1
|
Aguilar-Ayala DA, Sanz-García F, Rabodoarivelo MS, Susanto BO, Bailo R, Eveque-Mourroux MR, Willand N, Simonsson USH, Ramón-García S, Lucía A. Evaluation of critical parameters in the hollow-fibre system for tuberculosis: A case study of moxifloxacin. Br J Clin Pharmacol 2024; 90:1711-1727. [PMID: 38632083 DOI: 10.1111/bcp.16068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
AimsThe hollow‐fibre system for tuberculosis (HFS‐TB) is a preclinical model qualified by the European Medicines Agency to underpin the anti‐TB drug development process. It can mimic in vivo pharmacokinetic (PK)–pharmacodynamic (PD) attributes of selected antimicrobials, which could feed into in silico models to inform the design of clinical trials. However, historical data and published protocols are insufficient and omit key information to allow experiments to be reproducible. Therefore, in this work, we aim to optimize and standardize various HFS‐TB operational procedures.MethodsFirst, we characterized bacterial growth dynamics with different types of hollow‐fibre cartridges, Mycobacterium tuberculosis strains and media. Second, we mimicked a moxifloxacin PK profile within hollow‐fibre cartridges, in order to check drug–fibres compatibility. Lastly, we mimicked the moxifloxacin total plasma PK profile in human after once daily oral dose of 400 mg to assess PK–PD after different sampling methods, strains, cartridge size and bacterial adaptation periods before drug infusion into the system.ResultsWe found that final bacterial load inside the HFS‐TB was contingent on the studied variables. Besides, we demonstrated that drug–fibres compatibility tests are critical preliminary HFS‐TB assays, which need to be properly reported. Lastly, we uncovered that the sampling method and bacterial adaptation period before drug infusion significantly impact actual experimental conclusions.ConclusionOur data contribute to the necessary standardization of HFS‐TB experiments, draw attention to multiple aspects of this preclinical model that should be considered when reporting novel results and warn about critical parameters in the HFS‐TB currently overlooked.
Collapse
Affiliation(s)
- Diana A Aguilar-Ayala
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Fernando Sanz-García
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
| | | | - Budi O Susanto
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Rebeca Bailo
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Maxime R Eveque-Mourroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, Lille, France
| | | | - Santiago Ramón-García
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
- Spanish Network for Research on Respiratory Diseases (CIBERES), Carlos III Health Institute, Madrid, Spain
- Research and Development Agency of Aragón (ARAID) Foundation, Zaragoza, Spain
| | - Ainhoa Lucía
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
- Spanish Network for Research on Respiratory Diseases (CIBERES), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
2
|
Chen RH, Burke A, Cho JG, Alffenaar JW, Davies Forsman L. New Oxazolidinones for Tuberculosis: Are Novel Treatments on the Horizon? Pharmaceutics 2024; 16:818. [PMID: 38931939 PMCID: PMC11207443 DOI: 10.3390/pharmaceutics16060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is a global health concern. Standard treatment involves the use of linezolid, a repurposed oxazolidinone. It is associated with severe adverse effects, including myelosuppression and mitochondrial toxicity. As such, it is imperative to identify novel alternatives that are better tolerated but equally or more effective. Therefore, this review aims to identify and explore the novel alternative oxazolidinones to potentially replace linezolid in the management of TB. The keywords tuberculosis and oxazolidinones were searched in PubMed to identify eligible compounds. The individual drug compounds were then searched with the term tuberculosis to identify the relevant in vitro, in vivo and clinical studies. The search identified sutezolid, tedizolid, delpazolid, eperezolid, radezolid, contezolid, posizolid and TBI-223, in addition to linezolid. An additional search resulted in 32 preclinical and 21 clinical studies. All novel oxazolidinones except posizolid and eperezolid resulted in positive preclinical outcomes. Sutezolid and delpazolid completed early phase 2 clinical studies with better safety and equal or superior efficacy. Linezolid is expected to continue as the mainstay therapy, with renewed interest in drug monitoring. Sutezolid, tedizolid, delpazolid and TBI-223 displayed promising preliminary results. Further clinical studies would be required to assess the safety profiles and optimize the dosing regimens.
Collapse
Affiliation(s)
- Ricky Hao Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Department of Pharmacy, Westmead Hospital, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2145, Australia;
| | - Andrew Burke
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia;
- The Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - Jin-Gun Cho
- Department of Respiratory and Sleep Medicine, Westmead Hospital, Sydney, NSW 2145, Australia;
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Department of Pharmacy, Westmead Hospital, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2145, Australia;
| | - Lina Davies Forsman
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2145, Australia;
- Department of Infectious Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, SE-171 76 Stockholm, Sweden
| |
Collapse
|
3
|
Srivastava S, Wang JY, Magombedze G, Chapagain M, Huang HL, Deshpande D, Heysell SK, Pasipanodya JG, Gumbo T. Nouveau short-course therapy and morphism mapping for clinical pulmonary Mycobacterium kansasii. Antimicrob Agents Chemother 2023; 95:AAC.01553-20. [PMID: 33558291 PMCID: PMC8092872 DOI: 10.1128/aac.01553-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022] Open
Abstract
Standard therapy [isoniazid, rifampin, ethambutol], with or without a macrolide, for pulmonary Mycobacterium kansasii lasts more than a year. Therefore, shorter treatment duration regimens are required. We used data from 32 Taiwanese patients treated with standard therapy who were followed using repetitive sampling-based sputum Mkn time-to-positivity in liquid cultures to calculate kill slopes [γ] based on ordinary differential equations and time-to-extinction of each patient's bacterial burden. The γ was 0.18 [95% Confidence Interval (CI): 0.16-0.20] log10 CFU/mL/day on standard therapy. Next, we identified Mkn time-to-extinction in the hollow fiber system model of pulmonary M. kansasii disease [HFS-Mkn] treated with standard therapy, which was a γ of 0.60 [95% CI: 0.45-0.69) log10 CFU/mL/day. The γs and time-to-extinctions between the two datasets formed structure-preserving maps based on category theory: thus, we could map them from one to the other using morphisms. This mapping identified a multistep non-linear transformation-factor for time-to-extinction from HFS-Mkn to patients. Next, a head-to-head study in the HFS-Mkn identified median time-to-extinction for standard therapy of 38.7 [95% CI: 29.1-53.2) days, isoniazid-rifampin-ethambutol-moxifloxacin of 21.7 [95% CI: 19.1-25) days, isoniazid-rifampin-moxifloxacin of 22 [96% CI: 20.1-24.5) days, and rifampin-moxifloxacin-tedizolid of 20.7 [95% CI:18.5-29) days. Our transformation-factor based translation predicted the proportion of patients of 90.7 [88.74-92.35)% achieving cure with standard therapy at 12 months, and 6-months cure rates of 99.8 [95% CI: 99.27-99.95)% for isoniazid-rifampin-ethambutol-moxifloxacin, 92.2 [90.37-93.71)% for isoniazid-rifampin-moxifloxacin, and 99.9 [99.44-99.99)% for rifampin-moxifloxacin-tedizolid. Thus, rifampin-moxifloxacin-tedizolid and isoniazid-rifampin-ethambutol-moxifloxacin are predicted to be short-course chemotherapy regimens for pulmonary M. kansasii disease.
Collapse
Affiliation(s)
- Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Gesham Magombedze
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Moti Chapagain
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Hung-Ling Huang
- Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Devyani Deshpande
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Jotam G. Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
- Quantitative Preclinical and Clinical Sciences Department, Praedicare, Dallas, Texas, USA
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
- Quantitative Preclinical and Clinical Sciences Department, Praedicare, Dallas, Texas, USA
- Praedicare Laboratories, Praedicare, Dallas, Texas, USA
| |
Collapse
|
4
|
Edwards BD, Field SK. The Struggle to End a Millennia-Long Pandemic: Novel Candidate and Repurposed Drugs for the Treatment of Tuberculosis. Drugs 2022; 82:1695-1715. [PMID: 36479687 PMCID: PMC9734533 DOI: 10.1007/s40265-022-01817-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
This article provides an encompassing review of the current pipeline of putative and developed treatments for tuberculosis, including multidrug-resistant strains. The review has organized each compound according to its site of activity. To provide context, mention of drugs within current recommended treatment regimens is made, thereafter followed by discussion on recently developed and upcoming molecules at established and novel targets. The review is designed to provide a clinically applicable understanding of the compounds that are deemed most currently relevant, including those already under clinical study and those that have shown promising pre-clinical results. An extensive review of the efficacy and safety data for key contemporary drugs already incorporated into treatment regimens, such as bedaquiline, pretomanid, and linezolid, is provided. The three levels of the bacterial cell wall (mycolic acid, arabinogalactan, and peptidoglycan layers) are highlighted and important compounds designed to target each layer are delineated. Amongst others, the highly optimistic and potent anti-mycobacterial activity of agents such as BTZ-043, PBTZ 169, and OPC-167832 are emphasized. The evolving spectrum of oxazolidinones, such as sutezolid, delpazolid, and TBI-223, all aiming to exceed the efficacy achieved with linezolid yet offer a safer alternative to the potential toxicity, are reviewed. New and exciting prospective agents with novel mechanisms of impact against TB, including 3-aminomethyl benzoxaboroles and telacebec, are underscored. We describe new diaryloquinolines in development, striving to build on the immense success of bedaquiline. Finally, we discuss some of these compounds that have shown encouraging additive or synergistic benefit when used in combination, providing some promise for the future in treating this ancient scourge.
Collapse
Affiliation(s)
- Brett D Edwards
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada.
| | - Stephen K Field
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada
| |
Collapse
|
5
|
Deshpande D, Srivastava S, Pasipanodya JG, Gumbo T. Minocycline intra-bacterial pharmacokinetic hysteresis as a basis for pharmacologic memory and a backbone for once-a-week pan-tuberculosis therapy. Front Pharmacol 2022; 13:1024608. [PMID: 36330086 PMCID: PMC9622937 DOI: 10.3389/fphar.2022.1024608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Background: There is need for shorter duration regimens for the treatment of tuberculosis, that can treat patients regardless of multidrug resistance status (pan-tuberculosis). Methods: We combined minocycline with tedizolid, moxifloxacin, and rifampin, in the hollow fiber system model of tuberculosis and mimicked each drugs’ intrapulmonary pharmacokinetics for 28 days. Minocycline-tedizolid was administered either as a once-a-week or a daily regimen. In order to explore a possible explanation for effectiveness of the once-a-week regimen, we measured systemic and intra-bacterial minocycline pharmacokinetics. Standard daily therapy (rifampin, isoniazid, pyrazinamide) was the comparator. We then calculated γf or kill slopes for each regimen and ranked the regimens by time-to-extinction predicted in patients. Results: The steepest γf and shortest time-to-extinction of entire bacterial population was with daily minocycline-rifampin combination. There was no difference in γf between the minocycline-tedizolid once-a-week versus the daily therapy (p = 0.85). Standard therapy was predicted to cure 88% of patients, while minocycline-rifampin would cure 98% of patients. Minocycline concentrations fell below minimum inhibitory concentration after 2 days of once-weekly dosing schedule. The shape of minocycline intra-bacterial concentration-time curve differed from the extracellular pharmacokinetic system and lagged by several days, consistent with system hysteresis. Hysteresis explained the persistent microbial killing after hollow fiber system model of tuberculosis concentrations dropped below the minimum inhibitory concentration. Conclusion: Minocycline could form a backbone of a shorter duration once-a-week pan-tuberculosis regimen. We propose a new concept of post-antibiotic microbial killing, distinct from post-antibiotic effect. We propose system hysteresis as the basis for the novel concept of pharmacologic memory, which allows intermittent dosing.
Collapse
Affiliation(s)
| | - Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | | | - Tawanda Gumbo
- Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc, Dallas, TX, United States
- Hollow Fiber System and Experimental Therapeutics Laboratories, Praedicare Inc., Dallas, TX, United States
- *Correspondence: Tawanda Gumbo,
| |
Collapse
|
6
|
Patel S, Chapagain M, Mason C, Gingrich M, Athale S, Ribble W, Hoang T, Day J, Sun X, Jarvis T, Ochsner UA, Howe D, Gumbo T. Potency of the novel PolC DNA polymerase inhibitor CRS0540 in a disseminated Listeria monocytogenes intracellular hollow-fibre model. J Antimicrob Chemother 2022; 77:2876-2885. [PMID: 35929190 PMCID: PMC9525089 DOI: 10.1093/jac/dkac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Listeriosis is an orphan disease, which is nevertheless fatal in immunocompromised people. CRS0540 is a novel PolC DNA polymerase inhibitor that has demonstrated good in vitro and in vivo activity against Listeria monocytogenes. Methods Rodent-to-human allometry projection-based human population pharmacokinetics of CRS0540 were used for all studies. CRS0540 pharmacokinetics/pharmacodynamics studies in an intracellular hollow-fibre system model of disseminated listeriosis (HFS-Lister) examined the effect of eight treatment doses, administered daily over 7 days, in duplicate units. Total bacterial burden versus AUC/MIC exposures on each day were modelled using the inhibitory sigmoid Emax model, while CRS0540-resistant bacterial burden was modelled using a quadratic function. Ten thousand-subject Monte Carlo simulations were used to predict an optimal clinical dose for treatment. Results The mean CRS0540 intracellular/extracellular AUC0–24 ratio was 34.07 (standard error: 15.70) as measured in the HFS-Lister. CRS0540 demonstrated exposure-dependent bactericidal activity in the HFS-Lister, with the highest exposure killing approximately 5.0 log10 cfu/mL. The free drug AUC0–24/MIC associated with 80% of maximal kill (EC80) was 36.4. Resistance emergence versus AUC/MIC was described by a quadratic function, with resistance amplification at an AUC/MIC of 54.8 and resistance suppression at an AUC/MIC of 119. Monte Carlo simulations demonstrated that for the EC80 target, IV CRS0540 doses of 100 mg/kg achieved PTAs of >90% at MICs up to 1.0 mg/L. Conclusions CRS0540 is a promising orphan drug candidate for listeriosis. Future PK/PD studies comparing it with penicillin, the standard of care, could lead to this drug as a new treatment in immunocompromised patients.
Collapse
Affiliation(s)
- Swati Patel
- Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc., Dallas, TX, USA
| | - Moti Chapagain
- Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc., Dallas, TX, USA
| | | | | | - Shruti Athale
- Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc., Dallas, TX, USA
| | | | | | | | | | | | | | - David Howe
- Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc., Dallas, TX, USA.,Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA
| | - Tawanda Gumbo
- Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc., Dallas, TX, USA.,Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA
| |
Collapse
|
7
|
Abstract
Tedizolid is an oxazolidinone antibiotic with high potency against Gram-positive bacteria and currently prescribed in bacterial skin and skin-structure infections. The aim of the review was to summarize and critically review the key pharmacokinetic and pharmacodynamic aspects of tedizolid. Tedizolid displays linear pharmacokinetics with good tissue penetration. In in vitro susceptibility studies, tedizolid exhibits activity against the majority of Gram-positive bacteria (minimal inhibitory concentration [MIC] of ≤ 0.5 mg/L), is four-fold more potent than linezolid, and has the potential to treat pathogens being less susceptible to linezolid. Area under the unbound concentration-time curve (fAUC) related to MIC (fAUC/MIC) was best correlated with efficacy. In neutropenic mice, fAUC/MIC of ~ 50 and ~ 20 induced bacteriostasis in thigh and pulmonary infection models, respectively, at 24 h. The presence of granulocytes augmented its antibacterial effect. Hence, tedizolid is currently not recommended for immunocompromised patients. Clinical investigations with daily doses of 200 mg for 6 days showed non-inferiority to twice-daily dosing of linezolid 600 mg for 10 days in patients with acute bacterial skin and skin-structure infections. In addition to its use in skin and skin-structure infections, the high pulmonary penetration makes it an attractive option for respiratory infections including Mycobacterium tuberculosis. Resistance against tedizolid is rare yet effective antimicrobial surveillance and defining pharmacokinetic/pharmacodynamic targets for resistance suppression are needed to guide dosing strategies to suppress resistance development.
Collapse
Affiliation(s)
- Khalid Iqbal
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Aliki Milioudi
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Sebastian Georg Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany.
| |
Collapse
|
8
|
Maitra A, Solanki P, Sadouki Z, McHugh TD, Kloprogge F. Improving the Drug Development Pipeline for Mycobacteria: Modelling Antibiotic Exposure in the Hollow Fibre Infection Model. Antibiotics (Basel) 2021; 10:antibiotics10121515. [PMID: 34943727 PMCID: PMC8698378 DOI: 10.3390/antibiotics10121515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterial infections are difficult to treat, requiring a combination of drugs and lengthy treatment times, thereby presenting a substantial burden to both the patient and health services worldwide. The limited treatment options available are under threat due to the emergence of antibiotic resistance in the pathogen, hence necessitating the development of new treatment regimens. Drug development processes are lengthy, resource intensive, and high-risk, which have contributed to market failure as demonstrated by pharmaceutical companies limiting their antimicrobial drug discovery programmes. Pre-clinical protocols evaluating treatment regimens that can mimic in vivo PK/PD attributes can underpin the drug development process. The hollow fibre infection model (HFIM) allows for the pathogen to be exposed to a single or a combination of agents at concentrations achieved in vivo-in plasma or at infection sites. Samples taken from the HFIM, depending on the analyses performed, provide information on the rate of bacterial killing and the emergence of resistance. Thereby, the HFIM is an effective means to investigate the efficacy of a drug combination. Although applicable to a wide variety of infections, the complexity of anti-mycobacterial drug discovery makes the information available from the HFIM invaluable as explored in this review.
Collapse
Affiliation(s)
- Arundhati Maitra
- Institute for Global Health, University College London, London WC1N 1EH, UK; (Z.S.); (F.K.)
- Correspondence:
| | - Priya Solanki
- Centre for Clinical Microbiology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (P.S.); (T.D.M.)
| | - Zahra Sadouki
- Institute for Global Health, University College London, London WC1N 1EH, UK; (Z.S.); (F.K.)
- Centre for Clinical Microbiology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (P.S.); (T.D.M.)
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (P.S.); (T.D.M.)
| | - Frank Kloprogge
- Institute for Global Health, University College London, London WC1N 1EH, UK; (Z.S.); (F.K.)
| |
Collapse
|
9
|
Determination of Tedizolid in Bacterial Growth Medium Mueller-Hinton Broth by High-Performance Liquid Chromatography and Its Application to an In Vitro Study in the Hollow-Fiber Infection Model. SEPARATIONS 2021. [DOI: 10.3390/separations8090141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pharmacokinetic/pharmacodynamic (PKPD) studies of anti-infectives are frequently performed in in vitro infection models where accurate quantification of antibiotic concentrations in bacterial growth media is crucial to establish PK/PD relationships. Here, a sensitive and rapid high-performance liquid chromatography (HPLC) method was developed to quantify tedizolid (TDZ) in the bacterial growth medium Mueller-Hinton broth (MHB). Matrix components were separated by direct protein precipitation with methanol (1:1). The chromatographic separation was carried out in a Dionex Ultimate 3000 HPLC system using an Accucore® C-18 RPMS HPLC column (2.6 µm, 100 × 2.1 mm) using isocratic elution with 25% acetonitrile and 75% of 0.1% formic acid. The lower limit of quantification was 0.03 mg/L when measured at 300 nm. Following relevant European Medicine Agency guidelines, the method was successfully validated for linearity, selectivity, recovery, inter- and intra-day precision, and accuracy and stability. When applied to in vitro PKPD studies, the method successfully quantified a range of TDZ concentration (Cmin, 0.09-Cmax, 0.65 mg/L) in MHB. The analyzed concentrations were in line with the planned PK profiles. The application of the developed method to quantify TDZ in MHB in in vitro PKPD studies is warranted.
Collapse
|
10
|
Chemical Classes Presenting Novel Antituberculosis Agents Currently in Different Phases of Drug Development: A 2010-2020 Review. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14050461. [PMID: 34068171 PMCID: PMC8152995 DOI: 10.3390/ph14050461] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a curable airborne disease currently treated using a drug regimen consisting of four drugs. Global TB control has been a persistent challenge for many decades due to the emergence of drug-resistant Mtb strains. The duration and complexity of TB treatment are the main issues leading to treatment failures. Other challenges faced by currently deployed TB regimens include drug-drug interactions, miss-matched pharmacokinetics parameters of drugs in a regimen, and lack of activity against slow replicating sub-population. These challenges underpin the continuous search for novel TB drugs and treatment regimens. This review summarizes new TB drugs/drug candidates under development with emphasis on their chemical classes, biological targets, mode of resistance generation, and pharmacokinetic properties. As effective TB treatment requires a combination of drugs, the issue of drug-drug interaction is, therefore, of great concern; herein, we have compiled drug-drug interaction reports, as well as efficacy reports for drug combinations studies involving antitubercular agents in clinical development.
Collapse
|
11
|
Comparison of a Novel Regimen of Rifapentine, Tedizolid, and Minocycline with Standard Regimens for Treatment of Pulmonary Mycobacterium kansasii. Antimicrob Agents Chemother 2020; 64:AAC.00810-20. [PMID: 32690646 DOI: 10.1128/aac.00810-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
The combination of isoniazid, rifampin, and ethambutol is recommended by the American Thoracic Society (ATS) for treatment of pulmonary Mycobacterium kansasii, while the British Thoracic Society (BTS) recommends clarithromycin, rifampin and ethambutol. Unfortunately, therapy duration for both regimens lasts for years. In this study, we administered tedizolid, minocycline, clarithromycin, and rifapentine as monotherapy as well as novel combinations in the intracellular hollow-fiber model system of M. kansasii (HFS-Mkn) in a 28-day study. The ATS and BTS regimens were used as comparators. Repetitive sampling was used to validate the intended intrapulmonary pharmacokinetics of each drug and to monitor changes in M. kansasii burden. As monotherapy, tedizolid at an observed area under the concentration-time curve from 0 to 24 h (AUC0-24)/MIC of 5.85 and minocycline at an AUC0-24/MIC of 5.77 failed to kill the bacteria below day 0 (stasis), clarithromycin at an AUC0-24/MIC of 2.4 held the bacterial burden at stasis, but rifapentine at an AUC0-24/MIC of 140 killed 2 log10 CFU/ml below stasis. The BTS regimen kill slope was -0.083 ± 0.035 CFU/ml/day, which was significantly superior to the ATS regimen slope of -0.038 ± 0.038 CFU/ml/day. The rifapentine-tedizolid-minocycline combination kill slope was -0.119 ± 0.031 CFU/ml/day, superior to that of the ATS regimen and comparable to that of the BTS regimen. In conclusion, the BTS regimen and the novel rifapentine-tedizolid-minocycline regimen showed better kill of intracellular bacteria in the HFS-Mkn However, the efficacy of the new combination regimen remains to be tested in clinical settings.
Collapse
|
12
|
Deshpande D, Magombedze G, Srivastava S, Bendet P, Lee PS, Cirrincione KN, Martin KR, Dheda K, Gumbo T. Once-a-week tigecycline for the treatment of drug-resistant TB. J Antimicrob Chemother 2020; 74:1607-1617. [PMID: 30820554 DOI: 10.1093/jac/dkz061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND MDR-TB and XDR-TB have poor outcomes. OBJECTIVES To examine the efficacy of tigecycline monotherapy in the hollow fibre system model of TB. METHODS We performed pharmacokinetic/pharmacodynamic studies using tigecycline human-like concentration-time profiles in the hollow fibre system model of TB in five separate experiments using Mycobacterium tuberculosis in log-phase growth or as semi-dormant or intracellular bacilli, as monotherapy. We also compared efficacy with the isoniazid/rifampicin/pyrazinamide combination (standard therapy). We then applied extinction mathematics, morphisms and Latin hypercube sampling to identify duration of therapy with tigecycline monotherapy. RESULTS The median tigecycline MIC for 30 M. tuberculosis clinical and laboratory isolates (67% MDR/XDR) was 2 mg/L. Tigecycline monotherapy was highly effective in killing M. tuberculosis in log-phase-growth and semi-dormant and intracellular M. tuberculosis. Once-a-week dosing had the same efficacy as daily therapy for the same cumulative dose; thus, tigecycline efficacy was linked to the AUC0-24/MIC ratio. Tigecycline replacement by daily minocycline after 4 weeks of therapy was effective in sterilizing bacilli. The AUC0-24/MIC ratio associated with optimal kill was 42.3. Tigecycline monotherapy had a maximum sterilizing effect (day 0 minus day 28) of 3.06 ± 0.20 log10 cfu/mL (r2 = 0.92) compared with 3.92 ± 0.45 log10 cfu/mL (r2 = 0.80) with optimized standard therapy. In our modelling, at a tigecycline monotherapy duration of 12 months, the proportion of patients with XDR-TB who reached bacterial population extinction was 64.51%. CONCLUSIONS Tigecycline could cure patients with XDR-TB or MDR-TB who have failed recommended therapy. Once-a-week tigecycline could also replace second-line injectables in MDR-TB regimens.
Collapse
Affiliation(s)
- Devyani Deshpande
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Gesham Magombedze
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Paula Bendet
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Pooi S Lee
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Kayle N Cirrincione
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Katherine R Martin
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Keertan Dheda
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town, Observatory, South Africa
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA.,Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
13
|
Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus. Appl Microbiol Biotechnol 2020; 104:5633-5662. [PMID: 32372202 DOI: 10.1007/s00253-020-10606-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
The latest WHO report estimates about 1.6 million global deaths annually from TB, which is further exacerbated by drug-resistant (DR) TB and comorbidities with diabetes and HIV. Exiguous dosing, incomplete treatment course, and the ability of the tuberculosis bacilli to tolerate and survive current first-line and second-line anti-TB drugs, in either their latent state or active state, has resulted in an increased prevalence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant TB (TDR-TB). Although a better understanding of the TB microanatomy, genome, transcriptome, proteome, and metabolome, has resulted in the discovery of a few novel promising anti-TB drug targets and diagnostic biomarkers of late, no new anti-TB drug candidates have been approved for routine therapy in over 50 years, with only bedaquiline, delamanid, and pretomanid recently receiving tentative regulatory approval. Considering this, alternative approaches for identifying possible new anti-TB drug candidates, for effectively eradicating both replicating and non-replicating Mycobacterium tuberculosis, are still urgently required. Subsequently, several antibiotic and non-antibiotic drugs with known treatment indications (TB targeted and non-TB targeted) are now being repurposed and/or derivatized as novel antibiotics for possible use in TB therapy. Insights gathered here reveal that more studies focused on drug-drug interactions between licensed and potential lead anti-TB drug candidates need to be prioritized. This write-up encapsulates the most recent findings regarding investigational compounds with promising anti-TB potential and drugs with repurposing potential in TB therapy.
Collapse
|
14
|
The crystal structure of 5-bromo-2-(2-methyl-2 H-tetrazol-5-yl)pyridine, C 7H 6BrN 5. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2019-0732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C7H6BrN5, triclinic, P1̄ (no. 2), a = 8.3319(4) Å, b = 10.0666(5) Å, c = 11.4042(6) Å, α = 107.213(5)°, β = 99.394(4)°, γ = 95.540(4)°, V = 890.71(8) Å3, Z = 4, R
gt(F) = 0.0452, wR
ref(F
2) = 0.0972, T = 293(2) K.
Collapse
|
15
|
Pfaller MA, Sader HS, Rhomberg PR, Flamm RK, Mendes RE. In Vitro Activity of Tedizolid in Comparison with Other Oral and Intravenous Agents Against a Collection of Community-Acquired Methicillin-Resistant Staphylococcus aureus (2014–2015) in the United States. Microb Drug Resist 2019; 25:938-943. [DOI: 10.1089/mdr.2018.0410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|