1
|
Castration-induced stromal remodeling disrupts the reconstituted prostate epithelial structure. J Transl Med 2020; 100:670-681. [PMID: 31857695 DOI: 10.1038/s41374-019-0352-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023] Open
Abstract
The normal prostate epithelial structure is maintained by homeostatic interactions with smooth muscle cells. However, structural alterations of the stroma are commonly observed in prostatic proliferative diseases, leading to the abnormalities of prostate epithelial structure. A decrease in the androgen level experimentally induces stromal remodeling, i.e., replacement of smooth muscle cells with fibroblasts or myofibroblasts. In this study, we investigated the effects of castration-induced stromal remodeling and subsequent aberrant activation of epithelial-stromal interactions on the reconstituted human prostate-like epithelial structure. We performed in vivo experiments using the human prostate epithelial cell line BPH-1 and fetal rat urogenital sinus mesenchyme to generate heterotypic tissue recombinants that form human prostate-like epithelial structure (i.e., solid- and canalized-epithelial cords). Host mice were castrated at 12 weeks post transplantation (castration) and implanted with a dihydrotestosterone pellet at 14 days post castration (androgen replacement treatment; ART). In the castration group, the percentages of fibrotic area and disrupted prostate epithelial structure without the basement membrane (BM) increased proportionally in a time-dependent manner, but were suppressed by ART. In the castration group, tenascin-C (TNC)-positive fibroblasts were abundant in the stroma surrounding disrupted prostate epithelial structure without the BM. TGF-β1 secretion from BPH-1 cells was increased by co-culturing with human primary cultured prostate fibroblasts. TNC mRNA expression was increased in fibroblasts co-culturing with BPH-1 cells and was suppressed by treatment with a TGF-β RI kinase inhibitor. Moreover, in the castration group, the percentage of p-Smad2-positive cells was significantly higher in the stroma surrounding disrupted prostate epithelial structure without the BM. Our results demonstrate that castration-induced stromal remodeling disrupted the reconstituted human prostate-like epithelial structure and induced the appearance of TNC-positive fibroblasts accompanied by activation of TGF-β signaling. The alteration of prostate stromal structure may be responsible for loss of the BM and epithelial cell polarity.
Collapse
|
2
|
Analysis of Transcriptome, Selected Intracellular Signaling Pathways, Proliferation and Apoptosis of LNCaP Cells Exposed to High Leptin Concentrations. Int J Mol Sci 2019; 20:ijms20215412. [PMID: 31671654 PMCID: PMC6861914 DOI: 10.3390/ijms20215412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/03/2023] Open
Abstract
Leptin, the first discovered adipokine, has been connected to various physiological and pathophysiological processes, including cancerogenesis. Increasing evidence confirms its influence on prostate cancer cells. However, studies on the effects of leptin on the proliferation and apoptosis of the androgen-sensitive LNCaP line of prostate cancer cells brought conflicting results. Therefore, we performed studies on the effects of high LEP concentration (1 × 10−6 M) on gene expression profile, change of selected signaling pathways, proliferation and apoptosis of LNCaP cells. RTCA (real-time cell analyzer) revealed inhibitory effect of LEP on cell proliferation, but lower LEP concentrations (10−8 and 10−10 M) did not affect cell division. Moreover, flow cytometry with a specific antibody for Cleaved PARP-1, an apoptosis marker, confirmed the activation of apoptosis in leptin-exposed LNCaP line of prostate cancer cells. Within 24 h LEP (10−6 M) increases expression of 297 genes and decreases expression of 119 genes. Differentially expressed genes (DEGs) were subjected to functional annotation and clusterization using the DAVID bioinformatics tools. Most ontological groups are associated with proliferation and apoptosis (seven groups), immune response (six) and extracellular matrix (two). These results were confirmed by the Gene Set Enrichment Analysis (GSEA). The leptin’s effect on apoptosis stimulation was also confirmed using Pathview library. These results were also confirmed by qPCR method. The results of Western Blot analysis (exposure to LEP 10 min, 1, 2, 4 and 24 h) suggest (after 24 h) decrease of p38 MAPK, p44-42 mitogen-activated protein kinase and Bcl-2 phosphorylated at threonine 56. Moreover, exposure of LNCaP cells to LEP significantly stimulates the secretion of matrix metallopeptidase 7 (MMP7). Obtained results suggest activation of apoptotic processes in LNCaP cells cultured at high LEP concentration. At the same time, this activation is accompanied by inhibition of proliferation of the tested cells.
Collapse
|
3
|
Zhang BK, Moran AM, Bailey CG, Rasko JEJ, Holst J, Wang Q. EGF-activated PI3K/Akt signalling coordinates leucine uptake by regulating LAT3 expression in prostate cancer. Cell Commun Signal 2019; 17:83. [PMID: 31345230 PMCID: PMC6659227 DOI: 10.1186/s12964-019-0400-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Background Growth factors, such as EGF, activate the PI3K/Akt/mTORC1 signalling pathway, which regulates a distinct program of protein synthesis leading to cell growth. This pathway relies on mTORC1 sensing sufficient levels of intracellular amino acids, such as leucine, which are required for mTORC1 activation. However, it is currently unknown whether there is a direct link between these external growth signals and intracellular amino acid levels. In primary prostate cancer cells, intracellular leucine levels are regulated by L-type amino acid transporter 3 (LAT3/SLC43A1), and we therefore investigated whether LAT3 is regulated by growth factor signalling. Methods To investigate how PI3K/Akt signalling regulates leucine transport, prostate cancer cells were treated with different PI3K/Akt inhibitors, or stable knock down of LAT3 by shRNA, followed by analysis of leucine uptake, western blotting, immunofluorescent staining and proximity ligation assay. Results Inhibition of PI3K/Akt signalling significantly reduced leucine transport in LNCaP and PC-3 human prostate cancer cell lines, while growth factor addition significantly increased leucine uptake. These effects appeared to be mediated by LAT3 transport, as LAT3 knockdown blocked leucine uptake, and was not rescued by growth factor activation or further inhibited by signalling pathway inhibition. We further demonstrated that EGF significantly increased LAT3 protein levels when Akt was phosphorylated, and that Akt and LAT3 co-localised on the plasma membrane in EGF-activated LNCaP cells. These effects were likely due to stabilisation of LAT3 protein levels on the plasma membrane, with EGF treatment preventing ubiquitin-mediated LAT3 degradation. Conclusion Growth factor-activated PI3K/Akt signalling pathway regulates leucine transport through LAT3 in prostate cancer cell lines. These data support a direct link between growth factor and amino acid uptake, providing a mechanism by which the cells rapidly coordinate amino acid uptake for cell growth. Electronic supplementary material The online version of this article (10.1186/s12964-019-0400-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Blake K Zhang
- Centenary Institute, University of Sydney, Camperdown, Australia.,Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Anne M Moran
- Centenary Institute, University of Sydney, Camperdown, Australia.,Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Charles G Bailey
- Sydney Medical School, University of Sydney, Camperdown, Australia.,Gene & Stem Cell Therapy Program Centenary Institute, University of Sydney, Camperdown, Australia
| | - John E J Rasko
- Sydney Medical School, University of Sydney, Camperdown, Australia.,Gene & Stem Cell Therapy Program Centenary Institute, University of Sydney, Camperdown, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Jeff Holst
- Translational Cancer Metabolism Laboratory, Lowy Cancer Research Centre, School of Medical Sciences and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia. .,Origins of Cancer Program Centenary Institute, University of Sydney, Camperdown, Australia.
| | - Qian Wang
- Sydney Medical School, University of Sydney, Camperdown, Australia. .,Translational Cancer Metabolism Laboratory, Lowy Cancer Research Centre, School of Medical Sciences and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia.
| |
Collapse
|
4
|
Kuhns KJ, Zhang G, Wang Z, Liu W. ARD1/NAA10 acetylation in prostate cancer. Exp Mol Med 2018; 50:1-8. [PMID: 30054487 PMCID: PMC6063848 DOI: 10.1038/s12276-018-0107-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 01/26/2023] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men. Androgen receptor (AR) signaling pathway plays a crucial role in prostate development and homeostasis. Dysregulation of this pathway activates AR leading to PCa pathogenesis and progression. AR binds testosterone and other male hormones, which then undergoes post-translational modification for AR nuclear translocation and transcriptional activation. AR activation by post-translational modification is thus imperative for PCa cell growth and survival. Identification and understanding of the pathological and mechanistic roles of AR modifications may increase our understanding of AR activation in PCa and provide new therapeutic options. Recently, AR acetylation has been described as an important step for AR activation. Upregulation of several acetyltransferases has been reported to be associated with PCa progression. Herein, we provide a general understanding of AR acetylation, with a special emphasis on ARD1, and potential therapies that may be exploited against the ARD1–AR axis for PCa treatment. Blocking the addition of an acetyl group to androgen receptors by Arrest-defect-1 protein (ARD1) might be an effective strategy for halting prostate cancer progression. High levels of ARD1 are found in many types of cancer and previous studies have shown that it contributes to prostate cancer (PCa) cell proliferation and survival by stimulating androgen receptor activity. Wanguo Liu and colleagues at Louisiana State University Health Sciences Center, New Orleans, USA, review current knowledge of the regulation and effects of ARD1 on tumor formation. The ARD1-mediated post-translational modification of androgen receptors causes them to move from the cytoplasm to the nucleus where they activate the expression of genes involved in tumor growth. Compounds that inhibit this modification could offer a new treatment option for patients with prostate cancer.
Collapse
Affiliation(s)
- Katherine J Kuhns
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Guanyi Zhang
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Zehua Wang
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Wanguo Liu
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Di Lorenzo G, Autorino R, De Laurentiis M, Cindolo L, D'Armiento M, Bianco AR, De Placido S. Her-2/Neu Receptor in Prostate Cancer Development and Progression to Androgen Independence. TUMORI JOURNAL 2018; 90:163-70. [PMID: 15237576 DOI: 10.1177/030089160409000201] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Development of prostate cancer and progression to androgen-independent disease is correlated with increased expression of growth factors and receptors capable of establishing autocrine and/or paracrine growth-stimulatory loops. A thorough review was made of the current literature and recent abstract presentations at scientific meetings focusing on the role of the HER-2/neu (c-erbB2) receptor in prostate cancer and the potential clinical usefulness of its specific inhibitors. In the past 10 years, conflicting results on HER-2/neu expression in prostate cancer have been reported. More recently, four studies have shown experimental evidence of HER-2/neu in the development of prostate cancer and, more specifically, in the progression to a hormone-refractory clinical behavior. Furthermore, it has been proposed that HER-2 family and androgen receptors function synergistically in the absence of androgen, which suggests a crosstalk between the HER-2/neu and androgen receptor pathways. Finally, clinical trials are in progress in prostate cancer patients to test novel agents that selectively interfere with HER-2/neu activity.
Collapse
Affiliation(s)
- Giuseppe Di Lorenzo
- Dipartimento di Endocrinologia e Oncologia Molecolare e Clinica, Università degli Studi Federico II, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
6
|
Ishii K, Takahashi S, Sugimura Y, Watanabe M. Role of Stromal Paracrine Signals in Proliferative Diseases of the Aging Human Prostate. J Clin Med 2018; 7:jcm7040068. [PMID: 29614830 PMCID: PMC5920442 DOI: 10.3390/jcm7040068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
Androgens are essential for the development, differentiation, growth, and function of the prostate through epithelial–stromal interactions. However, androgen concentrations in the hypertrophic human prostate decrease significantly with age, suggesting an inverse correlation between androgen levels and proliferative diseases of the aging prostate. In elderly males, age- and/or androgen-related stromal remodeling is spontaneously induced, i.e., increased fibroblast and myofibroblast numbers, but decreased smooth muscle cell numbers in the prostatic stroma. These fibroblasts produce not only growth factors, cytokines, and extracellular matrix proteins, but also microRNAs as stromal paracrine signals that stimulate prostate epithelial cell proliferation. Surgical or chemical castration is the standard systemic therapy for patients with advanced prostate cancer. Androgen deprivation therapy induces temporary remission, but the majority of patients eventually progress to castration-resistant prostate cancer, which is associated with a high mortality rate. Androgen deprivation therapy-induced stromal remodeling may be involved in the development and progression of castration-resistant prostate cancer. In the tumor microenvironment, activated fibroblasts stimulating prostate cancer cell proliferation are called carcinoma-associated fibroblasts. In this review, we summarize the role of stromal paracrine signals in proliferative diseases of the aging human prostate and discuss the potential clinical applications of carcinoma-associated fibroblast-derived exosomal microRNAs as promising biomarkers.
Collapse
Affiliation(s)
- Kenichiro Ishii
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Sanai Takahashi
- Laboratory for Medical Engineering, Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.
| | - Yoshiki Sugimura
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
- Laboratory for Medical Engineering, Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.
| |
Collapse
|
7
|
Abstract
Most men with metastatic prostate cancer who are treated with androgen deprivation therapy will eventually develop castration-resistant disease. In this review, we examine the molecular mechanisms that constitute castration resistance and how these processes may be exploited using testosterone-based therapies. We detail how the utilization of superphysiologic doses of testosterone at regular intervals, followed by a rapid clearance of testosterone through continued chemical castration, also known as bipolar androgen therapy, offers an especially promising therapeutic approach. We investigate the historical basis for this modality, detail recent early-phase clinical trials that have demonstrated the feasibility and efficacy of this treatment, and describe an ongoing clinical trial comparing this modality to a currently accepted standard of care, enzalutamide, for castration-resistant prostate cancer. Finally, we explore how this treatment modality will continue to be refined in the future.
Collapse
|
8
|
Variable expression of molecular markers in juvenile nasopharyngeal angiofibroma. The Journal of Laryngology & Otology 2017; 131:752-759. [DOI: 10.1017/s0022215117001372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBackground:Molecular categorisation may explain the wide variation in the clinical characteristics of juvenile nasopharyngeal angiofibroma.Methods:Variations in molecular markers in juvenile nasopharyngeal angiofibroma in an Indian population were investigated and compared with global reports.Results:Variable molecular marker expression was demonstrated at the regional and global levels. A wide variation in molecular characteristics is evident. Molecular data have been reported for only 11 countries, indicating a clear geographical bias. Only 58 markers have been studied, and most are yet to be validated.Conclusion:Research into the molecular epidemiology of juvenile nasopharyngeal angiofibroma is still in its infancy. Although the molecular variation is not well understood, data obtained so far have prompted important research questions. Hence, multicentre collaborative molecular studies are needed to establish the aetiopathogenesis and establish molecular surrogates for clinical characteristics.
Collapse
|
9
|
Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr 2017. [DOI: 10.1080/10408398.2016.1231168 pmid: 27645804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Ren-You Gan
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhong-Quan Sui
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr 2017; 58:924-941. [PMID: 27645804 DOI: 10.1080/10408398.2016.1231168] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.
Collapse
Affiliation(s)
- Ren-You Gan
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China.,b School of Biological Sciences , The University of Hong Kong , Hong Kong
| | - Hua-Bin Li
- c Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| | - Zhong-Quan Sui
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China
| | - Harold Corke
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China.,b School of Biological Sciences , The University of Hong Kong , Hong Kong
| |
Collapse
|
11
|
Pandey P, Mishra A, Tripathi AM, Verma V, Trivedi R, Singh HP, Kumar S, Patel B, Singh V, Pandey S, Pandey A, Mishra SC. Current molecular profile of juvenile nasopharyngeal angiofibroma: First comprehensive study from India. Laryngoscope 2016; 127:E100-E106. [DOI: 10.1002/lary.26250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Praveen Pandey
- Biochemistry and Endocrinology Divisions; Central Drug Research Institute; Lucknow India
| | - Anupam Mishra
- Department of Otorhinolaryngology; King George Medical University; Lucknow India
| | - Ashoak Mani Tripathi
- Department of Otorhinolaryngology; King George Medical University; Lucknow India
| | - Veerendra Verma
- Department of Otorhinolaryngology; King George Medical University; Lucknow India
| | - Ritu Trivedi
- Biochemistry and Endocrinology Divisions; Central Drug Research Institute; Lucknow India
| | | | - Sunil Kumar
- Department of Otorhinolaryngology; King George Medical University; Lucknow India
| | - Brijesh Patel
- Department of Otorhinolaryngology; King George Medical University; Lucknow India
| | - Vinay Singh
- Department of Otorhinolaryngology; King George Medical University; Lucknow India
| | - Shivani Pandey
- Department of Biochemistry; King George Medical University; Lucknow India
| | - Amita Pandey
- Department of Clinical Genetics; King George Medical University; Lucknow India
| | | |
Collapse
|
12
|
Datta D, Aftabuddin M, Gupta DK, Raha S, Sen P. Human Prostate Cancer Hallmarks Map. Sci Rep 2016; 6:30691. [PMID: 27476486 PMCID: PMC4967902 DOI: 10.1038/srep30691] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
Human prostate cancer is a complex heterogeneous disease that mainly affects elder male population of the western world with a high rate of mortality. Acquisitions of diverse sets of hallmark capabilities along with an aberrant functioning of androgen receptor signaling are the central driving forces behind prostatic tumorigenesis and its transition into metastatic castration resistant disease. These hallmark capabilities arise due to an intense orchestration of several crucial factors, including deregulation of vital cell physiological processes, inactivation of tumor suppressive activity and disruption of prostate gland specific cellular homeostasis. The molecular complexity and redundancy of oncoproteins signaling in prostate cancer demands for concurrent inhibition of multiple hallmark associated pathways. By an extensive manual curation of the published biomedical literature, we have developed Human Prostate Cancer Hallmarks Map (HPCHM), an onco-functional atlas of human prostate cancer associated signaling and events. It explores molecular architecture of prostate cancer signaling at various levels, namely key protein components, molecular connectivity map, oncogenic signaling pathway map, pathway based functional connectivity map etc. Here, we briefly represent the systems level understanding of the molecular mechanisms associated with prostate tumorigenesis by considering each and individual molecular and cell biological events of this disease process.
Collapse
Affiliation(s)
- Dipamoy Datta
- Department of Biotechnology, Siksha Bhavana, Visva-Bharati, Santiniketan 731235, India
| | - Md Aftabuddin
- Maulana Abul Kalam Azad University of Technology, West Bengal, Salt Lake, Sector-I, Kolkata 700064, India
| | - Dinesh Kumar Gupta
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Sanghamitra Raha
- Department of Biotechnology, Siksha Bhavana, Visva-Bharati, Santiniketan 731235, India
| | - Prosenjit Sen
- Biological Chemistry Division, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
13
|
Shukla GC, Plaga AR, Shankar E, Gupta S. Androgen receptor-related diseases: what do we know? Andrology 2016; 4:366-81. [PMID: 26991422 DOI: 10.1111/andr.12167] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 01/09/2023]
Abstract
The androgen receptor (AR) and the androgen-AR signaling pathway play a significant role in male sexual differentiation and the development and function of male reproductive and non-reproductive organs. Because of AR's widely varied and important roles, its abnormalities have been identified in various diseases such as androgen insensitivity syndrome, spinal bulbar muscular atrophy, benign prostatic hyperplasia, and prostate cancer. This review provides an overview of the function of androgens and androgen-AR mediated diseases. In addition, the diseases delineated above are discussed with respect to their association with mutations and other post-transcriptional modifications in the AR. Finally, we present an introduction to the potential therapeutic application of most recent pharmaceuticals including miRNAs in prostate cancer that specifically target the transactivation function of the AR at post-transcriptional stages.
Collapse
Affiliation(s)
- G C Shukla
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.,Department of Biological Sciences, Cleveland State University, Cleveland, OH, USA
| | - A R Plaga
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.,Department of Biological Sciences, Cleveland State University, Cleveland, OH, USA
| | - E Shankar
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, OH, USA
| | - S Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, OH, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, USA.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
14
|
Breast Cancer-Derived Extracellular Vesicles: Characterization and Contribution to the Metastatic Phenotype. BIOMED RESEARCH INTERNATIONAL 2015; 2015:634865. [PMID: 26601108 PMCID: PMC4639645 DOI: 10.1155/2015/634865] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022]
Abstract
The study of extracellular vesicles (EVs) in cancer progression is a complex and rapidly evolving field. Whole categories of cellular interactions in cancer which were originally presumed to be due solely to soluble secreted molecules have now evolved to include membrane-enclosed extracellular vesicles (EVs), which include both exosomes and shed microvesicles (MVs), and can contain many of the same molecules as those secreted in soluble form but many different molecules as well. EVs released by cancer cells can transfer mRNA, miRNA, and proteins to different recipient cells within the tumor microenvironment, in both an autocrine and paracrine manner, causing a significant impact on signaling pathways, mRNA transcription, and protein expression. The transfer of EVs to target cells, in turn, supports cancer growth, immunosuppression, and metastasis formation. This review focuses exclusively on breast cancer EVs with an emphasis on breast cancer-derived exosomes, keeping in mind that breast cancer-derived EVs share some common physical properties with EVs of other cancers.
Collapse
|
15
|
DAI XINGLIANG, CHEN HUA, CHEN YANMING, WU JINDING, WANG HAIYANG, SHI JIA, FEI XIFENG, WANG ZHIMIN, WANG AIDONG, DONG JUN, LAN QING, HUANG QIANG. Malignant transformation of host stromal fibroblasts derived from the bone marrow traced in a dual-color fluorescence xenograft tumor model. Oncol Rep 2015; 34:2997-3006. [DOI: 10.3892/or.2015.4281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 11/06/2022] Open
|
16
|
Multi-Leu PACE4 Inhibitor Retention within Cells Is PACE4 Dependent and a Prerequisite for Antiproliferative Activity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:824014. [PMID: 26114115 PMCID: PMC4465654 DOI: 10.1155/2015/824014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023]
Abstract
The overexpression as well as the critical implication of the proprotein convertase PACE4 in prostate cancer progression has been previously reported and supported the development of peptide inhibitors. The multi-Leu peptide, a PACE4-specific inhibitor, was further generated and its capability to be uptaken by tumor xenograft was demonstrated with regard to its PACE4 expression status. To investigate whether the uptake of this inhibitor was directly dependent of PACE4 levels, uptake and efflux from cancer cells were evaluated and correlations were established with PACE4 contents on both wild type and PACE4-knockdown cell lines. PACE4-knockdown associated growth deficiencies were established on the knockdown HepG2, Huh7, and HT1080 cells as well as the antiproliferative effects of the multi-Leu peptide supporting the growth capabilities of PACE4 in cancer cells.
Collapse
|
17
|
Effects of maternal malnutrition during lactation on the prostate of rat offspring at puberty. ACTA ACUST UNITED AC 2014. [DOI: 10.1097/01.ehx.0000455270.86179.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Masubuchi T, Tada Y, Maruya SI, Osamura Y, Kamata SE, Miura K, Fushimi C, Takahashi H, Kawakita D, Kishimoto S, Nagao T. Clinicopathological significance of androgen receptor, HER2, Ki-67 and EGFR expressions in salivary duct carcinoma. Int J Clin Oncol 2014; 20:35-44. [PMID: 24553861 DOI: 10.1007/s10147-014-0674-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Salivary duct carcinoma (SDC) is a highly aggressive disease which often metastasizes to distant sites, and there is no established standard therapy for this systemic disease. Given that SDC is biologically similar to breast and prostate cancer, anti-androgenic receptor (AR) and anti-human epidermal growth factor receptor 2 (HER2) therapies have the potential to exert effects, not only on patients with breast and prostate cancer but also on those with SDC. METHODS The expression levels of HER2, epidermal growth factor receptor (EGFR), Ki-67, and AR were assessed in 32 patients with SDC, and their correlations with overall survival (OS) and disease-free survival (DFS) were analyzed retrospectively. SDC was classified into five subtypes using a method similar to that used for breast cancer. RESULTS Anti-AR, HER2, and EGFR were positive in 23 (71.9 %), 14 (43.8 %), and 26 (81.3 %) cases, respectively. One or more of these 3 factors were positive in 30 (93.8 %) cases. The Ki-67 labeling index was greater than 15 % in all cases. While molecular status did not correlate with OS, EGFR and AR positivity were significantly associated with DFS in univariate analysis. Multivariate analysis revealed that EGFR was the only independent predictor of DFS. CONCLUSIONS The statuses of some molecules are useful to predict DFS in patients with SDC. Ki-67 overexpression suggests that cytotoxic agents are effective for SDC. Since the majority of SDCs express AR, HER2, and/or EGFR, assessing and targeting these molecules are promising strategies to improve the prognosis of unresectable, metastatic or recurrent SDC, and a classification system according to the molecular expression status may be useful to select appropriate therapy.
Collapse
Affiliation(s)
- Tatsuo Masubuchi
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8239, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
de Oliveira Barros EG, Palumbo A, Mello PLP, de Mattos RM, da Silva JH, Pontes B, Viana NB, do Amaral RF, Lima FRS, da Costa NM, Palmero CY, Miranda-Alves L, Takiya CM, Nasciutti LE. The reciprocal interactions between astrocytes and prostate cancer cells represent an early event associated with brain metastasis. Clin Exp Metastasis 2014; 31:461-74. [PMID: 24488147 DOI: 10.1007/s10585-014-9640-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 01/21/2014] [Indexed: 01/17/2023]
Abstract
Tumor establishment, growth, and survival are supported by interactions with microenvironment components. Here, we investigated whether the interactions between prostate cancer cells and cortical astrocytes are associated to a potential role for astrocytes in tumor establishment. We demonstrate that astrocytes interact in vitro with prostatic cancers cells derived from different metastatic sites. Astrocytes and their secreted extracellular matrix, stimulate DU145 cell (a brain-derived prostate tumor cell line) proliferation while inhibiting cell death and modulating the expression of several genes related to prostate cancer progression, suggesting the activation of EMT process in these cells. In contrast, DU145 cells and their conditioned medium inhibited cell proliferation and induced cell death of astrocytes. On the other hand, the astrocytes were unable to significantly induce an increment of LNCaP cell (a lymph node-derived prostate tumor cell line) proliferative activity. In addition, LNCaP cells were also unable to induce cell death of astrocytes. Thus, we believe that DU145 cells, but not LNCaP cells, present an even more aggressive behavior when interacting with astrocytes. These results provide an important contribution to the elucidation of the cellular mechanisms involved in the brain microenvironment colonization.
Collapse
Affiliation(s)
- Eliane Gouvêa de Oliveira Barros
- Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Palumbo
- Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Lucas Prado Mello
- Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rômulo Medina de Mattos
- Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julianna Henriques da Silva
- Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Pontes
- Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,LPO/COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathan Bessa Viana
- LPO/COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rackele Ferreira do Amaral
- Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Regina Souza Lima
- Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia Meireles da Costa
- Programa de Carcinogênese Molecular, Centro de Pesquisas (CPQ), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Celia Yelimar Palmero
- Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eurico Nasciutti
- Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Jiang J, Cui W, Vongsangnak W, Hu G, Shen B. Post genome-wide association studies functional characterization of prostate cancer risk loci. BMC Genomics 2013; 14 Suppl 8:S9. [PMID: 24564736 PMCID: PMC4042239 DOI: 10.1186/1471-2164-14-s8-s9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Over the last decade, genome-wide association studies (GWAS) have discovered many risk associated single nucleotide polymorphisms (SNPs) of prostate cancer (PCa). However, the majority of the associated PCa SNPs, including those in linkage disequilibrium (LD) blocks, are generally not located in protein coding regions. The systematical investigation of the functional roles of these SNPs, especially the non-coding SNPs, becomes very necessary and helpful to the understanding of the molecular mechanism of PCa. Results In this work, we proposed a comprehensive framework at network level to integrate the SNP annotation, target gene assignment, gene ontology (GO) classification, pathway enrichment analysis and regulatory network reconstruction to illustrate the molecular functions of PCa associated SNPs. By LD expansion, we first identified 1828 LD SNPs using 49 reported GWAS SNPs as a start. We carefully annotated these 1828 LD SNPs via either UCSC known genes, UCSC regulation elements, or expression Quantitative Trait Loci (eQTL) data. As a result, we found 1154 SNPs were functionally annotated and obtained 205 unique PCa genes for further enrichment analysis. The enriched GO biological processes and pathways were found mainly related to regulation of cell death, apoptosis, cell proliferation, and metabolic process, which have been proved essential to cancer development. We constructed PCa genes specific transcription regulatory networks, finding several important genetic regulators for PCa, such as IGF-1/IGF-2 receptors, SP1, CREB1, and androgen receptor (AR). Conclusions A comprehensive framework was proposed for integrative and systematic analysis of PCa SNPs, the analysis can provide essential information for the understanding of the regulatory function of GWAS SNPs in PCa, and will facilitate the discovery of novel candidate biomarkers for diagnosis and prognosis of PCa.
Collapse
|
21
|
Dushyanthen S, Cossigny DAF, Quan GMY. The osteoblastic and osteoclastic interactions in spinal metastases secondary to prostate cancer. CANCER GROWTH AND METASTASIS 2013; 6:61-80. [PMID: 24665208 PMCID: PMC3941153 DOI: 10.4137/cgm.s12769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PC) is one of the most common cancers arising in men and has a high propensity for bone metastasis, particularly to the spine. At this stage, it often causes severe morbidity due to pathological fracture and/or metastatic epidural spinal cord compression which, if untreated, inevitably leads to intractable pain, neurological deficit, and paralysis. Unfortunately, the underlying molecular mechanisms driving growth of secondary PC in the bony vertebral column remain largely unknown. Further investigation is warranted in order to identify therapeutic targets in the future. This review summarizes the current understanding of PC bone metastasis in the spine, highlighting interactions between key tumor and bone-derived factors which influence tumor progression, especially the functional roles of osteoblasts and osteoclasts in the bone microenvironment through their interactions with metastatic PC cells and the critical pathway RANK/RANKL/OPG in bone destruction.
Collapse
Affiliation(s)
- Sathana Dushyanthen
- Spinal Biology Research Laboratory, Department of Spinal Surgery, University of Melbourne Department of Surgery, Austin Health, Heidelberg Victoria, Australia
| | - Davina A F Cossigny
- Spinal Biology Research Laboratory, Department of Spinal Surgery, University of Melbourne Department of Surgery, Austin Health, Heidelberg Victoria, Australia
| | - Gerald M Y Quan
- Spinal Biology Research Laboratory, Department of Spinal Surgery, University of Melbourne Department of Surgery, Austin Health, Heidelberg Victoria, Australia
| |
Collapse
|
22
|
Sung CH, Im HJ, Park N, Kwon Y, Shin S, Ye DJ, Cho NH, Park YS, Choi HK, Kim D, Chun YJ. Induction of steroid sulfatase expression in PC-3 human prostate cancer cells by insulin-like growth factor II. Toxicol Lett 2013; 223:109-15. [PMID: 24055520 DOI: 10.1016/j.toxlet.2013.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 11/17/2022]
Abstract
Human steroid sulfatase (STS) plays an important role in regulating the formation of biologically active estrogens and may be a promising target for treating estrogen-mediated carcinogenesis. The molecular mechanism of STS gene expression, however, is still not clear. Growth factors are known to increase STS activity but the changes in STS expression have not been completely understood. To determine whether insulin-like growth factor (IGF)-II can induce STS gene expression, the effects of IGF-II on STS expression were studied in PC-3 human prostate cancer cells. RT-PCR and Western blot analysis showed that IGF-II treatment significantly increased the expression of STS mRNA and protein in concentration- and time-dependent manners. To understand the signaling pathway by which IGF-II induces STS gene expression, the effects of specific PI3-kinase/Akt and NF-κB inhibitors were determined. When the cells were treated with IGF-II and PI3-kinase/Akt inhibitors, such as LY294002, wortmannin, or Akt inhibitor IV, STS expression induced by IGF-II was significantly blocked. Moreover, we found that NF-κB inhibitors, such as MG-132, bortezomib, Bay 11-7082 or Nemo binding domain (NBD) binding peptide, also strongly prevented IGF-II from inducing STS gene expression. We assessed whether IGF-II activates STS promoter activity using transient transfection with a luciferase reporter. IGF-II significantly stimulated STS reporter activity. Furthermore, IGF-II induced expression of 17β-hydroxysteroid dehydrogenase (HSD) 1 and 3, whereas it reduced estrone sulfotransferase (EST) gene expression, causing enhanced estrone and β-estradiol production. Taken together, these results strongly suggest that IGF-II induces STS expression via a PI3-kinase/Akt-NF-κB signaling pathway in PC-3 cells and may induce estrogen production and estrogen-mediated carcinogenesis.
Collapse
Affiliation(s)
- Chul-Hoon Sung
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Role of proprotein convertases in prostate cancer progression. Neoplasia 2013; 14:1032-42. [PMID: 23226097 DOI: 10.1593/neo.121368] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/24/2012] [Accepted: 09/27/2012] [Indexed: 12/22/2022] Open
Abstract
Better understanding of the distinct and redundant functions of the proprotein convertase (PC) enzyme family within pathophysiological states has a great importance for potential therapeutic strategies. In this study, we investigated the functional redundancy of PCs in prostate cancer in the commonly used androgen-sensitive LNCaP and the androgen-independent DU145 human cell lines. Using a lentiviral-based shRNA delivery system, we examined in vitro and in vivo cell proliferation characteristics of knockdown cell lines for the endogenous PCs furin, PACE4, and PC7 in both cell lines. Of the three PCs, only PACE4 was essential to maintain a high-proliferative status, as determined in vitro using XTT proliferation assays and in vivo using tumor xenografts in nude mice. Furin knockdowns in both cell lines had no effects on cell proliferation or tumor xenograft growth. Paradoxically, PC7 knockdowns reduced in vitro cellular proliferation but had no effect in vivo. Because PCs act within secretion pathways, we showed that conditioned media derived from PACE4 knockdown cells had very poor cell growth-stimulating effects in vitro. Immunohistochemistry of PACE4 knockdown tumors revealed reduced Ki67 and higher p27(KIP) levels (proliferation and cell cycle arrest markers, respectively). Interestingly, we determined that the epidermal growth factor receptor signaling pathway was activated in PC7 knockdown tumors only, providing some explanations of the paradoxical effects of PC7 silencing in prostate cancer cell lines. We conclude that PACE4 has a distinct role in maintaining proliferation and tumor progression in prostate cancer and this positions PACE4 as a relevant therapeutic target for this disease.
Collapse
|
24
|
Tan IDA, Ricciardelli C, Russell DL. The metalloproteinase ADAMTS1: a comprehensive review of its role in tumorigenic and metastatic pathways. Int J Cancer 2013; 133:2263-76. [PMID: 23444028 DOI: 10.1002/ijc.28127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/14/2013] [Indexed: 01/07/2023]
Abstract
As it was first characterized in 1997, the ADAMTS (A Disintegrin and Metalloprotease with ThromboSpondin motifs) metalloprotease family has been associated with many physiological and pathological conditions. Of the 19 proteases belonging to this family, considerable attention has been devoted to the role of its first member ADAMTS1 in cancer. Elevated ADAMTS1 promotes pro-tumorigenic changes such as increased tumor cell proliferation, inhibited apoptosis and altered vascularization. Importantly, it facilitates significant peritumoral remodeling of the extracellular matrix environment to promote tumor progression and metastasis. However, discrepancy exists, as several studies also depict ADAMTS1 as a tumor suppressor. This article reviews the current understanding of ADAMTS1 regulation and the consequence of its dysregulation in primary cancer and ADAMTS1-mediated pathways of cancer progression and metastasis.
Collapse
Affiliation(s)
- Izza de Arao Tan
- Robinson Institute, School of Paediatrics and Reproductive Health, Department of Obstetrics and Gynaecology, Univeristy of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
25
|
Nadiminty N, Tummala R, Zhu Y, Gao AC. NF-kappaB2/p52 in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
26
|
Russo G, Mischi M, Scheepens W, De la Rosette JJ, Wijkstra H. Angiogenesis in prostate cancer: onset, progression and imaging. BJU Int 2012; 110:E794-808. [DOI: 10.1111/j.1464-410x.2012.11444.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Jain G, Cronauer MV, Schrader M, Möller P, Marienfeld RB. NF-κB signaling in prostate cancer: a promising therapeutic target? World J Urol 2011; 30:303-10. [PMID: 22085980 DOI: 10.1007/s00345-011-0792-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/19/2011] [Indexed: 01/31/2023] Open
Abstract
Prostate carcinoma (PCa) displays a wide variety of genetic alterations, versatile expression profiles as well as cell surface markers. Despite this heterogeneity, a common treatment for advanced PCa is androgen deprivation therapy (ADT). ADT targets the androgen receptor-a member of the nuclear receptor superfamily-which is required for development and function of the prostate and critical for PCa growth and survival. After an initial regression of the tumor during ADT, a large fraction of tumors progress to so-called castration-resistant prostate carcinoma (CRPca) which is highly resistant toward chemotherapy. The ensuing high mortality rates illustrate the importance of novel therapeutic targets for CRPCa. The transcription factor NF-κB was recently proposed as such a potential target for therapeutic intervention in CRPCa. Although NF-κB is essential for the regulation of innate and adaptive immunity recent data suggest a role of NF-κB in cancer initiation and progression. However, the exact function of NF-κB signaling in PCa is still a matter of debate. Here, we review known roles of NF-κB signaling in PCa and emphasize the crosstalk of NF-κB and androgen receptor signaling. Finally, we discuss potential therapeutic relevance of blocking NF-κB in PCa.
Collapse
Affiliation(s)
- Garima Jain
- Institute of Pathology, University of Ulm, Albert-Einstein-Allee 23, 89070, Ulm, Germany
| | | | | | | | | |
Collapse
|
28
|
Hamma-Kourbali Y, Bermek O, Bernard-Pierrot I, Karaky R, Martel-Renoir D, Frechault S, Courty J, Delbé J. The synthetic peptide P111-136 derived from the C-terminal domain of heparin affin regulatory peptide inhibits tumour growth of prostate cancer PC-3 cells. BMC Cancer 2011; 11:212. [PMID: 21624116 PMCID: PMC3118947 DOI: 10.1186/1471-2407-11-212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/30/2011] [Indexed: 01/19/2023] Open
Abstract
Background Heparin affin regulatory peptide (HARP), also called pleiotrophin, is a heparin-binding, secreted factor that is overexpressed in several tumours and associated to tumour growth, angiogenesis and metastasis. The C-terminus part of HARP composed of amino acids 111 to 136 is particularly involved in its biological activities and we previously established that a synthetic peptide composed of the same amino acids (P111-136) was capable of inhibiting the biological activities of HARP. Here we evaluate the ability of P111-136 to inhibit in vitro and in vivo the growth of a human tumour cell line PC-3 which possess an HARP autocrine loop. Methods A total lysate of PC-3 cells was incubated with biotinylated P111-136 and pulled down for the presence of the HARP receptors in Western blot. In vitro, the P111-136 effect on HARP autocrine loop in PC-3 cells was determined by colony formation in soft agar. In vivo, PC-3 cells were inoculated in the flank of athymic nude mice. Animals were treated with P111-136 (5 mg/kg/day) for 25 days. Tumour volume was evaluated during the treatment. After the animal sacrifice, the tumour apoptosis and associated angiogenesis were evaluated by immunohistochemistry. In vivo anti-angiogenic effect was confirmed using a mouse Matrigel™ plug assay. Results Using pull down experiments, we identified the HARP receptors RPTPβ/ζ, ALK and nucleolin as P111-136 binding proteins. In vitro, P111-136 inhibits dose-dependently PC-3 cell colony formation. Treatment with P111-136 inhibits significantly the PC-3 tumour growth in the xenograft model as well as tumour angiogenesis. The angiostatic effect of P111-136 on HARP was also confirmed using an in vivo Matrigel™ plug assay in mice Conclusions Our results demonstrate that P111-136 strongly inhibits the mitogenic effect of HARP on in vitro and in vivo growth of PC-3 cells. This inhibition could be linked to a direct or indirect binding of this peptide to the HARP receptors (ALK, RPTPβ/ζ, nucleolin). In vivo, the P111-136 treatment significantly inhibits both the PC-3 tumour growth and the associated angiogenesis. Thus, P111-136 may be considered as an interesting pharmacological tool to interfere with tumour growth that has now to be evaluated in other cancer types.
Collapse
Affiliation(s)
- Yamina Hamma-Kourbali
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires, Université Paris Est Créteil, CNRS, avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Gerald M Higa
- a Schools of Pharmacy and Medicine, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9520, USA.
| |
Collapse
|
30
|
Reebye V, Frilling A, Habib NA, Mintz PJ. Intracellular adaptor molecules and AR signalling in the tumour microenvironment. Cell Signal 2010; 23:1017-21. [PMID: 21130868 DOI: 10.1016/j.cellsig.2010.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/25/2010] [Indexed: 12/20/2022]
Abstract
Androgen deprivation therapy is the mainstay for treating advanced prostate cancer. A better understanding in the complexity of the androgen receptor (AR) signalling pathway has highlighted that this form of treatment is not sufficient. Since Huggins and Hodges made their crucial observations on the benefits of castration for prostate cancer, significant progress has been achieved in understanding the importance of the cross-talk between the hormone signalling pathway and the kinase signalling network. We now know that preventing androgen production or ligand binding to the AR does not necessarily mark the end of the road for prostate tumour growth. Emerging evidence suggests that there exists a complex set of compensatory mechanisms which allows growth factors to push the transformed cells into a 'survival adaptation mode' within the tumour microenvironment. An increase in autocrine and paracrine cascades of growth factor are the most commonly reported events to correlate with progression of androgen-dependent disease to a disseminated androgen independent state. The mechanism of how growth factors can sustain AR activation when cells are deprived of androgens is unknown. This is due to the lack of information about the critical factors linking the intracellular signalling molecules associated with the downstream AR signalling events triggered by growth factors. The aim of this mini review is to highlight a potentially new insight into how intracellular adaptor molecules activated by growth factors may influence and act as a molecular switch to allow the continuation of AR activity in the presence of therapeutic anti-androgens following chemical or surgical castration.
Collapse
Affiliation(s)
- Vikash Reebye
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
31
|
Hu R, Denmeade SR, Luo J. Molecular processes leading to aberrant androgen receptor signaling and castration resistance in prostate cancer. Expert Rev Endocrinol Metab 2010; 5:753-764. [PMID: 21318111 PMCID: PMC3035007 DOI: 10.1586/eem.10.49] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hormone therapies targeting androgen receptor signaling are the mainstay of treatment for patients with advanced prostate cancer. The length of clinical remission induced by hormone therapies varies substantially among treated patients. Why some patients progress rapidly after treatment while others benefit with prolonged remission is a question that remains unsolved. The androgen receptor signaling pathway is the key molecular determinant of castration resistance, and a key target for prostate cancer drug design. Recent advances in characterizing molecular processes leading to the development of castration-resistant prostate cancer, including the discovery of multiple androgen receptor splicing variants, offer opportunities for rational development of new clinical tools or approaches to predict, monitor or control/prevent prostate cancer progression in the castrate setting.
Collapse
Affiliation(s)
- Rong Hu
- Johns Hopkins University, 600 North Wolfe Street, 411 Marburg Building, Baltimore, MD 21287, USA
| | | | - Jun Luo
- Johns Hopkins University, 600 North Wolfe Street, 411 Marburg Building, Baltimore, MD 21287, USA
| |
Collapse
|
32
|
Noori-Daloii MR, Momeny M, Yousefi M, Shirazi FG, Yaseri M, Motamed N, Kazemialiakbar N, Hashemi S. Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapy. Med Oncol 2010; 28:1395-404. [DOI: 10.1007/s12032-010-9603-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/12/2010] [Indexed: 10/19/2022]
|
33
|
Abstract
Despite considerable success in treatment of early stage localized prostate cancer (PC), acute inadequacy of late stage PC treatment and its inherent heterogeneity poses a formidable challenge. Clearly, an improved understanding of PC genesis and progression along with the development of new targeted therapies are warranted. Animal models, especially, transgenic immunocompetent mouse models, have proven to be the best ally in this respect. A series of models have been developed by modulation of expression of genes implicated in cancer-genesis and progression; mainly, modulation of expression of oncogenes, steroid hormone receptors, growth factors and their receptors, cell cycle and apoptosis regulators, and tumor suppressor genes have been used. Such models have contributed significantly to our understanding of the molecular and pathological aspects of PC initiation and progression. In particular, the transgenic mouse models based on multiple genetic alterations can more accurately address the inherent complexity of PC, not only in revealing the mechanisms of tumorigenesis and progression but also for clinically relevant evaluation of new therapies. Further, with advances in conditional knockout technologies, otherwise embryonically lethal gene changes can be incorporated leading to the development of new generation transgenics, thus adding significantly to our existing knowledge base. Different models and their relevance to PC research are discussed.
Collapse
Affiliation(s)
- Varinder Jeet
- Oncology Research Centre, Prince of Wales Hospital, Barker St., Randwick, NSW, 2031, Australia
| | | | | |
Collapse
|
34
|
Li Y, Cozzi PJ, Russell PJ. Promising tumor-associated antigens for future prostate cancer therapy. Med Res Rev 2010; 30:67-101. [PMID: 19536865 DOI: 10.1002/med.20165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prostate cancer (CaP) is one of the most prevalent malignant diseases among men in Western countries. There is currently no cure for metastatic castrate-resistant CaP, and median survival for these patients is about 18 months; the high mortality rate seen is associated with widespread metastases. Progression of CaP from primary to metastatic disease is associated with several molecular and genetic changes that can affect the expression of specific tumor-associated antigens (TAAs) or receptors on the cell surface. Targeting TAAs is emerging as an area of promise for controlling late-stage and recurrent CaP. Several reviews have summarized the progress made in targeting signaling pathways for CaP but will not be discussed here. We describe some important CaP TAAs. These include prostate stem-cell antigen, prostate-specific membrane antigen, MUC1, epidermal growth factor receptor, platelet-derived growth factor and its receptor, urokinase plasminogen activator and its receptor, and extracellular matrix metalloproteinase inducer. We summarize recent advancements in our understanding of their role in CaP metastasis, as well as potential therapeutic options for targeting CaP TAAs. We also discuss the origin, identification, and characterization of prostate cancer stem cells (CSCs) and the potential benefits of targeting prostate CSCs to overcome chemoresistance and CaP recurrence.
Collapse
Affiliation(s)
- Yong Li
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.
| | | | | |
Collapse
|
35
|
Abstract
It is becoming increasingly clear that angiogenesis plays a crucial role in prostate cancer (CaP) survival, progression, and metastasis. Tumor angiogenesis is a hallmark of advanced cancers and an attractive treatment target in multiple solid tumors. By understanding the molecular basis of resistance to androgen withdrawal and chemotherapy in CaP, the rational design of targeted therapeutics is possible. This review summarizes the recent advancements that have improved our understanding of the role of angiogenesis in CaP metastasis and the potential therapeutic efficacy of inhibiting angiogenesis in this disease. Current therapeutic options for patients with metastatic hormone-refractory CaP are very limited. Targeting vasculature is a developing area, which shows promise for the control of late stage and recurrent CaP disease and for overcoming drug resistance. We discuss angiogenesis and its postulated mechanisms and focus on the regulation of angiogenesis in CaP progression and the therapeutic beneficial effects associated with targeting of the CaP vasculature to overcome the resistance to current treatments and CaP recurrence.
Collapse
Affiliation(s)
- Yong Li
- Cancer Care Centre, St George Hospital, Sydney, NSW, Australia.
| | | |
Collapse
|
36
|
Diener KR, Need EF, Buchanan G, Hayball JD. TGF-beta signalling and immunity in prostate tumourigenesis. Expert Opin Ther Targets 2010; 14:179-92. [PMID: 20055717 DOI: 10.1517/14728220903544507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE OF THE FIELD The TGF-beta's are pleiotropic cytokines that regulate multiple cellular functions. Their role in the prostate is important for normal prostate development and also in prostate tumourigenesis. AREAS COVERED IN THIS REVIEW The interactions TGF-beta-mediated signalling has with maintaining prostate health, as well as its role in prostate tumourigenesis and prostate tumour immune evasion, with emphasis on how a breakdown in these interactions may influence disease progression. WHAT THE READER WILL GAIN That TGF-beta influences normal prostate growth and differentiation by regulating the balance between epithelial cell proliferation and apoptosis, and involving the androgen receptor pathway. That TGF-beta protects and maintains prostate stem cells and a review of the contrasting role TGF-beta has in prostate tumourigenesis and tumour development, where TGF-beta acts as a tumour suppressor and then switches roles to become a tumour promoter, and creates a local immunosuppressive niche leading to systemic tumour tolerance. TAKE HOME MESSAGE TGF-beta signalling in prostate cancer is a valid target for the treatment of this disease; however any therapeutic regimen will require an understanding of all aspects of the TGF-beta-signalling nexus, otherwise by the very pleiotrophic nature of TGF-beta, limited clinical benefits may result.
Collapse
Affiliation(s)
- Kerrilyn R Diener
- Hanson Institute, Experimental Therapeutics Laboratory, Adelaide, SA 5000, Australia
| | | | | | | |
Collapse
|
37
|
Koutros S, Schumacher FR, Hayes RB, Ma J, Huang WY, Albanes D, Canzian F, Chanock SJ, Crawford ED, Diver WR, Feigelson HS, Giovanucci E, Haiman CA, Henderson BE, Hunter DJ, Kaaks R, Kolonel LN, Kraft P, Le Marchand L, Riboli E, Siddiq A, Stampfer MJ, Stram DO, Thomas G, Travis RC, Thun MJ, Yeager M, Berndt SI. Pooled analysis of phosphatidylinositol 3-kinase pathway variants and risk of prostate cancer. Cancer Res 2010; 70:2389-96. [PMID: 20197460 DOI: 10.1158/0008-5472.can-09-3575] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway regulates various cellular processes, including cellular proliferation and intracellular trafficking, and may affect prostate carcinogenesis. Thus, we explored the association between single-nucleotide polymorphisms (SNP) in PI3K genes and prostate cancer. Pooled data from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium were examined for associations between 89 SNPs in PI3K genes (PIK3C2B, PIK3AP1, PIK3C2A, PIK3CD, and PIK3R3) and prostate cancer risk in 8,309 cases and 9,286 controls. Odds ratios (OR) and 95% confidence intervals (95% CI) were estimated using logistic regression. SNP rs7556371 in PIK3C2B was significantly associated with prostate cancer risk [OR(per allele), 1.08 (95% CI, 1.03-1.14); P(trend) = 0.0017] after adjustment for multiple testing (P(adj) = 0.024). Simultaneous adjustment of rs7556371 for nearby SNPs strengthened the association [OR(per allele), 1.21 (95% CI, 1.09-1.34); P(trend) = 0.0003]. The adjusted association was stronger for men who were diagnosed before the age of 65 years [OR(per allele), 1.47 (95% CI, 1.20-1.79); P(trend) = 0.0001] or had a family history [OR(per allele) = 1.57 (95% CI, 1.11-2.23); P(trend) = 0.0114], and was strongest in those with both characteristics [OR(per allele) = 2.31 (95% CI, 1.07-5.07), P-interaction = 0.005]. Increased risks were observed among men in the top tertile of circulating insulin-like growth factor-I (IGF-I) levels [OR(per allele) = 1.46 (95% CI, 1.04-2.06); P(trend) = 0.075]. No differences were observed with disease aggressiveness (Gleason grade >or=8 or stage T(3)/T(4) or fatal). In conclusion, we observed a significant association between PIK3C2B and prostate cancer risk, especially for familial, early-onset disease, which may be attributable to IGF-dependent PI3K signaling.
Collapse
Affiliation(s)
- Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ruscica M, Arvigo M, Gatto F, Dozio E, Feltrin D, Culler MD, Minuto F, Motta M, Ferone D, Magni P. Regulation of prostate cancer cell proliferation by somatostatin receptor activation. Mol Cell Endocrinol 2010; 315:254-62. [PMID: 19932151 DOI: 10.1016/j.mce.2009.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/05/2009] [Accepted: 11/15/2009] [Indexed: 01/24/2023]
Abstract
Although some evidence supports the antitumoral effects of somatostatin (SRIF) and related agonists, the available data in prostate cancer (PCa) model systems and clinical studies are few, conflicting and not conclusive. This study investigated the effects of lanreotide and new mono- and bi-specific SRIF agonists on proliferation, ligand-driven SRIF receptor (sst) dimerization and secretory pattern of the IGF system in LNCaP cells, a model of androgen-dependent PCa. LNCaP expressed all sst(s), but sst(4). Among them, sst(1) and sst(3) were inversely regulated by serum concentration. sst(1)/sst(2) and sst(2)/sst(5) dimers were constitutively present and further stabilized by treatment with BIM-23704 (sst(1)/sst(2)) and BIM-23244 (sst(2)/sst(5)), respectively. Dose-response studies showed that lanreotide and BIM-23244 were significantly more potent in inhibiting LNCaP cell proliferation than BIM-23120 (sst(2)) and BIM-23206 (sst(5)) alone or in combination. Treatment with BIM-23926 [corrected] (sst(1)) markedly reduced cell proliferation, whereas exposure to BIM-23704 resulted in a lower cell growth inhibition. The antiproliferative effects of BIM-23244, lanreotide and BIM-23704 were unchanged, reduced and abolished by the sst(2) antagonist BIM-23627, respectively. All SRIF analogs caused a significant induction in p27(KipI) and p21 and down-regulation of protein expression of cyclin E, as well as reduced IGF-I and IGF-II secretion. In particular, the administration of exogenous IGF-I, at variance to IGF-II, counteracted the inhibitory effect on cell proliferation of these compounds. Moreover, SRIF agonists reduced endogenous IGFBP-3 proteolysis. These results show that, in LNCaP cells, activation of sst(1) and sst(2)/sst(5) results in relevant antiproliferative/antisecretive actions.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Endocrinology, Pathophysiology and Applied Biology, Università degli Studi di Milano, via G. Balzaretti 9, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Epidermal growth factor receptor expression escapes androgen regulation in prostate cancer: a potential molecular switch for tumour growth. Br J Cancer 2009; 101:1949-56. [PMID: 19888222 PMCID: PMC2795439 DOI: 10.1038/sj.bjc.6605376] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Androgen deprivation therapy reduces prostate cancer (PCa) tumour growth; however, disease relapse often ensues independently of androgen stimulation, producing androgen-refractory tumours with increased invasion, proliferation, and malignancy. Androgens downregulate epidermal growth factor receptor (EGFR) in normal prostate but not in PCa. Thus, loss of EGFR regulation and altered signalling may, in part, explain the transition of prostate tumours from androgen dependent to androgen independent. Studies in animal models, PCa cell lines, and tumour specimens suggest that androgens modulate prostate growth and function through mechanisms that involve ‘cross-talk’ between androgen receptor (AR) and growth factor receptor signalling pathways. The objective of this review is to discuss the paradoxical relationship between androgen regulation of EGFR in normal prostate and PCa. We reviewed the literature from mid-1980s through 2009 to assess the relationship between androgens and EGFR function in modulating the growth of normal prostate and PCa. Loss of androgen regulation of EGFR in PCa may be responsible for increased tumour growth, invasion, and metastasis, with important implications on the clinical management of PCa. We advance the hypothesis that a molecular switch, responsible for downregulating EGFR expression by androgens in the normal prostate, is either lost or modified in PCa.
Collapse
|
40
|
Bennett N, Hooper JD, Lee CS, Gobe GC. Androgen receptor and caveolin-1 in prostate cancer. IUBMB Life 2009; 61:961-70. [DOI: 10.1002/iub.244] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Graham TR, Agrawal KC, Abdel-Mageed AB. Independent and cooperative roles of tumor necrosis factor-alpha, nuclear factor-kappaB, and bone morphogenetic protein-2 in regulation of metastasis and osteomimicry of prostate cancer cells and differentiation and mineralization of MC3T3-E1 osteoblast-like cells. Cancer Sci 2009; 101:103-11. [PMID: 19811499 DOI: 10.1111/j.1349-7006.2009.01356.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The molecular mechanisms involved in prostate cancer (PC) metastasis and bone remodeling are poorly understood. We recently reported that phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) mediates transcriptional regulation and activation of bone morphogenetic protein (BMP)-2 signaling by nuclear factor (NF)-kappaB in bone metastatic prostate cancer cells. In the present study, we demonstrate that NF-kappaB, whether activated by recombinant human tumor necrosis factor (TNF)-alpha or by ectopic expression of the p65 subunit, is involved in extracellular matrix adhesion and invasion of osteotropic PC-3 and C4-2B, but not LNCaP, cells. The enhanced metastatic potential was associated with transcriptional upregulation of osteopontin, osteocalcin, and collagen IA1 in osteotropic PC cells, suggesting their role in osteomimicry of PC cells. Unlike BMP-4, BMP-2 protein enhanced the invasive properties of C4-2B cells, but not in LNCaP cells. Also, this effect was nullified by Noggin. In addition, BMP-2 mediates TNF-alpha-induced invasion of C4-2B cells in a NF-kappaB-dependent fashion. TNF-alpha or conditioned media (CM) of TNF-alpha-stimulated C4-2B cells upregulated BMP-2 and BMP-dependent Smad transcripts and inhibited receptor activator of NF-kappaB ligand transcripts in RAW 264.7 preosteoclast cells, respectively, implying that this factor may contribute to suppression of osteoclastogenesis via direct and paracrine mechanisms. In contrast, CM of TNF-alpha-stimulate or BMP2-stimulated C4-2B cells induced in vitro mineralization of MC3T3-E1 osteoblast cells in a BMP-2-dependent and NF-kappaB-dependent manner, respectively. Taken together, the results suggest that mutual interactions between these factors may be pivotal not only in enhancing the osteomimicry and metastatic potential of PC cells, but also in bone remodeling and in shifting the balance from osteoclastogenesis towards osteoblastogenesis.
Collapse
Affiliation(s)
- Tisheeka R Graham
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | | | |
Collapse
|
42
|
Beaudoin C, Maquaire S, Léotoing L, Allemand J, Lours-Calet C, Veyssière G, Manin M, Morel L. NPM : un nouvel acteur dans le cancer de la prostate ? Med Sci (Paris) 2009; 25:19-21. [DOI: 10.1051/medsci/200925119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Clements JA, Willemsen NM, Myers SA, Dong Y. The Tissue Kallikrein Family of Serine Proteases: Functional Roles in Human Disease and Potential as Clinical Biomarkers. Crit Rev Clin Lab Sci 2008; 41:265-312. [PMID: 15307634 DOI: 10.1080/10408360490471931] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate specific antigen (PSA) or human kallikrein 3 (hK3) has long been an effective biomarker for prostate cancer. Now, other members of the tissue kallikrein (KLK) gene family are fast becoming of clinical interest due to their potential as prognostic biomarkers. particularly for hormone dependent cancers. The tissue kallikreins are serine proteases that are encoded by highly conserved multi-gene family clusters in rodents and humans. The rat and mouse loci contain 10 and 25 functional genes, respectively, while the human locus at 19q 13.4 contains 15 genes. The structural organization and size of these genes are similar across species; all genes have 5 coding exons that encode a prepro-enzyme. Although the physiological activators of these zymogens have not been described, in vitro biochemical studies show that some kallikreins can auto-activate and others can activate each other, suggesting that the kallikreins may participate in an enzymatic cascade similar to that of the coagulation cascade. These genes are expressed, to varying degrees, in a wide range of tissues suggesting a functional involvement in a diverse range of physiological and pathophysiological processes. These include roles in normal skin desquamation and psoriatic lesions, tooth development, neural plasticity, and Alzheimer's disease (AD). Of particular interest is the expression of many kallikreins in prostate, ovarian, and breast cancers where they are emerging as useful prognostic indicators of disease progression.
Collapse
Affiliation(s)
- Judith A Clements
- Hormone Dependent Cancer Program, Cluster for Molecular Biotechnology, School of Life Sciences & Science Research Centre, Queensland University of Technology, Brisbane, Australia.
| | | | | | | |
Collapse
|
44
|
Arnold JT, Gray NE, Jacobowitz K, Viswanathan L, Cheung PW, McFann KK, Le H, Blackman MR. Human prostate stromal cells stimulate increased PSA production in DHEA-treated prostate cancer epithelial cells. J Steroid Biochem Mol Biol 2008; 111:240-6. [PMID: 18621129 PMCID: PMC2570207 DOI: 10.1016/j.jsbmb.2008.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/05/2008] [Accepted: 06/16/2008] [Indexed: 11/19/2022]
Abstract
Dehydroepiandrosterone (DHEA) is commonly used as a dietary supplement and may affect prostate pathophysiology when metabolized to androgens and/or estrogens. Human prostate LAPC-4 cancer cells with a wild type androgen receptor (AR) were treated with DHEA, androgens dihydrotestosterone (DHT), T, or R1881), and E2 and assayed for prostate specific antigen (PSA) protein and gene expression. In LAPC-4 monocultures, DHEA and E2 induced little or no increase in PSA protein or mRNA expression compared to androgen-treated cells. When prostate cancer-associated (6S) stromal cells were added in coculture, DHEA stimulated LAPC-4 cell PSA protein secretion to levels approaching induction by DHT. Also, DHEA induced 15-fold more PSA mRNA in LAPC-4 cocultures than in monocultures. LAPC-4 proliferation was increased 2-3-fold when cocultured with 6S stromal cells regardless of hormone treatment. DHEA-treated 6S stromal cells exhibited a dose- and time-dependent increase in T secretion, demonstrating stromal cell metabolism of DHEA to T. Coculture with non-cancerous stroma did not induce LAPC-4 PSA production, suggesting a differential modulation of DHEA effect in a cancer-associated prostate stromal environment. This coculture model provides a research approach to reveal detailed endocrine, intracrine, and paracrine signaling between stromal and epithelial cells that regulate tissue homeostasis within the prostate, and the role of the tumor microenvironment in cancer progression.
Collapse
Affiliation(s)
- Julia T Arnold
- Endocrine Section, Laboratory of Clinical Investigation, Division of Intramural Research, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Delmulle L, Vanden Berghe T, Keukeleire DD, Vandenabeele P. Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (Humulus lupulus L.) induces a caspase-independent form of cell death. Phytother Res 2008; 22:197-203. [PMID: 17726738 DOI: 10.1002/ptr.2286] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Xanthohumol (X), isoxanthohumol (IX), 8-prenylnaringenin (8PN) and 6-prenylnaringenin (6PN), prenylflavonoids from hop (Humulus lupulus L.), were investigated for their cytotoxicity and the mechanism by which they exert cell death when incubated with prostate cancer cell lines PC-3 and DU145. All compounds induced cell death in the absence of caspase-3 activation and typical apoptotic morphological features. The general pan-caspase inhibitor zVAD-fmk could not protect this form of cell death. In addition, the formation of vacuoles was observed in PC-3 cells treated with IX and 6PN, and in DU145 treated with IX, 8PN and 6PN, which could suggest the induction of autophagy and consequent cell death. The results indicate that hop-derived prenylflavanones (IX, 8PN, 6PN), but not prenylchalcones (X) induce a caspase-independent form of cell death, suggested to be autophagy. Therefore, IX, 8PN and 6PN appear to be promising candidates for further investigation in prostate anticancer therapy.
Collapse
Affiliation(s)
- L Delmulle
- Ghent University-UGent, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacognosy and Phytochemistry, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
46
|
Coutinho-Camillo CM, Brentani MM, Nagai MA. Genetic alterations in juvenile nasopharyngeal angiofibromas. Head Neck 2008; 30:390-400. [PMID: 18228521 DOI: 10.1002/hed.20775] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Juvenile nasopharyngeal angiofibroma (JNA) is a rare benign neoplasm of the nasopharynx that accounts for 0.5% of all head and neck tumors. Although histologically benign in appearance, JNAs are locally aggressive and destructive, spreading from the nasal cavity to the nasopharynx, paranasal sinuses, and orbit skull base with intracranial extension. The gender selectivity of JNA and the relatively young age at diagnosis suggest hormone-dependent development. Hormonal disorders have been reported in patients with JNA, and androgen and estrogen receptors have been identified in tumor tissue; however, a hormonal influence on JNA is controversial. Recent studies have attempted to further delineate the pathogenesis of JNA through analysis of genetic and molecular changes. Understanding of the molecular mechanisms involved in JNA might improve prevention, prognosis, and treatment of this tumor. In this review, we discuss published studies addressing the possible molecular pathways that might be involved in the development of JNA.
Collapse
Affiliation(s)
- Cláudia M Coutinho-Camillo
- Disciplina de Oncologia, Laboratório de Oncologia Experimental-24, Departamento de Radiologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
47
|
Ding Y, Brackenbury WJ, Onganer PU, Montano X, Porter LM, Bates LF, Djamgoz MBA. Epidermal growth factor upregulates motility of Mat-LyLu rat prostate cancer cells partially via voltage-gated Na+ channel activity. J Cell Physiol 2008; 215:77-81. [PMID: 17960590 DOI: 10.1002/jcp.21289] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The main aim of this investigation was to determine whether a functional relationship existed between epidermal growth factor (EGF) and voltage-gated sodium channel (VGSC) upregulation, both associated with strongly metastatic prostate cancer cells. Incubation with EGF for 24 h more than doubled VGSC current density. Similar treatment with EGF significantly and dose-dependently enhanced the cells' migration through Transwell filters. Both the patch clamp recordings and the migration assay suggested that endogenous EGF played a similar role. Importantly, co-application of EGF and tetrodotoxin, a highly selective VGSC blocker, abolished 65% of the potentiating effect of EGF. It is suggested that a significant portion of the EGF-induced enhancement of migration occurred via VGSC activity.
Collapse
Affiliation(s)
- Yanning Ding
- Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, London, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Yin J, Pollock C, Tracy K, Chock M, Martin P, Oberst M, Kelly K. Activation of the RalGEF/Ral pathway promotes prostate cancer metastasis to bone. Mol Cell Biol 2007; 27:7538-50. [PMID: 17709381 PMCID: PMC2169046 DOI: 10.1128/mcb.00955-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A hallmark of metastasis is organ specificity; however, little is known about the underlying signaling pathways responsible for the colonization and growth of tumor cells in target organs. Since tyrosine kinase receptor activation is frequently associated with prostate cancer progression, we have investigated the role of a common signaling intermediary, activated Ras, in prostate cancer metastasis. Three effector pathways downstream of Ras, Raf/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase, and Ral guanine nucleotide exchange factors (RalGEFs), were assayed for their ability to promote the metastasis of a tumorigenic, nonmetastatic human prostate cancer cell line, DU145. Oncogenic Ras promoted the metastasis of DU145 to multiple organs, including bone and brain. Activation of the Raf/ERK pathway stimulated metastatic colonization of the brain, while activation of the RalGEF pathway led to bone metastases, the most common organ site for prostate cancer metastasis. In addition, loss of RalA in the metastatic PC3 cell line inhibited bone metastasis but did not affect subcutaneous tumor growth. Loss of Ral appeared to suppress expansive growth of prostate cancer cells in bone, whereas homing and initial colonization were less affected. These data extend our understanding of the functional roles of the Ral pathway and begin to identify signaling pathways relevant for organ-specific metastasis.
Collapse
Affiliation(s)
- JuanJuan Yin
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Dr., Rm. 1068, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Carey AM, Pramanik R, Nicholson LJ, Dew TK, Martin FL, Muir GH, Morris JDH. Ras-MEK-ERK signaling cascade regulates androgen receptor element-inducible gene transcription and DNA synthesis in prostate cancer cells. Int J Cancer 2007; 121:520-7. [PMID: 17415712 DOI: 10.1002/ijc.22715] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Treatment of prostate cancer (CaP) patients frequently involves androgen ablation, but resistance often develops and androgen-insensitive tumors emerge. The molecular basis for the development of refractory CaP that grows in an androgen-independent manner is poorly understood, but alterations in growth factor signaling pathways are likely to be involved. We examined the growth factor modulation of androgen-receptor element (ARE)-inducible luciferase reporter gene activity and consequent DNA synthesis as a measure of proliferative growth in androgen-dependent LNCaP or androgen-independent PC3 or DU145 CaP cells. The synthetic androgen R1881 stimulated ARE-inducible reporter gene activity and prostate-specific antigen expression in LNCaP cells and the MEK/ERK inhibitor U0126 or the anti-androgen bicalutamide (casodex) prevented both of these responses. Activated V12-Ha-Ras expression in LNCaP cells also stimulated ARE-inducible gene transcription, and U0126 or the farnesyltransferase inhibitor FTI-277 but not bicalutamide blocked this. ARE-inducible reporter gene activity was elevated already in PC3 cells, and ERK was constitutively activated in serum-starved LNCaP or DU145 cells. U0126 inhibited each of these responses and also inhibited DNA synthesis in all 3 CaP cell lines. These results demonstrate that chronic stimulation of the Ras-MEK-ERK signaling pathway can sustain ARE-inducible gene transcription and growth of CaP cells, and suggests that components of this pathway may offer targets for cancer therapy.
Collapse
|
50
|
Agarwal C, Tyagi A, Kaur M, Agarwal R. Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis 2007; 28:1463-70. [PMID: 17341659 DOI: 10.1093/carcin/bgm042] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transcription factor signal transducer and activator of transcription (Stat)-3 is activated constitutively in prostate cancer (PCA) suggesting that its disruption could be an effective approach to control this malignancy. Here we assessed whether silibinin, a flavanone from Silybum marianum with proven anticancer efficacy in various cancer models, inhibits Stat3 activation in DU145 cells, and if it does, what is the biological fate of the cells? At 50 muM or higher concentrations for 24 or 48 h, silibinin concentration dependently reduced constitutive Stat3 phosphorylation at Tyr705 and Ser727 residues under both serum and serum-starved conditions. Constitutively active Stat3-DNA binding was also inhibited concentration dependently by silibinin; however, apoptotic death together with caspase and poly(ADP-ribose) polymerase (PARP) cleavage was observed by silibinin only under serum-starved conditions suggesting that additional survival pathways are active under serum conditions. In other studies, cells were treated with various specific pharmacological inhibitors where phosphorylation of Stat3 was not reduced by epidermal growth factor receptor and Mitogen activated protein/extracellular signal regulate kinase kinase (MEK1/2) inhibitors, suggesting lack of significant roles of these in Stat3 activation in DU145 cells. Janus kinase (JAK)-1 and JAK2 inhibitors strongly reduced Stat3 phosphorylation but did not result in apoptotic cell death. Interestingly, JAK1 inhibitor only in combination with silibinin resulted in a complete reduction in Stat3 phosphorylation at Tyr705, activated caspase-9 and caspase-3, and caused strong PARP cleavage and apoptotic death of DU145 cells. Given a critical role of Stat3 activation in PCA, our results showed that silibinin inhibits constitutively active Stat3 and induces apoptosis in DU145 cells, and thus might have potential significance in therapeutic intervention of this deadly malignancy.
Collapse
Affiliation(s)
- Chapla Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Cancer Center, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | |
Collapse
|