1
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
2
|
Abstract
This paper reviews methods for detecting proteins based on molecular digitization, i.e., the isolation and detection of single protein molecules or singulated ensembles of protein molecules. The single molecule resolution of these methods has resulted in significant improvements in the sensitivity of immunoassays beyond what was possible using traditional "analog" methods: the sensitivity of some digital immunoassays approach those of methods for measuring nucleic acids, such as the polymerase chain reaction (PCR). The greater sensitivity of digital protein detection has resulted in immuno-diagnostics with high potential societal impact, e.g., the early diagnosis and therapeutic intervention of Alzheimer's Disease. In this review, we will first provide the motivation for developing digital protein detection methods given the limitations in the sensitivity of analog methods. We will describe the paradigm shift catalyzed by single molecule detection, and will describe in detail one digital approach - which we call digital bead assays (DBA) - based on the capture and labeling of proteins on beads, identifying "on" and "off" beads, and quantification using Poisson statistics. DBA based on the single molecule array (Simoa) technology have sensitivities down to attomolar concentrations, equating to ∼10 proteins in a 200 μL sample. We will describe the concept behind DBA, the different single molecule labels used, the ways of analyzing beads (imaging of arrays and flow), the binding reagents and substrates used, and integration of these technologies into fully automated and miniaturized systems. We provide an overview of emerging approaches to digital protein detection, including those based on digital detection of nucleic acids labels, single nanoparticle detection, measurements using nanopores, and methods that exploit the kinetics of single molecule binding. We outline the initial impact of digital protein detection on clinical measurements, highlighting the importance of customized assay development and translational clinical research. We highlight the use of DBA in the measurement of neurological protein biomarkers in blood, and how these higher sensitivity methods are changing the diagnosis and treatment of neurological diseases. We conclude by summarizing the status of digital protein detection and suggest how the lab-on-a-chip community might drive future innovations in this field.
Collapse
Affiliation(s)
- David C Duffy
- Quanterix Corporation, 900 Middlesex Turnpike, Billerica, MA 01821, USA.
| |
Collapse
|
3
|
Wang X, Yang C, Jiang W, Zhang M, Li R, Lin Y, Wang Q. Rapid quantitative detection of okadaic acid in shellfish using lanthanide-labelled fluorescent-nanoparticle immunochromatographic test strips. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Synthesis and In Vitro Testing of YVO 4:Eu 3+@silica-NH-GDA-IgG Bio-Nano Complexes for Labelling MCF-7 Breast Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010280. [PMID: 36615474 PMCID: PMC9822125 DOI: 10.3390/molecules28010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
We present a visual tool and facile method to detect MCF-7 breast cancer cells by using YVO4:Eu3+@silica-NH-GDA-IgG bio-nanocomplexes. To obtain these complexes, YVO4:Eu3+ nanoparticles with a uniform size of 10-25 nm have been prepared firstly by the hydrothermal process, followed by surface functionalization to be bio-compatible and conjugated with cancer cells. The YVO4:Eu3+@silica-NH-GDA-IgG nanoparticles exhibited an enhanced red emission at 618 nm under an excitation wavelength of 355 nm and were strongly coupled with MCF-7 breast cancer cells via biological conjugation. These bio-nanocomplexes showed a superior sensitiveness for MCF-7 cancer cell labelling with a detection percentage as high as 82%, while no HEK-293A healthy cells were probed under the same conditions of in vitro experiments. In addition, the detection percentage of MCF-7 breast cancer cells increased significantly via the functionalization and conjugation of YVO4:Eu3+ nanoparticles. The experimental results demonstrated that the YVO4:Eu3+@silica-NH-GDA-IgG bio-nanocomplexes can be used as a promising labelling agent for biomedical imaging and diagnostics.
Collapse
|
5
|
Makhneva E, Sklenárová D, Brandmeier JC, Hlaváček A, Gorris HH, Skládal P, Farka Z. Influence of Label and Solid Support on the Performance of Heterogeneous Immunoassays. Anal Chem 2022; 94:16376-16383. [DOI: 10.1021/acs.analchem.2c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ekaterina Makhneva
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dorota Sklenárová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- CEITEC MU, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Julian C. Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 967, 602 00 Brno, Czech Republic
| | - Hans H. Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- CEITEC MU, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- CEITEC MU, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
6
|
El-Sheikh SM, Sheta SM, Salem SR, Abd-Elzaher MM, Basaleh AS, Labib AA. Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal-Organic Framework-Based Optical Biosensor. BIOSENSORS 2022; 12:931. [PMID: 36354440 PMCID: PMC9688191 DOI: 10.3390/bios12110931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The prostate-specific antigen (PSA) is an important cancer biomarker that is commonly utilized in the diagnosis of prostate cancer. The development of a PSA determination technique that is rapid, simple, and inexpensive, in addition to highly accurate, sensitive, and selective, remains a formidable obstacle. METHODS In this study, we developed a practical biosensor based on Zn(II) metal-organic framework nanoparticles (Zn-MOFs-NPs). Many spectroscopic and microanalytical tools are used to determine the structure, morphology, and physicochemical properties of the prepared MOF. RESULTS According to the results, Zn-MOFs-NPs are sensitive to PSA, selective to an extremely greater extent, and stable in terms of chemical composition. Furthermore, the Zn-MOFs-NPs did not exhibit any interferences from other common analytes that might cause interference. The detection limit for PSA was calculated and was 0.145 fg/mL throughout a wide linear concentration range (0.1 fg/mL-20 pg/mL). CONCLUSIONS Zn-MOFs-NPs were successfully used as a growing biosensor for the monitoring and measurement of PSA in biological real samples.
Collapse
Affiliation(s)
- Said M. El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute, Cairo 11421, Egypt
| | - Sheta M. Sheta
- Department of Inorganic Chemistry, National Research Centre, Cairo 12622, Egypt
| | - Salem R. Salem
- Department of Biochemistry, Egypt Centre for Research and Regenerative Medicine, Cairo 11887, Egypt
| | | | - Amal S. Basaleh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ammar A. Labib
- Department of Inorganic Chemistry, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
7
|
Cheignon C, Kassir AA, Soro LK, Charbonnière LJ. Dye-sensitized lanthanide containing nanoparticles for luminescence based applications. NANOSCALE 2022; 14:13915-13949. [PMID: 36072997 DOI: 10.1039/d1nr06464a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to their exceptional luminescent properties, lanthanide (Ln) complexes represent a unique palette of probes in the spectroscopic toolkit. Their extremely weak brightness due to forbidden Ln electronic transitions can be overcome by indirect dye-sensitization from the antenna effect brought by organic ligands. Despite the improvement brought by the antenna effect, (bio)analytical applications with discrete Ln complexes as luminescent markers still suffers from low sensitivity as they are limited by the complex brightness. Thus, there is a need to develop nano-objects that cumulate the spectroscopic properties of multiple Ln ions. This review firstly gives a brief introduction of the spectral properties of lanthanides both in complexes and in nanoparticles (NPs). Then, the research progress of the design of Ln-doped inorganic NPs with capping antennas, Ln-complex encapsulated NPs and Ln-complex surface functionalized NPs is presented along with a summary of the various photosensitizing ligands and of the spectroscopic properties (excited-state lifetime, brightness, quantum yield). The review also emphasizes the problems and limitations encountered over the years and the solutions provided to address them. Finally, a comparison of the advantages and drawbacks of the three types of NP is provided as well as a conclusion about the remaining challenges both in the design of brighter NPs and in the luminescence based applications.
Collapse
Affiliation(s)
- Clémence Cheignon
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Ali A Kassir
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Lohona K Soro
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Loïc J Charbonnière
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| |
Collapse
|
8
|
Sun Y, Qin Y, Zhang J, Ren Q. Electrochemiluminescent determination of prostate-specific antigen using Au@(MoS 2/GO/o-MWNTs) nanohybrids as co-reaction accelerator and hyperbranched hybridization chain reaction for signal amplification. Mikrochim Acta 2021; 188:300. [PMID: 34409505 DOI: 10.1007/s00604-021-04957-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Three-dimensional flowerlike Au@(MoS2/GO/o-MWNTs) nanohybrids (abbreviated as AMGMs) were synthesized and then introduced into an electrochemiluminescence (ECL) system as a new co-reaction accelerator for the ultrasensitive prostate-specific antigen (PSA). The AMGMs not only served as a substrate with good conductivity and a large specific surface area for loading abundant primary antibodies but also acted as an effective co-reaction accelerator; the co-reaction accelerator could interact with a co-reactant rather than the luminophore to boost the generation of free radical intermediates, thereby producing abundant excited states of luminophores to amplify the ECL signal response. Additionally, an anticipated signal amplification strategy based on the hybridization chain reaction (HCR) was developed by gathering a large amount of a DNA initiator on gold nanoparticles. These gathered DNA initiators could generate multiple DNA concatemers and attach more signal molecules, which resulted in outstanding exponential signal amplification. Consequently, the ECL immunosensor demonstrated high sensitivity, with a linear range from 0.1 pg mL-1 to 50 ng mL-1 and a detection limit of 0.028 pg mL-1. In addition, the immunosensor displayed excellent stability and selectivity. It was evaluated by analyzing human serum sample. The recovery obtained was 98.80-112.00% and the RSD was 1.73-3.12%, indicating the immunosensor could be applied to the simultaneous detection of PSA in human serum samples. Graphical abstract.
Collapse
Affiliation(s)
- Yingying Sun
- Department of Medical Laboratory Science, Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Yan Qin
- Department of Chemistry, Shenyang Medical College, Shenyang, 110034, China
| | - Jun Zhang
- Department of Chemistry, Shenyang Medical College, Shenyang, 110034, China
| | - Qunxiang Ren
- Department of Chemistry, Shenyang Medical College, Shenyang, 110034, China
| |
Collapse
|
9
|
Li Z, Liu Q, Li Y, Yuan W, Y.Li F. One-step polymerized lanthanide-based polystyrene microsphere for sensitive lateral flow immunoassay. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Nanoparticle-aided glycovariant assays to bridge biomarker performance and ctDNA results. Mol Aspects Med 2020; 72:100831. [DOI: 10.1016/j.mam.2019.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 01/12/2023]
|
11
|
Akl MA, El-gharkawy ESR, El-mahdy NA, El-Sheikh SM, Sheta SM. A novel nano copper complex: potentiometry, DFT and application as a cancer prostatic biomarker for the ultrasensitive detection of human PSA. Dalton Trans 2020; 49:15769-15778. [DOI: 10.1039/d0dt03318a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel analytical approach for cancer prostatic biomarker by PSA detection using nano-Cu(II)-complex.
Collapse
Affiliation(s)
- Magda A. Akl
- Chemistry Department
- Faculty of Science
- Mansoura University
- Mansoura
- Egypt
| | | | - Nora A. El-mahdy
- Chemistry Department
- Faculty of Science
- Mansoura University
- Mansoura
- Egypt
| | - Said M. El-Sheikh
- Nanomaterials and Nanotechnology Department
- Central Metallurgical R & D Institute
- Cairo
- Egypt
| | - Sheta M. Sheta
- Inorganic Chemistry Department
- National Research Centre
- Egypt
| |
Collapse
|
12
|
Karami P, Khoshsafar H, Johari-Ahar M, Arduini F, Afkhami A, Bagheri H. Colorimetric immunosensor for determination of prostate specific antigen using surface plasmon resonance band of colloidal triangular shape gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117218. [PMID: 31174151 DOI: 10.1016/j.saa.2019.117218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/12/2019] [Accepted: 05/27/2019] [Indexed: 05/06/2023]
Abstract
In this work, we demonstrated the development of a colorimetric immunosensor using surface plasmon resonance band of gold nanoparticles for the detection of prostate specific antigen (PSA). To develop this biosensing tool, triangular gold nanoparticles (AuNPs) were synthesized using Tween-20 as a nonionic surfactant and then, conjugated with PSA capture antibody (Ab1-AuNPs). When exposed to Ab1-AuNPs, PSA antigens were found to be successfully captured by nanosystem (PSA)-Ab1-AuNPs. Next, (PSA)-Ab1-AuNPs were incubated with second PSA antibody (2)-decorated magnetite (Fe3O4-Ab2) and separated by an external magnetic force to leave Ab1-AuNPs in the supernatant solution to be directly analyzed using UV-Vis spectroscopy. It was found that the absorption intensity was directly proportional to the PSA concentration. As a result, the linear range for PSA detection was found to be 0.01-20 ng mL-1 with a detection limit of 0.009 ng mL-1. Because of significant stability of the prepared Ab1-AuNPs and excellent selectivity to the PSA antigen, this simple and sensitive sensing system is proposed to be potentially effective in the fast and real-time analysis of clinical samples from prostate cancer patients. We believe that the simple platform of this immunosensor to be useful in the development of future point-of-care sensing tools, working on the quantification of biomarkers in a drop of blood.
Collapse
Affiliation(s)
- Pari Karami
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Hosein Khoshsafar
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Mohammad Johari-Ahar
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Research Center (BRC), Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Karami P, Bagheri H, Johari-Ahar M, Khoshsafar H, Arduini F, Afkhami A. Dual-modality impedimetric immunosensor for early detection of prostate-specific antigen and myoglobin markers based on antibody-molecularly imprinted polymer. Talanta 2019; 202:111-122. [PMID: 31171159 DOI: 10.1016/j.talanta.2019.04.061] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
A new dual-modality immunosensor based on molecularly imprinted polymer (MIP) and a nanostructured biosensing layer has fabricated for the simultaneous detection of two important markers including prostate-specific antigen (PSA) and myoglobin (Myo) in human serum and urine samples. In the first step, 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) (DSP) was self-assembled on a gold screen printed electrode (SPE). Then, the target proteins were attached covalently to the DSP-SPE. The imprinted cocktail polymer ((MIP(PSA, Myo)-SPE)) was synthesized at the SPE surface using acrylamide as monomer, N,N'-methylenebisacrylamide as a crosslinker, and PSA and Myo as the templates, respectively. The MIP-SPE was specific for the impedimetric sensing of PSA and Myo. After that, a nanocomposite (NCP) was synthesized based on the decorated magnetite nanoparticles with multi-walled carbon nanotube, graphene oxide and specific antibody for PSA (Ab). Then, NCP incubated with (MIP(PSA, Myo)-SPE. The modified electrodes and synthesized nanoparticles were characterized using electrochemical impedance spectroscopy, dynamic light scattering, surface plasmon resonance and scanning electron microscopy. The limits of detections were found to be 5.4 pg mL-1 and 0.83 ng mL-1 with the linear dynamic ranges of 0.01-100 and 1-20000 ng mL-1 for PSA and Myo, respectively. The ability of proposed biosensor to detect PSA and Myo simultaneously with high sensitivity and specificity offers a powerful opportunity for the new generation of biosensors. This dual-analyte specific receptors-based device is highly desired for the integration with lab-on-chip kits to measure a wide panel of biomarkers present at ultralow levels during early stages of diseases progress.
Collapse
Affiliation(s)
- Pari Karami
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Johari-Ahar
- Biosensors and Bioelectronics Research Center (BBRC), Ardabil University of Medical Sciences, Ardabil, Iran; Department of Bioanalytical Sciences and Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hosein Khoshsafar
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
14
|
Salminen T, Juntunen E, Talha SM, Pettersson K. High-sensitivity lateral flow immunoassay with a fluorescent lanthanide nanoparticle label. J Immunol Methods 2019; 465:39-44. [DOI: 10.1016/j.jim.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 11/16/2022]
|
15
|
Improving the sensitivity of immunoassays by reducing non-specific binding of poly(acrylic acid) coated upconverting nanoparticles by adding free poly(acrylic acid). Mikrochim Acta 2018; 185:220. [DOI: 10.1007/s00604-018-2756-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/02/2018] [Indexed: 11/26/2022]
|
16
|
Näreoja T, Rosenholm JM, Lamminmäki U, Hänninen PE. Super-sensitive time-resolved fluoroimmunoassay for thyroid-stimulating hormone utilizing europium(III) nanoparticle labels achieved by protein corona stabilization, short binding time, and serum preprocessing. Anal Bioanal Chem 2017; 409:3407-3416. [PMID: 28303322 PMCID: PMC5395595 DOI: 10.1007/s00216-017-0284-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 11/29/2022]
Abstract
Thyrotropin or thyroid-stimulating hormone (TSH) is used as a marker for thyroid function. More precise and more sensitive immunoassays are needed to facilitate continuous monitoring of thyroid dysfunctions and to assess the efficacy of the selected therapy and dosage of medication. Moreover, most thyroid diseases are autoimmune diseases making TSH assays very prone to immunoassay interferences due to autoantibodies in the sample matrix. We have developed a super-sensitive TSH immunoassay utilizing nanoparticle labels with a detection limit of 60 nU L-1 in preprocessed serum samples by reducing nonspecific binding. The developed preprocessing step by affinity purification removed interfering compounds and improved the recovery of spiked TSH from serum. The sensitivity enhancement was achieved by stabilization of the protein corona of the nanoparticle bioconjugates and a spot-coated configuration of the active solid-phase that reduced sedimentation of the nanoparticle bioconjugates and their contact time with antibody-coated solid phase, thus making use of the higher association rate of specific binding due to high avidity nanoparticle bioconjugates. Graphical Abstract We were able to decrease the lowest limit of detection and increase sensitivity of TSH immunoassay using Eu(III)-nanoparticles. The improvement was achieved by decreasing binding time of nanoparticle bioconjugates by small capture area and fast circular rotation. Also, we applied a step to stabilize protein corona of the nanoparticles and a serum-preprocessing step with a structurally related antibody.
Collapse
Affiliation(s)
- Tuomas Näreoja
- Laboratory of Biophysics, Institute of Biomedicine and Medicity research laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, F46, Karolinska Universitetssjukhuset, Huddinge, 141 86, Stockholm, Sweden.
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of science and engineering, Åbo akademi University, Tykistökatu 6A, 20520, Turku, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Vatselankatu 2, 20500, Turku, Finland
| | - Pekka E Hänninen
- Laboratory of Biophysics, Institute of Biomedicine and Medicity research laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
17
|
Ye H, Yang K, Tao J, Liu Y, Zhang Q, Habibi S, Nie Z, Xia X. An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers. ACS NANO 2017; 11:2052-2059. [PMID: 28135070 DOI: 10.1021/acsnano.6b08232] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Enzyme-based colorimetric assays have been widely used in research laboratories and clinical diagnosis for decades. Nevertheless, as constrained by the performance of enzymes, their detection sensitivity has not been substantially improved in recent years, which inhibits many critical applications such as early detection of cancers. In this work, we demonstrate an enzyme-free signal amplification technique, based on gold vesicles encapsulated with Pd-Ir nanoparticles as peroxidase mimics, for colorimetric assay of disease biomarkers with significantly enhanced sensitivity. This technique overcomes the intrinsic limitations of enzymes, thanks to the superior catalytic efficiency of peroxidase mimics and the efficient loading and release of these mimics. Using human prostate surface antigen as a model biomarker, we demonstrated that the enzyme-free assay could reach a limit of detection at the femtogram/mL level, which is over 103-fold lower than that of conventional enzyme-based assay when the same antibodies and similar procedure were used.
Collapse
Affiliation(s)
- Haihang Ye
- Department of Chemistry, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Kuikun Yang
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20892, United States
| | - Jing Tao
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Yijing Liu
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20892, United States
| | - Qian Zhang
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20892, United States
| | - Sanaz Habibi
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory , Upton, New York 11973, United States
- Department of Chemical Engineering, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Zhihong Nie
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20892, United States
| | - Xiaohu Xia
- Department of Chemistry, Michigan Technological University , Houghton, Michigan 49931, United States
| |
Collapse
|
18
|
Improved cancer specificity in PSA assay using Aleuria aurantia lectin coated Eu-nanoparticles for detection. Clin Biochem 2017; 50:54-61. [DOI: 10.1016/j.clinbiochem.2016.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 01/02/2023]
|
19
|
Tang CK, Vaze A, Shen M, Rusling JF. High-Throughput Electrochemical Microfluidic Immunoarray for Multiplexed Detection of Cancer Biomarker Proteins. ACS Sens 2016; 1:1036-1043. [PMID: 27747294 DOI: 10.1021/acssensors.6b00256] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microchip-based microfluidic electrochemical arrays hold great promise for fast, high-throughput multiplexed detection of cancer biomarker proteins at low cost per assay using relatively simple instrumentation. Here we describe an inexpensive high-throughput electrochemical array featuring 32 individually addressable microelectrodes that is further multiplexed with an 8-port manifold to provide 256 sensors. The gold electrode arrays were fabricated by wet-etching commercial gold compact discs (CD-R) followed by patterned insulation. A print-and-peel method was used to create sub-microliter hydrophobic wells surrounding each sensor to eliminate cross contamination during immobilization of capture antibodies. High-throughput analyses were realized using eight 32-sensor immunoarrays connected to the miniaturized 8-port manifold, allowing 256 measurements in <1 h. This system was used to determine prostate cancer biomarker proteins prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), interleukin-6 (IL-6), and platelet factor-4 (PF-4) in serum. Clinically relevant detection limits (0.05 to 2 pg mL-1) and 5-decade dynamic ranges (sub pg mL-1 to well above ng mL-1) were achieved for these proteins utilizing precapture of analyte proteins on magnetic nanoparticles decorated with enzyme labels and antibodies.
Collapse
Affiliation(s)
| | | | | | - James F. Rusling
- Department
of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
- School
of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
20
|
Lai XH, Liang RL, Liu TC, Dong ZN, Wu YS, Li LH. A Fluorescence Immunochromatographic Assay Using Europium (III) Chelate Microparticles for Rapid, Quantitative and Sensitive Detection of Creatine Kinase MB. J Fluoresc 2016; 26:987-96. [DOI: 10.1007/s10895-016-1786-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/02/2016] [Indexed: 01/06/2023]
|
21
|
Steffen P, Kwiatkowski M, Robertson WD, Zarrine-Afsar A, Deterra D, Richter V, Schlüter H. Protein species as diagnostic markers. J Proteomics 2016; 134:5-18. [DOI: 10.1016/j.jprot.2015.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/28/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
|
22
|
Xia X, Zhang J, Lu N, Kim MJ, Ghale K, Xu Y, McKenzie E, Liu J, Ye H. Pd-Ir Core-Shell Nanocubes: A Type of Highly Efficient and Versatile Peroxidase Mimic. ACS NANO 2015; 9:9994-10004. [PMID: 26333816 DOI: 10.1021/acsnano.5b03525] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Peroxidase mimics with dimensions on the nanoscale have received great interest as emerging artificial enzymes for biomedicine and environmental protection. While a variety of peroxidase mimics have been actively developed recently, limited progress has been made toward improving their catalytic efficiency. In this study, we report a type of highly efficient peroxidase mimic that was engineered by depositing Ir atoms as ultrathin skins (a few atomic layers) on Pd nanocubes (i.e., Pd-Ir cubes). The Pd-Ir cubes exhibited significantly enhanced efficiency, with catalytic constants more than 20- and 400-fold higher than those of the initial Pd cubes and horseradish peroxidase (HRP), respectively. As a proof-of-concept demonstration, the Pd-Ir cubes were applied to the colorimetric enzyme-linked immunosorbent assay (ELISA) of human prostate surface antigen (PSA) with a detection limit of 0.67 pg/mL, which is ∼110-fold lower than that of the conventional HRP-based ELISA using the same set of antibodies and the same procedure.
Collapse
Affiliation(s)
- Xiaohu Xia
- Department of Chemistry, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Jingtuo Zhang
- Department of Chemistry, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Ning Lu
- Department of Materials Science and Engineering, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Moon J Kim
- Department of Materials Science and Engineering, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Kushal Ghale
- Department of Chemical Engineering, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Ye Xu
- Department of Chemical Engineering, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Erin McKenzie
- Department of Chemistry, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Jiabin Liu
- Department of Chemistry, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Haihang Ye
- Department of Chemistry, Michigan Technological University , Houghton, Michigan 49931, United States
| |
Collapse
|
23
|
Spain E, Gilgunn S, Sharma S, Adamson K, Carthy E, O'Kennedy R, Forster RJ. Detection of prostate specific antigen based on electrocatalytic platinum nanoparticles conjugated to a recombinant scFv antibody. Biosens Bioelectron 2015; 77:759-66. [PMID: 26513282 DOI: 10.1016/j.bios.2015.10.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/09/2015] [Accepted: 10/19/2015] [Indexed: 01/12/2023]
Abstract
Highly sensitive and label free detection of prostate specific antigen (PSA) still remains a challenge in prostate cancer diagnosis. In this paper, we propose a sensitive electrochemical immunosensor based on electrocatalytic platinum nanoparticles conjugated to a recombinant scFv antibody. Gold disc electrodes functionalised with a l-Cysteine (Cys) self-assembled monolayer (SAM) were used to covalently bind PSA specific monoclonal antibody (anti-PSA) using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) chemistry. Immunosensing was completed using sandwich-type immunoreaction of the PSA-antigen (1-30 ng/mL) between anti-PSA immobilized on the l-Cys modified electrode using label free electrochemical impedance (EIS) technique. Furthermore, highly specific in-house generated scFv fragments as receptor proteins were utilised for one step site-directed immobilisation on the surface of platinum nanoparticles (PtNPs). To improve the sensitivity of the immunoassay, these scFV labelled electrocatalytic PtNPs were then used for covalent hybridisation to the PSA modified electrode and then applied in a hybridisation assay to determine the concentration of the PSA by measuring the faradaic current associated with reduction of peroxide in solution. Semi-log plots of the PSA concentration vs. faradaic current are linear from 1 to 30 ng/mL and pM concentrations can be detected without the need for molecular, e.g., PCR or NASBA, amplification.
Collapse
Affiliation(s)
- Elaine Spain
- Biomedical Diagnostic Institute, Dublin City University, Dublin 9, Ireland; School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| | - Sarah Gilgunn
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Shikha Sharma
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Kellie Adamson
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Eadaoin Carthy
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Robert J Forster
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
24
|
Liang RL, Xu XP, Liu TC, Zhou JW, Wang XG, Ren ZQ, Hao F, Wu YS. Rapid and sensitive lateral flow immunoassay method for determining alpha fetoprotein in serum using europium (III) chelate microparticles-based lateral flow test strips. Anal Chim Acta 2015; 891:277-83. [PMID: 26388387 DOI: 10.1016/j.aca.2015.07.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
Alpha-fetoprotein (AFP), a primary marker for many diseases including various cancers, is important in clinical tumor diagnosis and antenatal screening. Most immunoassays provide high sensitivity and accuracy for determining AFP, but they are expensive, often complex, time-consuming procedures. A simple and rapid point-of-care system that integrates Eu (III) chelate microparticles with lateral flow immunoassay (LFIA) has been developed to determine AFP in serum with an assay time of 15 min. The approach is based on a sandwich immunoassay performed on lateral flow test strips. A fluorescence strip reader was used to measure the fluorescence peak heights of the test line (HT) and the control line (HC); the HT/HC ratio was used for quantitation. The Eu (III) chelate microparticles-based LFIA assay exhibited a wide linear range (1.0-1000 IU mL(-1)) for AFP with a low limit of detection (0.1 IU mL(-1)) based on 5ul of serum. Satisfactory specificity and accuracy were demonstrated and the intra- and inter-assay coefficients of variation (CV) for AFP were both <10%. Furthermore, in the analysis of human serum samples, excellent correlation (n = 284, r = 0.9860, p < 0.0001) was obtained between the proposed method and a commercially available CLIA kit. Results indicated that the Eu (III) chelate microparticles-based LFIA system provided a rapid, sensitive and reliable method for determining AFP in serum, indicating that it would be suitable for development in point-of-care testing.
Collapse
Affiliation(s)
- Rong-Liang Liang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xu-Ping Xu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Tian-Cai Liu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jian-Wei Zhou
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xian-Guo Wang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Zhi-Qi Ren
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Fen Hao
- DaAn Gene Co. Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Guangzhou 510515, PR China
| | - Ying-Song Wu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
25
|
Huang W, Chang CL, Chan BD, Jalal SI, Matei DE, Low PS, Savran CA. Concurrent Detection of Cellular and Molecular Cancer Markers Using an Immunomagnetic Flow System. Anal Chem 2015; 87:10205-12. [PMID: 26165381 DOI: 10.1021/acs.analchem.5b02215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a detection system for simultaneous measurement of cellular and molecular markers of cancer. Magnetic beads conjugated with antibodies against a specific antigen are used to capture both free molecules and whole cells overexpressing the antigen. The target-bound beads then flow through a microfluidic chamber where they are drawn to a glass surface by an external magnetic field. The cells and molecules captured on the surface are quantitatively analyzed using fluorescent microscopy. The system was characterized by detecting free folate receptor (FR) and an FR+ cancer cell line (KB) in culture media. The system detected as low as 10 pM of FR and captured 87% of the spiked KB cells at a volumetric throughput of 3 mL/min. We further demonstrated the detection of 100 KB cells and 200 pM FR spiked into healthy human blood to simulate detection of rare cells and protein biomarkers present in a cancer patient's blood sample. The FR concentration was measured to be 244 pM (including the intrinsic FR present in the blood), and the total number of KB cells in the sample was estimated to be 98. The potential of this approach in clinical diagnostics was also demonstrated by detecting both FR+ cells and free FR in an ascites sample obtained from an ovarian cancer patient. Because of the system's capability to detect multiple targets at the same time, its high throughput, and its overall simplicity, we expect it to be highly useful in a wide range of research settings.
Collapse
Affiliation(s)
| | | | | | - Shadia I Jalal
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States.,Indiana University Simon Cancer Center , Indianapolis, Indiana 46202, United States
| | - Daniela E Matei
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States.,Indiana University Simon Cancer Center , Indianapolis, Indiana 46202, United States
| | | | | |
Collapse
|
26
|
Gao A, Lu N, Dai P, Fan C, Wang Y, Li T. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays. NANOSCALE 2014; 6:13036-13042. [PMID: 25248104 DOI: 10.1039/c4nr03210a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.
Collapse
Affiliation(s)
- Anran Gao
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
27
|
Suaifan GARY, Shehadeh M, Al-Ijel H, Ng A, Zourob M. Recent progress in prostate-specific antigen and HIV proteases detection. Expert Rev Mol Diagn 2014; 13:707-18. [PMID: 24063398 DOI: 10.1586/14737159.2013.835576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteases mediate a wide variety of biological events and have a critical role in the development of many diseases. Protease detection methods can be hindered by the limitation of assay safety, sensitivity, specificity, time constraints and ease of on-site analysis. Notably, the implementation of various detection methods on biosensing platforms translates them into practical biosensing applications. Currently, the detection of prostate cancer and AIDS at the earliest occasion is one of the major research obstacles. Therefore, recent advances focus on the development of portable detection systems toward point-of-care testing. These detection systems should be highly sensitive and specific for the detection of their prognostic biomarkers, such as the prostate-specific antigen and HIV load assay for prostate cancer and AIDS, respectively. These methods will also facilitate decision-making on a treatment regimen.
Collapse
Affiliation(s)
- Ghadeer A R Y Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | | | | | | | | |
Collapse
|
28
|
Sakamoto S, Omagari K, Kita Y, Mochizuki Y, Naito Y, Kawata S, Matsuda S, Itano O, Jinno H, Takeuchi H, Yamaguchi Y, Kitagawa Y, Handa H. Magnetically Promoted Rapid Immunoreactions Using Functionalized Fluorescent Magnetic Beads: A Proof of Principle. Clin Chem 2014; 60:610-20. [DOI: 10.1373/clinchem.2013.211433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
BACKGROUND
Accurate detection and monitoring of disease-related biomarkers is important in understanding pathophysiology. We devised a rapid immunoreaction system that uses submicrometer polymer-coated fluorescent ferrite (FF) beads containing both ferrites (magnetic iron oxide) and fluorescent europium complexes.
METHODS
FF beads were prepared by encapsulation of hydrophobic europium complexes into the polymer layers of affinity magnetic beads using organic solvent. A sandwich immunoassay using magnetic collection of antibody-coated FF beads to a specific place was performed. Brain natriuretic peptide and prostate-specific antigen were selected as target detection antigens to demonstrate the feasibility of this approach. An immunohistochemical staining using magnetic collection of antibody-coated FF beads onto carcinoma cell samples was also performed.
RESULTS
The sandwich immunoassays, taking advantage of the magnetic collection of antibody-coated FF beads, detected target antigens within 5 min of sample addition. Without magnetic collection, the sandwich immunoassay using antibody-coated FF beads required long times, similar to conventional immunoassays. Using the magnetic collection of antibody-coated FF beads, immunohistochemical staining enabled discrimination of carcinoma cells within 20 min.
CONCLUSIONS
This proof of principle system demonstrates that immunoreactions involving the magnetic collection of antibody-coated FF beads allow acceleration of the antigen–antibody reaction. The simple magnetic collection of antibody-coated FF beads to a specific space enables rapid detection of disease-related biomarkers and identification of carcinoma cells.
Collapse
Affiliation(s)
- Satoshi Sakamoto
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kenshi Omagari
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshinori Kita
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yusuke Mochizuki
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasuyuki Naito
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shintaro Kawata
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Sachiko Matsuda
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Osamu Itano
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Hiromitsu Jinno
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroya Takeuchi
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yuki Yamaguchi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuko Kitagawa
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroshi Handa
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
29
|
Zhang P, Wang S. Designing Fractal Nanostructured Biointerfaces for Biomedical Applications. Chemphyschem 2014; 15:1550-61. [DOI: 10.1002/cphc.201301230] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Indexed: 01/23/2023]
|
30
|
Lang Q, Wang F, Yin L, Liu M, Petrenko VA, Liu A. Specific Probe Selection from Landscape Phage Display Library and Its Application in Enzyme-Linked Immunosorbent Assay of Free Prostate-Specific Antigen. Anal Chem 2014; 86:2767-74. [DOI: 10.1021/ac404189k] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Qiaolin Lang
- Laboratory for Biosensing, Qingdao Institute of Bioenergy & Bioprocess Technology, and Key Laboratory of Bioenergy, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Fei Wang
- Laboratory for Biosensing, Qingdao Institute of Bioenergy & Bioprocess Technology, and Key Laboratory of Bioenergy, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Long Yin
- Laboratory for Biosensing, Qingdao Institute of Bioenergy & Bioprocess Technology, and Key Laboratory of Bioenergy, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Mingjun Liu
- Department
of Clinical Laboratory, The Affiliated Hospital of Medical College, Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Valery A. Petrenko
- Department
of Pathobiology, Auburn University, 269 Greene Hall, Auburn, Alabama 36849-5519, United States
| | - Aihua Liu
- Laboratory for Biosensing, Qingdao Institute of Bioenergy & Bioprocess Technology, and Key Laboratory of Bioenergy, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
31
|
Vuojola J, Soukka T. Luminescent lanthanide reporters: new concepts for use in bioanalytical applications. Methods Appl Fluoresc 2014; 2:012001. [DOI: 10.1088/2050-6120/2/1/012001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Kumar V, Srivastava S, Umrao S, Kumar R, Nath G, Sumana G, Saxena PS, Srivastava A. Nanostructured palladium-reduced graphene oxide platform for high sensitive, label free detection of a cancer biomarker. RSC Adv 2014. [DOI: 10.1039/c3ra41986j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Näreoja T, Ebner A, Gruber HJ, Taskinen B, Kienberger F, Hänninen PE, Hytönen VP, Hinterdorfer P, Härmä H. Kinetics of bioconjugate nanoparticle label binding in a sandwich-type immunoassay. Anal Bioanal Chem 2013; 406:493-503. [PMID: 24264621 DOI: 10.1007/s00216-013-7474-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/16/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022]
Abstract
Nanoparticle labels have enhanced the performance of diagnostic, screening, and other measurement applications and hold further promise for more sensitive, precise, and cost-effective assay technologies. Nevertheless, a clear view of the biomolecular interactions on the molecular level is missing. Controlling the ratio of molecular recognition over undesired nonspecific adhesion is the key to improve biosensing with nanoparticles. To improve this ratio with an aim to disallow nonspecific binding, a more detailed perspective into the kinetic differences between the cases is needed. We present the application of two novel methods to determine complex binding kinetics of bioconjugate nanoparticles, interferometry, and force spectroscopy. Force spectroscopy is an atomic force microscopy technique and optical interferometry is a direct method to monitor reaction kinetics in second-hour timescale, both having steadily increasing importance in nanomedicine. The combination is perfectly suited for this purpose, due to the high sensitivity to detect binding events and the ability to investigate biological samples under physiological conditions. We have attached a single biofunctionalized nanoparticle to the outer tip apex and studied the binding behavior of the nanoparticle in a sandwich-type immunoassay using dynamic force spectroscopy in millisecond timescale. Utilization of the two novel methods allowed characterization of binding kinetics in a time range spanning from 50 ms to 4 h. These experiments allowed detection and demonstration of differences between specific and nonspecific binding. Most importantly, nonspecific binding of a nanoparticle was reduced at contact times below 100 ms with the solid-phase surface.
Collapse
Affiliation(s)
- Tuomas Näreoja
- Laboratory of Biophysics, Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hyytiä H, Ristiniemi N, Laitinen P, Lövgren T, Pettersson K. Extension of dynamic range of sensitive nanoparticle-based immunoassays. Anal Biochem 2013; 446:82-6. [PMID: 24211398 DOI: 10.1016/j.ab.2013.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 11/30/2022]
Abstract
Nanoparticles have successfully been employed in immunometric assays that require high sensitivity. Certain analytes, however, require dynamic ranges (DRs) around a predetermined cut-off value. Here, we have studied the effects that antibody orientation and addition of free solid-phase and detection antibodies have on assay sensitivity and DR in traditional sandwich-type immunoassays. D-dimer and cardiac troponin I (cTnI), both routinely used in critical care testing, were applied as model analytes. The assays were performed in microtitration wells with preimmobilized solid-phase antibody. Inherently fluorescent nanoparticles coated with second antibody were used to detect the analyte. The selection of antibody orientation and addition of free solid-phase or detection antibody, with nanoparticles and calibrator, desensitized the assays and extended the DR. With D-dimer the upper limit of the DR was improved from 50 to 10,000 ng/ml, and with cTnI from 25 to 1000 ng/ml. Regression analysis with the Stago STA Liatest D-dimer assay yielded a slope (95% confidence interval) of 0.09 (0.07-0.11) and a y-intercept of -7.79 (-17.87-2.29)ng/L (n=65, r=0.906). Thus it is concluded that Europium(III)-chelate-doped nanoparticles can also be employed in immunoassays that require wide DRs around a certain cut-off limit.
Collapse
Affiliation(s)
- Heidi Hyytiä
- Department of Biotechnology, University of Turku, 20520 Turku, Finland.
| | - Noora Ristiniemi
- Department of Biotechnology, University of Turku, 20520 Turku, Finland
| | - Päivi Laitinen
- HUSLAB, Department of Clinical Chemistry, Helsinki University Hospital, 00029 HUS Helsinki, Finland
| | - Timo Lövgren
- Department of Biotechnology, University of Turku, 20520 Turku, Finland
| | - Kim Pettersson
- Department of Biotechnology, University of Turku, 20520 Turku, Finland
| |
Collapse
|
35
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zherdeva VV, Savitsky AP. Using lanthanide-based resonance energy transfer for in vitro and in vivo studies of biological processes. BIOCHEMISTRY (MOSCOW) 2013; 77:1553-74. [DOI: 10.1134/s0006297912130111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
JIANG XIUFENG, ZHANG YE, MIAO XIAOFEI, LI ZENGHUI, BAO ZENGTAO, WANG TONG. Detection of IL-6 by magnetic nanoparticles grown with the assistance of mid-infrared lighting. Mol Med Rep 2012; 7:73-6. [DOI: 10.3892/mmr.2012.1136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/10/2012] [Indexed: 11/06/2022] Open
|
38
|
New luminescent oxygen-sensing and temperature-sensing materials based on gadolinium(III) and europium(III) complexes embedded in an acridone–polystyrene conjugate. Anal Bioanal Chem 2012; 404:2797-806. [DOI: 10.1007/s00216-012-6244-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/01/2012] [Accepted: 07/02/2012] [Indexed: 12/19/2022]
|
39
|
Huong TT, Tu VD, Anh TK, Vinh LT, Minh LQ. Fabrication and characterization of YVO4:Eu3+ nanomaterials by the micro-wave technique. J RARE EARTH 2011. [DOI: 10.1016/s1002-0721(10)60612-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Nagasaki Y. Construction of a densely poly(ethylene glycol)-chain-tethered surface and its performance. Polym J 2011. [DOI: 10.1038/pj.2011.93] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Nandhikonda P, Heagy MD. An abiotic fluorescent probe for cardiac troponin I. J Am Chem Soc 2011; 133:14972-4. [PMID: 21863849 DOI: 10.1021/ja205211a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first ratiometric fluorescent reporter was designed for the detection of cardiac troponin I (cTnI), a key protein elicited during cardiac muscle cell death. In designing this abiotic fluorescent probe, docking simulation studies were performed to predict the probe/protein interactions along the solvent exposed regions of cTnI. Simple cuvette titration experiments in aqueous buffered solution indicate remarkable selectivity for cardiac troponin in the clinically relevant nM region versus skeletal troponin.
Collapse
Affiliation(s)
- Premchendar Nandhikonda
- Department of Chemistry, New Mexico Institute of Mining & Technology, Socorro, New Mexico 87801, United States
| | | |
Collapse
|
42
|
Hagan AK, Zuchner T. Lanthanide-based time-resolved luminescence immunoassays. Anal Bioanal Chem 2011; 400:2847-64. [PMID: 21556751 PMCID: PMC3102841 DOI: 10.1007/s00216-011-5047-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 11/30/2022]
Abstract
The sensitive and specific detection of analytes such as proteins in biological samples is critical for a variety of applications, for example disease diagnosis. In immunoassays a signal in response to the concentration of analyte present is generated by use of antibodies labeled with radioisotopes, luminophores, or enzymes. All immunoassays suffer to some extent from the problem of the background signal observed in the absence of analyte, which limits the sensitivity and dynamic range that can be achieved. This is especially the case for homogeneous immunoassays and surface measurements on tissue sections and membranes, which typically have a high background because of sample autofluorescence. One way of minimizing background in immunoassays involves the use of lanthanide chelate labels. Luminescent lanthanide complexes have exceedingly long-lived luminescence in comparison with conventional fluorophores, enabling the short-lived background interferences to be removed via time-gated acquisition and delivering greater assay sensitivity and a broader dynamic range. This review highlights the potential of using lanthanide luminescence to design sensitive and specific immunoassays. Techniques for labeling biomolecules with lanthanide chelate tags are discussed, with aspects of chelate design. Microtitre plate-based heterogeneous and homogeneous assays are reviewed and compared in terms of sensitivity, dynamic range, and convenience. The great potential of surface-based time-resolved imaging techniques for biomolecules on gels, membranes, and tissue sections using lanthanide tracers in proteomics applications is also emphasized.
Collapse
Affiliation(s)
- A. K. Hagan
- Institute of Bioanalytical Chemistry, Center of Biotechnology and Biomedicine, Faculty of Chemistry and Mineralogy, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - T. Zuchner
- Institute of Bioanalytical Chemistry, Center of Biotechnology and Biomedicine, Faculty of Chemistry and Mineralogy, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
43
|
Martínez-Subiela S, Caldin M, Parra MD, Ottolini N, Bertolini G, Bernal LJ, García-Martinez JD, Cerón JJ. Canine C-Reactive Protein Measurements in Cerebrospinal Fluid by a Time-Resolved Immunofluorimetric Assay. J Vet Diagn Invest 2011; 23:63-7. [DOI: 10.1177/104063871102300109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the current study, the quantification of C-reactive protein (CRP) in cerebrospinal fluid (CSF) of dogs using an adapted time-resolved immunofluorimetric assay (TR-IFMA) was investigated, as well as whether the assay could be used to detect the range of CRP concentrations found in different clinical situations. Intra- and interassay coefficients of variation were below 15% in all cases. The TR-IFMA measured the CRP values in a proportional and linear manner ( r = 0.99); also CRP concentrations measured in CSF and in serum were significantly correlated ( r = 0.80, P = 0.003). The limit of detection of the method was 7.1 × 10−6 mg/l. The assay was able to detect differences in CRP concentrations in CSF of dogs with inflammatory disorders compared with dogs with spinal cord compression or idiopathic epilepsy. In conclusion, TR-IFMA constitutes a very sensitive, precise, and accurate method for the measurement of CRP concentrations in CSF.
Collapse
Affiliation(s)
- Silvia Martínez-Subiela
- Animal Medicine and Surgery Department, Faculty of Veterinary Medicine, Murcia University, Murcia, Spain
| | - Marco Caldin
- The San Marco Veterinary Hospital, Padova, Italy
| | - Maria Dolores Parra
- Animal Medicine and Surgery Department, Faculty of Veterinary Medicine, Murcia University, Murcia, Spain
| | | | | | - Luis J. Bernal
- Animal Medicine and Surgery Department, Faculty of Veterinary Medicine, Murcia University, Murcia, Spain
| | - Juan D. García-Martinez
- Animal Medicine and Surgery Department, Faculty of Veterinary Medicine, Murcia University, Murcia, Spain
| | - Jose J. Cerón
- Animal Medicine and Surgery Department, Faculty of Veterinary Medicine, Murcia University, Murcia, Spain
| |
Collapse
|
44
|
Chen YP, Ning B, Liu N, Feng Y, Liu Z, Liu X, Gao ZX. A rapid and sensitive fluoroimmunoassay based on quantum dot for the detection of chlorpyrifos residue in drinking water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2010; 45:508-515. [PMID: 20574871 DOI: 10.1080/03601234.2010.493476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A rapid and sensitive indirect competitive fluorescence-linked immunosorbent assay (cFLISA) method based on quantum dots as the fluorescence label coupled with secondary antibody (Ab(2)) for the detection of chlorpyrifos in drinking water has been developed. The cFLISA method allowed for chlorpyrifos determination in a liner working range of 15.2-205.5 ng mL(-1). The 50 % inhibition value (IC(50)) and the limit of detection (LOD) of the cFLISA were 50.2 ng mL(-1) and 8.4 ng mL(-1), while the IC(50) and the LOD of the conventional enzyme linked immunosorbent assay (ELISA) were 95.3 ng- mL(-1) and 16.2 ng mL(-1), respectively. When the concentrations of chlorpyrifos were 200, 100 and 50 ng mL(-1), the recoveries ranged from 90.8 % to 108.2 % with a coefficient of variation (CV) of 7.5 %-15.2 %. In water sample analysis, the results of cFLISA were similar to those obtained from a cELISA and a high performance liquid chromatography (HPLC) method, while the detection time by cFLISA was reduced 0.5 h compared with ELISA. It showed that cFLISA could be used as a new screening method for the detection of pesticide residue.
Collapse
Affiliation(s)
- Yi Ping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Miranda OR, Chen HT, You CC, Mortenson DE, Yang XC, Bunz UHF, Rotello VM. Enzyme-amplified array sensing of proteins in solution and in biofluids. J Am Chem Soc 2010; 132:5285-9. [PMID: 20329726 PMCID: PMC2855490 DOI: 10.1021/ja1006756] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have developed an enzyme-nanoparticle sensor array where the sensitivity is amplified through enzymatic catalysis. In this approach cationic gold nanoparticles are electrostatically bound to an enzyme (beta-galactosidase, beta-Gal), inhibiting enzyme activity. Analyte proteins release the beta-Gal, restoring activity and providing an amplified readout of the binding event. Using this strategy we have been able to identify proteins in buffer at a concentration of 1 nM, substantially lower than current strategies for array-based protein sensing. Moreover, we have obtained identical sensitivity in studies where the proteins are spiked into the complex protein matrix provided by desalted human urine ( approximately 1.5 muM total protein; spiked protein concentrations were 0.067% of the overall protein concentration), demonstrating the potential of the method for diagnostic applications.
Collapse
Affiliation(s)
- Oscar R. Miranda
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - Hung-Ting Chen
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - Chang-Cheng You
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - David E. Mortenson
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - Xiao-Chao Yang
- College of Bioengineering and Microsystem Research Center, Chongqing University, Chongqing 400044, China
| | - Uwe H. F. Bunz
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332,USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
| |
Collapse
|
46
|
Piletska EV, Piletsky SA. Size matters: influence of the size of nanoparticles on their interactions with ligands immobilized on the solid surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3783-3785. [PMID: 20151674 DOI: 10.1021/la904834y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The correlation between the size of biotinylated nanoparticles and their affinity in relation to interactions with the solid surface was investigated. The silica particles with a diameter of 50-200 nm containing amino groups on the surface were labeled with different quantities of biotin. The affinity properties of biotinylated nanoparticles were studied using a Biacore 3000 instrument equipped with a streptavidin-coated sensor chip (SA chip). It was shown that the increase in the particle size from 50 to 200 nm reduced the affinity (K(D)) of biotin-streptavidin interactions from 1.2 x 10(-12) to 1.2 x 10(-10) M. It was found that the particles with higher concentrations of immobilized biotin on particle surfaces demonstrated stronger binding with streptavidin.
Collapse
Affiliation(s)
- Elena V Piletska
- Cranfield Biotechnology Centre, Cranfield Health, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom.
| | | |
Collapse
|
47
|
Resch-Genger U, Grabolle M, Nitschke R, Nann T. Nanocrystals and Nanoparticles Versus Molecular Fluorescent Labels as Reporters for Bioanalysis and the Life Sciences: A Critical Comparison. ADVANCED FLUORESCENCE REPORTERS IN CHEMISTRY AND BIOLOGY II 2010. [DOI: 10.1007/978-3-642-04701-5_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Use of high-capacity surface with oriented recombinant antibody fragments in a 5-min immunoassay for thyroid-stimulating hormone. Anal Biochem 2010; 396:242-9. [DOI: 10.1016/j.ab.2009.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/29/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
|
49
|
Soukka T, Härmä H. Lanthanide Nanoparticules as Photoluminescent Reporters. LANTHANIDE LUMINESCENCE 2010. [DOI: 10.1007/4243_2010_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Jiang H, Wang G, Zhang W, Liu X, Ye Z, Jin D, Yuan J, Liu Z. Preparation and Time-Resolved Luminescence Bioassay Application of Multicolor Luminescent Lanthanide Nanoparticles. J Fluoresc 2009; 20:321-8. [DOI: 10.1007/s10895-009-0559-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 10/12/2009] [Indexed: 11/25/2022]
|