal samples showed
that effective ART for one year does not restore the microbiome diversity
in HIV-infected patients. A significant reduction in α-diversity
was observed in patients under non-nucleoside reverse transcriptase
inhibitors; (NNRTI; 2 NRTI+NNRTI; NRTIs are nucleoside reverse transcriptase
inhibitors) as compared to ritonavir-boosted protease inhibitors (PI/r;
2 NRTI+PI/r). Prevotella (P = 0.00001) showed a significantly decreased abundance in patients
after ART (n = 16). We also found the direct effect
of antivirals on gut microbes, where zidovudine (ZDV) and efavirenz
(EFV) showed in vitro antimicrobial activity against Bacteroides fragilis and Prevotella. EFV also inhibited the growth of E. faecalis. Therefore, we observed that ART does not reverse the HIV-induced
gut microbiome dysbiosis and might aggravate those microbiota alterations
due to the antibacterial effect of certain antiretrovirals (like EFV,
ZDV). Our results imply that restructuring the microbiota could be
a potential therapeutic target in HIV-1 patients under ART.
Collapse
Affiliation(s)
- Shilpa Ray
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- The Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå 901 87, Sweden
| | - Aswathy Narayanan
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
| | - Christian G. Giske
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Solna, Stockholm 171 76,Sweden
| | - Ujjwal Neogi
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
| | - Anders Sönnerborg
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden
| | - Piotr Nowak
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- The Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå 901 87, Sweden
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden
| |
Collapse
|
16
|
Effects of persistent modulation of intestinal microbiota on SIV/HIV vaccination in rhesus macaques. NPJ Vaccines 2021; 6:34. [PMID: 33707443 PMCID: PMC7952719 DOI: 10.1038/s41541-021-00298-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
An effective vaccine to prevent HIV transmission has not yet been achieved. Modulation of the microbiome via probiotic therapy has been suggested to result in enhanced mucosal immunity. Here, we evaluated whether probiotic therapy could improve the immunogenicity and protective efficacy of SIV/HIV vaccination. Rhesus macaques were co-immunized with an SIV/HIV DNA vaccine via particle-mediated epidermal delivery and an HIV protein vaccine administered intramuscularly with Adjuplex™ adjuvant, while receiving daily oral Visbiome® probiotics. Probiotic therapy alone led to reduced frequencies of colonic CCR5+ and CCR6+ CD4+ T cells. Probiotics with SIV/HIV vaccination led to similar reductions in colonic CCR5+ CD4+ T cell frequencies. SIV/HIV-specific T cell and antibody responses were readily detected in the periphery of vaccinated animals but were not enhanced with probiotic treatment. Combination probiotics and vaccination did not impact rectal SIV/HIV target populations or reduce the rate of heterologous SHIV acquisition during the intrarectal challenge. Finally, post-infection viral kinetics were similar between all groups. Thus, although probiotics were well-tolerated when administered with SIV/HIV vaccination, vaccine-specific responses were not significantly enhanced. Additional work will be necessary to develop more effective strategies of microbiome modulation in order to enhance mucosal vaccine immunogenicity and improve protective immune responses.
Collapse
|
17
|
Serrano-Villar S, Talavera-Rodríguez A, Gosalbes MJ, Madrid N, Pérez-Molina JA, Elliott RJ, Navia B, Lanza VF, Vallejo A, Osman M, Dronda F, Budree S, Zamora J, Gutiérrez C, Manzano M, Vivancos MJ, Ron R, Martínez-Sanz J, Herrera S, Ansa U, Moya A, Moreno S. Fecal microbiota transplantation in HIV: A pilot placebo-controlled study. Nat Commun 2021; 12:1139. [PMID: 33602945 PMCID: PMC7892558 DOI: 10.1038/s41467-021-21472-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Changes in the microbiota have been linked to persistent inflammation during treated HIV infection. In this pilot double-blind study, we study 30 HIV-infected subjects on antiretroviral therapy (ART) with a CD4/CD8 ratio < 1 randomized to either weekly fecal microbiota capsules or placebo for 8 weeks. Stool donors were rationally selected based on their microbiota signatures. We report that fecal microbiota transplantation (FMT) is safe, not related to severe adverse events, and attenuates HIV-associated dysbiosis. FMT elicits changes in gut microbiota structure, including significant increases in alpha diversity, and a mild and transient engraftment of donor's microbiota during the treatment period. The greater engraftment seems to be achieved by recent antibiotic use before FMT. The Lachnospiraceae and Ruminococcaceae families, which are typically depleted in people with HIV, are the taxa more robustly engrafted across time-points. In exploratory analyses, we describe a significant amelioration in the FMT group in intestinal fatty acid-binding protein (IFABP), a biomarker of intestinal damage that independently predicts mortality. Gut microbiota manipulation using a non-invasive and safe strategy of FMT delivery is feasible and deserves further investigation. Trial number: NCT03008941.
Collapse
Affiliation(s)
- Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain.
| | | | - María José Gosalbes
- Area of Genomics and Health, FISABIO-Salud Pública, Valencia, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nadia Madrid
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - José A Pérez-Molina
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | | | - Beatriz Navia
- Department of Nutrition, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Val F Lanza
- Bioinformatics Unit, Hospital Universitario Ramon y Cajal, IRYCIS, Madrid, Spain
| | - Alejandro Vallejo
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | | | - Fernando Dronda
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | | | - Javier Zamora
- Barts and the London School for Medicine and Dentistry. Queen Mary University of London, London, UK
| | - Carolina Gutiérrez
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Mónica Manzano
- Department of Nutrition, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - María Jesús Vivancos
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Sabina Herrera
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Uxua Ansa
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Andrés Moya
- Area of Genomics and Health, FISABIO-Salud Pública, Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC)-UVEG), Valencia, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| |
Collapse
|
18
|
The Effect of Probiotics, Prebiotics, and Synbiotics on CD4 Counts in HIV-Infected Patients: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7947342. [PMID: 33294453 PMCID: PMC7718054 DOI: 10.1155/2020/7947342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022]
Abstract
Background Probiotics as a potential adjuvant therapy may improve the restoration of the intestinal CD4+ T-cell population in HIV-infected patients, whereas findings from clinical trials are inconsistent. This systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to quantify the effects of probiotic, prebiotic, and synbiotic supplementation on CD4 counts in HIV-infected patients. Methods We searched PubMed, Embase, Web of Science, Scopus, and the Cochrane Central Register of Controlled Trials for relevant articles published up to March 20, 2020. Two authors independently performed the study selection, data extraction, and risk of bias assessment. Data were pooled by using the random effects model, and weighted mean difference (WMD) was considered the summary effect size. Publication bias was evaluated by a funnel plot and Egger's test. Results The search strategy identified 1712 citations. After screening, a total of 16 RCTs with 19 trials were included in the meta-analysis. Pooling of the extracted data indicated no significant difference between the probiotics/prebiotics/synbiotics and placebo groups on CD4 counts (WMD = 3.86, 95% confidence interval (CI) -24.72 to 32.45, P = 0.791). In subgroup analysis, a significant increase in CD4 counts was found in the study with high risk of bias (WMD = 188, 95% CI 108.74 to 227.26, P ≤ 0.001). Egger's test showed no evidence of significant publication bias (P = 0.936). Conclusions In summary, the evidence for the efficacy of probiotics, prebiotics, and synbiotics in improving HIV-infected patients' CD4 counts as presented in currently published RCTs is insufficient. Therefore, further comprehensive studies are needed to reveal the exact effect of probiotics, prebiotics, and synbiotics on CD4+ cell counts.
Collapse
|
19
|
Sainz T, Gosalbes MJ, Talavera A, Jimenez-Hernandez N, Prieto L, Escosa L, Guillén S, Ramos JT, Muñoz-Fernández MÁ, Moya A, Navarro ML, Mellado MJ, Serrano-Villar S. Effect of a Nutritional Intervention on the Intestinal Microbiota of Vertically HIV-Infected Children: The Pediabiota Study. Nutrients 2020; 12:nu12072112. [PMID: 32708743 PMCID: PMC7400861 DOI: 10.3390/nu12072112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS The gut microbiota exerts a critical influence in the immune system. The gut microbiota of human virus immunodeficiency (HIV)-infected children remains barely explored. We aimed to characterize the fecal microbiota in vertically HIV-infected children and to explore the effects of its modulation with a symbiotic nutritional intervention. METHODS a pilot, double blind, randomized placebo-controlled study including HIV-infected children who were randomized to receive a nutritional supplementation including prebiotics and probiotics or placebo for four weeks. HIV-uninfected siblings were recruited as controls. The V3-V4 region of the 16S rRNA gene was sequenced in fecal samples. RESULTS 22 HIV-infected children on antiretroviral therapy (ART) and with viral load (VL) <50/mL completed the follow-up period. Mean age was 11.4 ± 3.4 years, eight (32%) were male. Their microbiota showed reduced alpha diversity compared to controls and distinct beta diversity at the genus level (Adonis p = 0.042). Patients showed decreased abundance of commensals Faecalibacterium and an increase in Prevotella, Akkermansia and Escherichia. The nutritional intervention shaped the microbiota towards the control group, without a clear directionality. CONCLUSIONS Vertical HIV infection is characterized by changes in gut microbiota structure, distinct at the compositional level from the findings reported in adults. A short nutritional intervention attenuated bacterial dysbiosis, without clear changes at the community level. SUMMARY In a group of 24 vertically HIV-infected children, in comparison to 11 uninfected controls, intestinal dysbiosis was observed despite effective ART. Although not fully effective to restore the microbiota, a short intervention with pre/probiotics attenuated bacterial dysbiosis.
Collapse
Affiliation(s)
- Talía Sainz
- Servicio de Pediatría, Hospital Universitario La Paz and IdiPAZ, 28046 Madrid, Spain; (L.E.); (M.J.M.)
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
- Correspondence: ; Tel.: +34-917277201
| | - María José Gosalbes
- Área Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica (FISABIO), 46010 Valencia, Spain; (M.J.G.); (N.J.-H.); (A.M.)
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain
| | - Alba Talavera
- Bioinformatics Unit, Hospital Universitario Ramón y Cajal and IRYCIS, 28034 Madrid, Spain;
| | - Nuria Jimenez-Hernandez
- Área Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica (FISABIO), 46010 Valencia, Spain; (M.J.G.); (N.J.-H.); (A.M.)
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain
| | - Luis Prieto
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
- Servicio de Pediatría, Hospital 12 de Octubre and I+12, 28041 Madrid, Spain
| | - Luis Escosa
- Servicio de Pediatría, Hospital Universitario La Paz and IdiPAZ, 28046 Madrid, Spain; (L.E.); (M.J.M.)
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
| | - Sara Guillén
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
- Servicio de Pediatría, Hospital de Getafe, 28901 Madrid, Spain
| | - José Tomás Ramos
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
- Spain Servicio de Pediatría, Hospital Clinico San Carlos and UCM, 28040 Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Sección Inmunología, Hospital General Universitario Gregorio Marañón and Spanish HIV HGM BioBank, Madrid Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28007 Madrid, Spain;
| | - Andrés Moya
- Área Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica (FISABIO), 46010 Valencia, Spain; (M.J.G.); (N.J.-H.); (A.M.)
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain
- Instituto de Biología Integrativa de Sistemas, Universidad de Valencia, 46003 Valencia, Spain
| | - Maria Luisa Navarro
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - María José Mellado
- Servicio de Pediatría, Hospital Universitario La Paz and IdiPAZ, 28046 Madrid, Spain; (L.E.); (M.J.M.)
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
| | - Sergio Serrano-Villar
- Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal and IRYCIS, 28034 Madrid, Spain;
| |
Collapse
|
20
|
The Evolving Microbiome from Pregnancy to Early Infancy: A Comprehensive Review. Nutrients 2020; 12:nu12010133. [PMID: 31906588 PMCID: PMC7019214 DOI: 10.3390/nu12010133] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Pregnancy induces a number of immunological, hormonal, and metabolic changes that are necessary for the mother to adapt her body to this new physiological situation. The microbiome of the mother, the placenta and the fetus influence the fetus growth and undoubtedly plays a major role in the adequate development of the newborn infant. Hence, the microbiome modulates the inflammatory mechanisms related to physiological and pathological processes that are involved in the perinatal progress through different mechanisms. The present review summarizes the actual knowledge related to physiological changes in the microbiota occurring in the mother, the fetus, and the child, both during neonatal period and beyond. In addition, we approach some specific pathological situations during the perinatal periods, as well as the influence of the type of delivery and feeding.
Collapse
|
21
|
Herrera S, Martínez-Sanz J, Serrano-Villar S. HIV, Cancer, and the Microbiota: Common Pathways Influencing Different Diseases. Front Immunol 2019; 10:1466. [PMID: 31316514 PMCID: PMC6610485 DOI: 10.3389/fimmu.2019.01466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
HIV infection exerts profound and perhaps irreversible damage to the gut mucosal-associated lymphoid tissues, resulting in long-lasting changes in the signals required for the coordination of commensal colonization and in perturbations at the compositional and functional level of the gut microbiota. These abnormalities in gut microbial communities appear to affect clinical outcomes, including T-cell recovery, vaccine responses, HIV transmission, cardiovascular disease, and cancer pathogenesis. For example, the microbial signature associated with HIV infection has been shown to induce tryptophan catabolism, affect the butyrate synthesis pathway, impair anti-tumoral immunity and affect oxidative stress, which have also been linked to the pathogenesis of cancer. Furthermore, some of the taxa that are depleted in subjects with HIV have proved to modulate the anti-tumor efficacy of various chemotherapies and immunotherapeutic agents. The aim of this work is to provide a broad overview of recent advances in our knowledge of how HIV might affect the microbiota, with a focus on the pathways shared with cancer pathogenesis.
Collapse
Affiliation(s)
- Sabina Herrera
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, Universidad de Alcalá (IRYCIS), Madrid, Spain
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, Universidad de Alcalá (IRYCIS), Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, Universidad de Alcalá (IRYCIS), Madrid, Spain
| |
Collapse
|
22
|
Abstract
Technological developments, including massively parallel DNA sequencing, gnotobiotics, metabolomics, RNA sequencing and culturomics, have markedly propelled the field of microbiome research in recent years. These methodologies can be harnessed to improve our in-depth mechanistic understanding of basic concepts related to consumption of probiotics, including their rules of engagement with the indigenous microbiome and impacts on the human host. We have recently demonstrated that even during probiotic supplementation, resident gut bacteria in a subset of individuals resist the mucosal presence of probiotic strains, limiting their modulatory effect on the microbiome and on the host gut transcriptional landscape. Resistance is partly alleviated by antibiotics treatment, which enables probiotics to interact with the host at the gut mucosal interface, although rather than promoting reconstitution of the indigenous microbiome and of the host transcriptional profile, they inhibit these components from returning to their naïve pre-antibiotic configurations. In this commentary, we discuss our findings in the context of previous and recent works, and suggest that incorporating the state-of-the-art methods currently utilized in microbiome research into the field of probiotics may lead to improved understanding of their mechanisms of activity, as well as their efficacy and long-term safety.
Collapse
Affiliation(s)
- Jotham Suez
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Niv Zmora
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel,Digestive Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel,Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel,Cancer-Microbiome Research Division, DKFZ, Heidelberg, Germany,CONTACT Eran Elinav Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
23
|
Biomarkers of aging in HIV: inflammation and the microbiome. Eur Geriatr Med 2019; 10:175-182. [PMID: 34652744 DOI: 10.1007/s41999-018-0145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/24/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE HIV-infected subjects present increased levels of inflammatory cytokines and T cell activation in the peripheral blood despite suppressive combination antiretroviral therapy which renders them susceptible to premature aging. The purpose of the present work was to review existing evidence on the ways in which the anatomical and microbiological abnormalities of the gastrointestinal tract can represent a major cause of organ disease in HIV infection. METHODS We conducted a systematic review of the Pubmed database for articles published from 2014 to 2018. We included studies on inflammatory/activation biomarkers associated with cardiovascular and bone disease, neurocognitive impairment and serious non-AIDS events in HIV-infected subjects. We also included researches which linked peripheral inflammation/activation to the anatomical, immune and microbiological alterations of the gastrointestinal tract. RESULTS Recent literature data confirm the association between non-infectious comorbidities and inflammation in HIV infection which may be driven by gastrointestinal tract abnormalities, specifically microbial translocation and dysbiosis. Furthermore, there is mounting evidence on the possible role of metabolic functions of the microbiota in the pathogenesis of premature aging in the HIV-infected population. CONCLUSIONS Biomarkers need to be validated for their use in the management of HIV infection. Compounds which counteract microbial translocation, inflammation and dysbiosis have been investigated as alternative therapeutic strategies in viro-suppressed HIV-infected individuals, but appear to have limited efficacy, probably due to the multifactorial pathogenesis of non-infectious comorbidities in this setting.
Collapse
|
24
|
Estrada V, Gonzalez N. Gut microbiota in diabetes and HIV: Inflammation is the link. EBioMedicine 2018; 38:17-18. [PMID: 30448227 PMCID: PMC6306331 DOI: 10.1016/j.ebiom.2018.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Vicente Estrada
- Infectious Diseases/Internal Medicine, Hospital Clínico San Carlos, IdiSSC, Universidad Complutense Madrid, Spain.
| | - Noemi Gonzalez
- Endocrinology, Hospital Universitario La Paz, Universidad Autonoma, Madrid, Spain
| |
Collapse
|