1
|
Wang S, Zhang X, Wang Q, Wang R. Histone modification in podocyte injury of diabetic nephropathy. J Mol Med (Berl) 2022; 100:1373-1386. [PMID: 36040515 DOI: 10.1007/s00109-022-02247-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Diabetic nephropathy (DN), an important complication of diabetic microvascular disease, is one of the leading causes of end-stage renal disease (ESRD), which brings heavy burdens to the whole society. Podocytes are terminally differentiated glomerular cells, which act as a pivotal component of glomerular filtration barrier. When podocytes are injured, glomerular filtration barrier is damaged, and proteinuria would occur. Dysfunction of podocytes contributes to DN. And degrees of podocyte injury influence prognosis of DN. Growing evidences have shown that epigenetics does a lot in the evolvement of podocyte injury. Epigenetics includes DNA methylation, histone modification, and non-coding RNA. Among them, histone modification plays an indelible role. Histone modification includes histone methylation, histone acetylation, and other modifications such as histone phosphorylation, histone ubiquitination, histone ADP-ribosylation, histone crotonylation, and histone β-hydroxybutyrylation. It can affect chromatin structure and regulate gene transcription to exert its function. This review is to summarize documents about pathogenesis of podocyte injury, most importantly, histone modification of podocyte injury in DN recently to provide new ideas for further molecular research, diagnosis, and treatment.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Xinyu Zhang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China. .,Department of Nephrology, Shandong Provincial Hospital, Shandong First Medical University, No. 324 Jingwu Street, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China. .,Department of Nephrology, Shandong Provincial Hospital, Shandong First Medical University, No. 324 Jingwu Street, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Shi H, Zhao Y, He T, Wen X, Qu G, Li S, Gan W, Zhang A. Rapamycin attenuated podocyte apoptosis via upregulation of nestin in Ang II-induced podocyte injury. Mol Biol Rep 2022; 49:2119-2128. [PMID: 35149934 PMCID: PMC8863685 DOI: 10.1007/s11033-021-07029-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022]
Abstract
Background Angiotensin II (Ang II) contributes to the progression of glomerulosclerosis, mainly by inducing podocyte injury. Convincing evidence indicates that the mTOR inhibitor rapamycin could play a fundamental role in protection against podocyte injury. Nestin, a major cytoskeletal protein, is stably expressed in podocytes and correlates with podocyte damage. The purpose of this study was to investigate the effect of rapamycin on podocyte injury induced by Ang II and to clarify the role and mechanism of nestin in the protective effect of rapamycin of podocyte injury. Methods and results We established an Ang II perfusion animal model, and the effects of rapamycin treatment on podocytes were investigated in vivo. In vitro, podocytes were stimulated with Ang II and rapamycin to observe podocyte injury, and nestin-siRNA was transfected to investigate the underlying mechanisms. We observed that Ang II induced podocyte injury both in vivo and in vitro, whereas rapamycin treatment relieved Ang II-induced podocyte injury. We further found that nestin co-localized with p-mTOR in glomeruli, and the protective effect of rapamycin was reduced by nestin-siRNA in podocytes. Moreover, co-IP indicated the interaction between nestin and p-mTOR, and nestin could affect podocyte injury via the mTOR/P70S6K signaling pathway. Conclusion We demonstrated that rapamycin attenuated podocyte apoptosis via upregulation of nestin expression through the mTOR/P70S6K signaling pathway in an Ang II-induced podocyte injury.
Collapse
Affiliation(s)
- Huimin Shi
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, 262 Zhongshan North Road, Nanjing, 210003, Jiangsu Province, China
| | - Yajie Zhao
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, 262 Zhongshan North Road, Nanjing, 210003, Jiangsu Province, China
| | - Tiantian He
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, 262 Zhongshan North Road, Nanjing, 210003, Jiangsu Province, China
| | - Xianli Wen
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, 262 Zhongshan North Road, Nanjing, 210003, Jiangsu Province, China
| | - Gaoting Qu
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, 262 Zhongshan North Road, Nanjing, 210003, Jiangsu Province, China
| | - Shanwen Li
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, 262 Zhongshan North Road, Nanjing, 210003, Jiangsu Province, China
| | - Weihua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, 262 Zhongshan North Road, Nanjing, 210003, Jiangsu Province, China.
| | - Aiqing Zhang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, 262 Zhongshan North Road, Nanjing, 210003, Jiangsu Province, China.
| |
Collapse
|
3
|
Greiten JK, Kliewe F, Schnarre A, Artelt N, Schröder S, Rogge H, Amann K, Daniel C, Lindenmeyer MT, Cohen CD, Endlich K, Endlich N. The role of filamins in mechanically stressed podocytes. FASEB J 2021; 35:e21560. [PMID: 33860543 DOI: 10.1096/fj.202001179rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/11/2022]
Abstract
Glomerular hypertension induces mechanical load to podocytes, often resulting in podocyte detachment and the development of glomerulosclerosis. Although it is well known that podocytes are mechanosensitive, the mechanosensors and mechanotransducers are still unknown. Since filamin A, an actin-binding protein, is already described to be a mechanosensor and mechanotransducer, we hypothesized that filamins could be important for the outside-in signaling as well as the actin cytoskeleton of podocytes under mechanical stress. In this study, we demonstrate that filamin A is the main isoform of the filamin family that is expressed in cultured podocytes. Together with filamin B, filamin A was significantly up-regulated during mechanical stretch (3 days, 0.5 Hz, and 5% extension). To study the role of filamin A in cultured podocytes under mechanical stress, filamin A was knocked down (Flna KD) by specific siRNA. Additionally, we established a filamin A knockout podocyte cell line (Flna KO) by CRISPR/Cas9. Knockdown and knockout of filamin A influenced the expression of synaptopodin, a podocyte-specific protein, focal adhesions as well as the morphology of the actin cytoskeleton. Moreover, the cell motility of Flna KO podocytes was significantly increased. Since the knockout of filamin A has had no effect on cell adhesion of podocytes during mechanical stress, we simultaneously knocked down the expression of filamin A and B. Thereby, we observed a significant loss of podocytes during mechanical stress indicating a compensatory mechanism. Analyzing hypertensive mice kidneys as well as biopsies of patients suffering from diabetic nephropathy, we found an up-regulation of filamin A in podocytes in contrast to the control. In summary, filamin A and B mediate matrix-actin cytoskeleton interactions which are essential for the adaptation of cultured podocyte to mechanical stress.
Collapse
Affiliation(s)
- Jonas K Greiten
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Annabel Schnarre
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sindy Schröder
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Rogge
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Schäringer K, Maxeiner S, Schalla C, Rütten S, Zenke M, Sechi A. LSP1-myosin1e bimolecular complex regulates focal adhesion dynamics and cell migration. FASEB J 2021; 35:e21268. [PMID: 33470457 DOI: 10.1096/fj.202000740rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
Several cytoskeleton-associated proteins and signaling pathways work in concert to regulate actin cytoskeleton remodeling, cell adhesion, and migration. Although the leukocyte-specific protein 1 (LSP1) has been shown to interact with the actin cytoskeleton, its function in the regulation of actin cytoskeleton dynamics is, as yet, not fully understood. We have recently demonstrated that the bimolecular complex between LSP1 and myosin1e controls actin cytoskeleton remodeling during phagocytosis. In this study, we show that LSP1 downregulation severely impairs cell migration, lamellipodia formation, and focal adhesion dynamics in macrophages. Inhibition of the interaction between LSP1 and myosin1e also impairs these processes resulting in poorly motile cells, which are characterized by few and small lamellipodia. Furthermore, cells in which LSP1-myosin1e interaction is inhibited are typically associated with inefficient focal adhesion turnover. Collectively, our findings show that the LSP1-myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling and focal adhesion dynamics required for cell migration.
Collapse
Affiliation(s)
- Katja Schäringer
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Sebastian Maxeiner
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Carmen Schalla
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Antonio Sechi
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Exploring Key Challenges of Understanding the Pathogenesis of Kidney Disease in Bardet-Biedl Syndrome. Kidney Int Rep 2020; 5:1403-1415. [PMID: 32954066 PMCID: PMC7486190 DOI: 10.1016/j.ekir.2020.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Bardet–Biedl syndrome (BBS) is a rare pleiotropic inherited disorder known as a ciliopathy. Kidney disease is a cardinal clinical feature; however, it is one of the less investigated traits. This study is a comprehensive analysis of the literature aiming to collect available information providing mechanistic insights into the pathogenesis of kidney disease by analyzing clinical and basic science studies focused on this issue. The analysis revealed that the syndrome is either clinically and genetically heterogenous, with 24 genes discovered to date, but with 3 genes (BBS1, BBS2, and BBS10) accounting for almost 50% of diagnoses; genotype–phenotype correlation studies showed that patients with BBS1 mutations have a less severe renal phenotype than the other 2 most common loci; in addition, truncating rather than missense mutations are more likely to cause kidney disease. However, significant intrafamilial clinical variability has been described, with no clear explanation to date. In mice kidneys, Bbs genes have relative low expression levels, in contrast with other common affected organs, like the retina; surprisingly, Bbs1 is the only locus with basal overexpression in the kidney. In vitro studies indicate that signalling pathways involved in embryonic kidney development and repair are affected in the context of BBS depletion; in mice, kidney disease does not have a full penetrance; when present, it resembles human phenotype and shows an age-dependent progression. Data on the exact contribution of local versus systemic consequences of Bbs dysfunction are scanty and further investigations are required to get firm conclusions.
Collapse
|
6
|
Keisuke S, Kohei M, Takuji E, Tomoki M, Yuichi M, Rina O, Tsukasa T, Mitsuru O. Role of cathepsin L in idiopathic nephrotic syndrome in children. Med Hypotheses 2020; 141:109718. [PMID: 32289645 DOI: 10.1016/j.mehy.2020.109718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023]
Abstract
Nephrotic syndrome (NS) is one of the most common glomerular diseases in children. Glomerular podocyte dysfunction can result in proteinuria, the presence of a large amount of protein in the urine. Podocytes are unique epithelial cells that divide into 3 separate structural and functional segments: a cell body, major processes, and foot processes. Since synaptopodin, dynamin, and actin are crucial components of the podocyte cytoskeleton, degradation of these proteins is associated with cytoskeleton instability, resulting in the development of proteinuria. Cathepsin L (CatL), a cysteine proteinase, plays a crucial role in various renal diseases. CatL expression is elevated in rats with puromycin aminonucleoside-induced nephropathy, which is used as a model of minimal change NS. In CatL-deficient mice, which do not develop proteinuria, dynamin is retained through the escape of CatL-mediated decomposition, resulting in no changes in the filtration barrier of podocytes. However, there is limited information on the roles of CatL in NS. Based on these data, CatL might play an important role in the development of proteinuria. Furthermore, identifying the functions of CatL may contribute to a better understanding of the pathogenesis of childhood-onset NS. We hypothesize that high levels of CatL can lead to cytoskeletal instability of podocytes, resulting in proteinuria in childhood-onset NS.
Collapse
Affiliation(s)
- Sugimoto Keisuke
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan.
| | - Miyazaki Kohei
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Enya Takuji
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Miyazawa Tomoki
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Morimoto Yuichi
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Oshima Rina
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Takemura Tsukasa
- Department of Pediatrics, Kushimoto Municipality Hospital, Wakayama, Japan
| | - Okada Mitsuru
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Arif E, Solanki AK, Srivastava P, Rahman B, Fitzgibbon WR, Deng P, Budisavljevic MN, Baicu CF, Zile MR, Megyesi J, Janech MG, Kwon SH, Collier J, Schnellmann RG, Nihalani D. Mitochondrial biogenesis induced by the β2-adrenergic receptor agonist formoterol accelerates podocyte recovery from glomerular injury. Kidney Int 2019; 96:656-673. [PMID: 31262488 PMCID: PMC6708766 DOI: 10.1016/j.kint.2019.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/07/2019] [Accepted: 03/28/2019] [Indexed: 01/14/2023]
Abstract
Podocytes have limited ability to recover from injury. Here, we demonstrate that increased mitochondrial biogenesis, to meet the metabolic and energy demand of a cell, accelerates podocyte recovery from injury. Analysis of events induced during podocyte injury and recovery showed marked upregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a transcriptional co-activator of mitochondrial biogenesis, and key components of the mitochondrial electron transport chain. To evaluate our hypothesis that increasing mitochondrial biogenesis enhanced podocyte recovery from injury, we treated injured podocytes with formoterol, a potent, specific, and long-acting β2-adrenergic receptor agonist that induces mitochondrial biogenesis in vitro and in vivo. Formoterol increased mitochondrial biogenesis and restored mitochondrial morphology and the injury-induced changes to the organization of the actin cytoskeleton in podocytes. Importantly, β2-adrenergic receptors were found to be present on podocyte membranes. Their knockdown attenuated formoterol-induced mitochondrial biogenesis. To determine the potential clinical relevance of these findings, mouse models of acute nephrotoxic serum nephritis and chronic (Adriamycin [doxorubicin]) glomerulopathy were used. Mice were treated with formoterol post-injury when glomerular dysfunction was established. Strikingly, formoterol accelerated the recovery of glomerular function by reducing proteinuria and ameliorating kidney pathology. Furthermore, formoterol treatment reduced cellular apoptosis and increased the expression of the mitochondrial biogenesis marker PGC-1α and multiple electron transport chain proteins. Thus, our results support β2-adrenergic receptors as novel therapeutic targets and formoterol as a therapeutic compound for treating podocytopathies.
Collapse
Affiliation(s)
- Ehtesham Arif
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ashish K Solanki
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Pankaj Srivastava
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bushra Rahman
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Wayne R Fitzgibbon
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Peifeng Deng
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Milos N Budisavljevic
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Catalin F Baicu
- Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Michael R Zile
- Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Judit Megyesi
- John C McClelland VA Hospital, Little Rock, Arkansas, USA
| | | | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Justin Collier
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA; Southern Arizona VA Health Care System, Tucson, Arizona, USA.
| | - Deepak Nihalani
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
8
|
Muraleedharan S, Sam A, Skaer H, Inamdar MS. Networks that link cytoskeletal regulators and diaphragm proteins underpin filtration function in Drosophila nephrocytes. Exp Cell Res 2018; 364:234-242. [PMID: 29458174 PMCID: PMC5883325 DOI: 10.1016/j.yexcr.2018.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
Insect nephrocytes provide a valuable model for kidney disease, as they are structurally and functionally homologous to mammalian kidney podocytes. They possess an exceptional macromolecular assembly, the nephrocyte diaphragm (ND), which serves as a filtration barrier and helps maintain tissue homeostasis by filtering out wastes and toxic products. However, the elements that maintain nephrocyte architecture and the ND are not understood. We show that Drosophila nephrocytes have a unique cytoplasmic cluster of F-actin, which is maintained by the microtubule cytoskeleton and Rho-GTPases. A balance of Rac1 and Cdc42 activity as well as proper microtubule organization and endoplasmic reticulum structure, are required to position the actin cluster. Further, ND proteins Sns and Duf also localize to this cluster and regulate organization of the actin and microtubule cytoskeleton. Perturbation of any of these inter-dependent components impairs nephrocyte ultrafiltration. Thus cytoskeletal components, Rho-GTPases and ND proteins work in concert to maintain the specialized nephrocyte architecture and function. Drosophila nephrocytes have a unique cytoplasmic cluster of F-actin. Microtubules, Rho-GTPases and endoplasmic reticulum position the actin cluster. Nephrocyte diaphragm proteins localize to and regulate actin cluster organization. Perturbation of any of these inter-dependent components impairs ultrafiltration.
Collapse
Affiliation(s)
- Simi Muraleedharan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Aksah Sam
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Helen Skaer
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Maneesha S Inamdar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India; Institute for Stem Cell Biology and Regenerative Medicine, GKVK, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
9
|
Sun Y, Guo C, Ma P, Lai Y, Yang F, Cai J, Cheng Z, Zhang K, Liu Z, Tian Y, Sheng Y, Tian R, Deng Y, Xiao G, Wu C. Kindlin-2 Association with Rho GDP-Dissociation Inhibitor α Suppresses Rac1 Activation and Podocyte Injury. J Am Soc Nephrol 2017; 28:3545-3562. [PMID: 28775002 DOI: 10.1681/asn.2016091021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 06/26/2017] [Indexed: 01/08/2023] Open
Abstract
Alteration of podocyte behavior is critically involved in the development and progression of many forms of human glomerular diseases. The molecular mechanisms that control podocyte behavior, however, are not well understood. Here, we investigated the role of Kindlin-2, a component of cell-matrix adhesions, in podocyte behavior in vivo Ablation of Kindlin-2 in podocytes resulted in alteration of actin cytoskeletal organization, reduction of the levels of slit diaphragm proteins, effacement of podocyte foot processes, and ultimately massive proteinuria and death due to kidney failure. Through proteomic analyses and in vitro coimmunoprecipitation experiments, we identified Rho GDP-dissociation inhibitor α (RhoGDIα) as a Kindlin-2-associated protein. Loss of Kindlin-2 in podocytes significantly reduced the expression of RhoGDIα and resulted in the dissociation of Rac1 from RhoGDIα, leading to Rac1 hyperactivation and increased motility of podocytes. Inhibition of Rac1 activation effectively suppressed podocyte motility and alleviated the podocyte defects and proteinuria induced by the loss of Kindlin-2 in vivo Our results identify a novel Kindlin-2-RhoGDIα-Rac1 signaling axis that is critical for regulation of podocyte structure and function in vivo and provide evidence that it may serve as a useful target for therapeutic control of podocyte injury and associated glomerular diseases.
Collapse
Affiliation(s)
- Ying Sun
- Departments of Biology and .,Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | | | | | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois; and
| | | | | | | | | | | | | | | | - Ruijun Tian
- Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.,Chemistry, and
| | - Yi Deng
- Departments of Biology and.,Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Guozhi Xiao
- Departments of Biology and .,Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois; and
| | - Chuanyue Wu
- Departments of Biology and .,Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Falkenberg CV, Azeloglu EU, Stothers M, Deerinck TJ, Chen Y, He JC, Ellisman MH, Hone JC, Iyengar R, Loew LM. Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability. PLoS Comput Biol 2017; 13:e1005433. [PMID: 28301477 PMCID: PMC5373631 DOI: 10.1371/journal.pcbi.1005433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/30/2017] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
Kidney podocytes' function depends on fingerlike projections (foot processes) that interdigitate with those from neighboring cells to form the glomerular filtration barrier. The integrity of the barrier depends on spatial control of dynamics of actin cytoskeleton in the foot processes. We determined how imbalances in regulation of actin cytoskeletal dynamics could result in pathological morphology. We obtained 3-D electron microscopy images of podocytes and used quantitative features to build dynamical models to investigate how regulation of actin dynamics within foot processes controls local morphology. We find that imbalances in regulation of actin bundling lead to chaotic spatial patterns that could impair the foot process morphology. Simulation results are consistent with experimental observations for cytoskeletal reconfiguration through dysregulated RhoA or Rac1, and they predict compensatory mechanisms for biochemical stability. We conclude that podocyte morphology, optimized for filtration, is intrinsically fragile, whereby local transient biochemical imbalances may lead to permanent morphological changes associated with pathophysiology.
Collapse
Affiliation(s)
- Cibele V Falkenberg
- R. D. Berlin Center for Cell Analysis & Modeling, U. Connecticut School of Medicine, Farmington, CT, United States of America
| | - Evren U Azeloglu
- Department of Pharmacological Sciences, and Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Mark Stothers
- Department of Mechanical Engineering, Columbia University, New York, NY, United States of America
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, UCSD, San Diego, CA, United States of America
| | - Yibang Chen
- Department of Pharmacological Sciences, and Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - John C He
- Department of Pharmacological Sciences, and Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, UCSD, San Diego, CA, United States of America
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, United States of America
| | - Ravi Iyengar
- Department of Pharmacological Sciences, and Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis & Modeling, U. Connecticut School of Medicine, Farmington, CT, United States of America
| |
Collapse
|
11
|
Marusugi K, Nakano K, Sasaki H, Kimura J, Yanobu-Takanashi R, Okamura T, Sasaki N. Functional validation of tensin2 SH2-PTB domain by CRISPR/Cas9-mediated genome editing. J Vet Med Sci 2016; 78:1413-1420. [PMID: 27246398 PMCID: PMC5059368 DOI: 10.1292/jvms.16-0205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Podocytes are terminally differentiated and highly specialized cells in the glomerulus,
and they form a crucial component of the glomerular filtration barrier. The ICGN mouse is
a model of glomerular dysfunction that shows gross morphological changes in the podocyte
foot process, accompanied by proteinuria. Previously, we demonstrated that proteinuria in
ICR-derived glomerulonephritis mouse ICGN mice might be caused by a deletion mutation in
the tensin2 (Tns2) gene (designated Tns2nph).
To test whether this mutation causes the mutant phenotype, we created knockout (KO) mice
carrying a Tns2 protein deletion in the C-terminal Src homology and phosphotyrosine
binding (SH2-PTB) domains (designated Tns2ΔC) via
CRISPR/Cas9-mediated genome editing.
Tns2nph/Tns2ΔC compound
heterozygotes and Tns2ΔC/Tns2ΔC
homozygous KO mice displayed podocyte abnormalities and massive proteinuria similar to
ICGN mice, indicating that these two mutations are allelic. Further, this result suggests
that the SH2-PTB domain of Tns2 is required for podocyte integrity. Tns2
knockdown in a mouse podocyte cell line significantly enhanced actin stress fiber
formation and cell migration. Thus, this study provides evidence that alteration of actin
remodeling resulting from Tns2 deficiency causes morphological changes in podocytes and
subsequent proteinuria.
Collapse
Affiliation(s)
- Kiyoma Marusugi
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Mora-Fernández C, Domínguez-Pimentel V, de Fuentes MM, Górriz JL, Martínez-Castelao A, Navarro-González JF. Diabetic kidney disease: from physiology to therapeutics. J Physiol 2014; 592:3997-4012. [PMID: 24907306 DOI: 10.1113/jphysiol.2014.272328] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diabetic kidney disease (DKD) defines the functional, structural and clinical abnormalities of the kidneys that are caused by diabetes. This complication has become the single most frequent cause of end-stage renal disease. The pathophysiology of DKD comprises the interaction of both genetic and environmental determinants that trigger a complex network of pathophysiological events, which leads to the damage of the glomerular filtration barrier, a highly specialized structure formed by the fenestrated endothelium, the glomerular basement membrane and the epithelial podocytes, that permits a highly selective ultrafiltration of the blood plasma. DKD evolves gradually over years through five progressive stages. Briefly they are: reversible glomerular hyperfiltration, normal glomerular filtration and normoalbuminuria, normal glomerular filtration and microalbuminuria, macroalbuminuria, and renal failure. Approximately 20-40% of diabetic patients develop microalbuminuria within 10-15 years of the diagnosis of diabetes, and about 80-90% of those with microalbuminuria progress to more advanced stages. Thus, after 15-20 years, macroalbuminuria occurs approximately in 20-40% of patients, and around half of them will present renal insufficiency within 5 years. The screening and early diagnosis of DKD is based on the measurement of urinary albumin excretion and the detection of microalbuminuria, the first clinical sign of DKD. The management of DKD is based on the general recommendations in the treatment of patients with diabetes, including optimal glycaemic and blood pressure control, adequate lipid management and abolishing smoking, in addition to the lowering of albuminuria.
Collapse
Affiliation(s)
- Carmen Mora-Fernández
- Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain Sociedad Española de Nefrología & Red de Investigación Renal (RETIC/REDinREN/RD12/0021/0019, ISCIII), Spain
| | | | - Mercedes Muros de Fuentes
- Sociedad Española de Nefrología & Red de Investigación Renal (RETIC/REDinREN/RD12/0021/0019, ISCIII), Spain Clinical Analysis Service, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - José L Górriz
- Sociedad Española de Nefrología & Red de Investigación Renal (RETIC/REDinREN/RD12/0021/0019, ISCIII), Spain University Hospital Dr. Peset, Valencia, Spain
| | - Alberto Martínez-Castelao
- Sociedad Española de Nefrología & Red de Investigación Renal (RETIC/REDinREN/RD12/0021/0019, ISCIII), Spain University Hospital of Bellvitge, Barcelona, Spain
| | - Juan F Navarro-González
- Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain Sociedad Española de Nefrología & Red de Investigación Renal (RETIC/REDinREN/RD12/0021/0019, ISCIII), Spain Nephrology Service, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| |
Collapse
|
13
|
Wasik AA, Koskelainen S, Hyvönen ME, Musante L, Lehtonen E, Koskenniemi K, Tienari J, Vaheri A, Kerjaschki D, Szalay C, Révész C, Varmanen P, Nyman TA, Hamar P, Holthöfer H, Lehtonen S. Ezrin Is Down-Regulated in Diabetic Kidney Glomeruli and Regulates Actin Reorganization and Glucose Uptake via GLUT1 in Cultured Podocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1727-39. [DOI: 10.1016/j.ajpath.2014.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 01/27/2023]
|