1
|
Tan J, Jin S, Huang L, Shao B, Wang Y, Wang Y, Zhang J, Su M, Tan J, Cheng Q, Xu Z. A capillary electrophoresis-based assay for carrier screening of the hotspot mutations in the CYP21A2 gene. Heliyon 2024; 10:e38222. [PMID: 39386847 PMCID: PMC11462337 DOI: 10.1016/j.heliyon.2024.e38222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Molecular genetic analysis of the cytochrome P450 family 21 subfamily A member 2 (CYP21A2) gene is challenging owing to the highly homologous with its pseudogene. A reliable approach for the large-scale population screening of CYP21A2 is required. This study aimed to establish and evaluate a capillary electrophoresis-based assay for hotspot mutation carrier screening of the CYP21A2 gene. A total of 22 different variants in the CYP21A2 gene were detected by a capillary electrophoresis-based assay consisting of single nucleotide primer extension (SNaPshot) and high-throughput ligation-dependent probe amplification (HLPA) in the Chinese population, and the results were validated by alternative methods. Among the 5376 subjects, 1.51 % (81/5376) individuals were identified as CYP21A2 pathogenic variant carriers, with a carrier rate of 1/66. A total of 11 different variants were identified, of which c.293-13A/C > G (33.33 %) was the most common variant, followed by c.844C > T (19.75 %), c.518T > A (19.75 %), and Del/Con (16.05 %). There was a 100 % concordance between capillary electrophoresis and alternative method results. Furthermore, a total of 63 individuals (1.17 %, 63/5376) carried the c.955C > T (p. Q319∗) variant, among which 61 (61/63, 96.83 %) had a duplicated CYP21A2 gene and are therefore not carriers of a CYP21A2 allele. In conclusion, the capillary electrophoresis-based assay is an accurate and effective approach for genotyping the CYP21A2 gene and has the potential for the large-scale population screening of CYP21A2.
Collapse
Affiliation(s)
- Juan Tan
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Shuping Jin
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Linxiang Huang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Binbin Shao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Yuguo Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Jingjing Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Min Su
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jianxin Tan
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Qing Cheng
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, People's Republic of China
| |
Collapse
|
2
|
Liu J, Tian H, Jin X, Wang Y, Zhang Z, Li M, Dai L, Zhang X, Jiang L. Targeted long-read sequencing identifies missing pathogenic variant in unsolved 11β-hydroxylase deficiency. BMC Endocr Disord 2024; 24:215. [PMID: 39402525 PMCID: PMC11472585 DOI: 10.1186/s12902-024-01748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND 11β-hydroxylase deficiency (11β-OHD), caused by homozygosity or compound heterozygosity CYP11B1 variants, is the second most common cause of congenital adrenal hyperplasia (CAH). Due to the high degree of sequence identity between CYP11B1 and CYP11B2, chimeric genes, and complex structural variants (SVs), the conventional approach to gene testing for 11β-OHD is facing challenges. The study aimed to clarify the underlying genetic causes of two siblings of a Chinese family with 11β-OHD. METHODS Peripheral blood samples and clinical information were collected from subjects and their family members. Sex steroid concentrations were measured using LC-MS/MS. Long-range PCR-based next-generation sequencing (NGS), PCR assay and target long-read sequencing were used to detect the pathogenic variants. RESULTS Early onset hypertension, increased serum levels of adrenocorticotropin (ACTH), progesterone, testosterone, and decreased cortisol and potassium were detected in both affected siblings. Long-range PCR-based NGS identified a heterozygous missense variant (NM_000497.4:c.281 C > T, p.P94> L) in CYP11B1 gene in the two siblings. PCR detected no chimeric CYP11B2/CYP11B1 gene. We finally identified a second pathogenic variant in CYP11B1 gene via target long-read sequencing (T-LRS). This novel variant was a deletion-insertion variant and located chr8:143957269-143,957,579 (hg19) with the insertion of 'ACAG' (NM_000497.4:c.954 + 78_980delinsACAG), which was in trans with CYP11B1: c.281 C > T. CONCLUSIONS Our study suggests that the integrated long-range PCR-based NGS and T-LRS seem to be the most reliable and accurate method for 11β-OHD genetic diagnosis and carrier sequencing.
Collapse
Affiliation(s)
- Jidong Liu
- Department of Endocrinology and Metabolism, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, P.R. China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong Province, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong Province, 250012, China
| | - Huihui Tian
- Jinan AXZE Medical Test Laboratory, Jinan, Shandong Province, 250101, China
| | - Xinchen Jin
- Jinan AXZE Medical Test Laboratory, Jinan, Shandong Province, 250101, China
| | - Yanxiang Wang
- Jinan AXZE Medical Test Laboratory, Jinan, Shandong Province, 250101, China
| | - Zhenhong Zhang
- Jinan AXZE Medical Test Laboratory, Jinan, Shandong Province, 250101, China
| | - Mengxue Li
- Jinan AXZE Medical Test Laboratory, Jinan, Shandong Province, 250101, China
| | - Lulu Dai
- Jinan AXZE Medical Test Laboratory, Jinan, Shandong Province, 250101, China
| | - Xiaoli Zhang
- Department of Endocrinology and Metabolism, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, P.R. China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong Province, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong Province, 250012, China.
| | - Ling Jiang
- Department of Endocrinology and Metabolism, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, P.R. China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong Province, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
3
|
Shi M, Ma Y, Peng X, Zhou X, Cheng Z, Xie B, Wei X, Gui C, Mao A, Lin W, Luo J, Lai Y, Gui B. Clinical validation and application of targeted long-range polymerase chain reaction and long-read sequencing-based analysis for hemophilia: experience from a hemophilia treatment center in China. J Thromb Haemost 2024:S1538-7836(24)00499-9. [PMID: 39260745 DOI: 10.1016/j.jtha.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Targeted long-read sequencing (LRS) is expected to comprehensively analyze diverse complex variants in hemophilia A (HA) and hemophilia B (HB) caused by the F8 and F9 genes, respectively. However, its clinical applicability still requires extensive validation. OBJECTIVES To evaluate the clinical applicability of targeted LRS-based analysis compared with routine polymerase chain reaction (PCR)-based methods. METHODS Gene variants of retrieved subjects were retrospectively and prospectively analyzed. Whole-genome sequencing was performed to further analyze undiagnosed cases. Breakpoints of novel genomic rearrangements were mapped and validated using long-distance PCR and long-range PCR combined with sequencing. RESULTS In total, 122 subjects were retrieved. In retrospective analysis of the 90 HA cases, HA-LRS assay showed consistent results in 84 cases compared with routine methods and characterized 6 large deletions with their exact breakpoints confirmed by further validation in 6 cases (routine methods only presented failure in amplifying the involved exons). In prospective analysis of the 21 HA subjects, 20 variants of F8 were identified in 20 cases. For the remaining HA patient, no duplication/deletion or single-nucleotide variant (SNV)/insertion and deletion (InDel) was found, but a potential recombination involving exons 14 and 21 of F8 was observed by LRS. Whole-genome sequencing analysis and further verification defined a 30 478 base pairs (bp) tandem repeat involving exons 14 to 21 of F8. Among the 11 HB patients, HB-LRS analysis detected 11 SNVs/InDels in F9, consistent with routine methods. CONCLUSION Targeted LRS-based analysis was efficient and comprehensive in identifying SNVs/InDels and genomic rearrangements of hemophilia genes, especially when we first expanded the panel to include F9. However, further investigation for complex gross rearrangement is still essential.
Collapse
Affiliation(s)
- Meizhen Shi
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yunting Ma
- The Second School of Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xianwei Peng
- Department of Hematology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Zhou
- The Second School of Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zifeng Cheng
- The Second School of Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Bobo Xie
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xianda Wei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chunrong Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, China
| | - Wenting Lin
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Yinghui Lai
- Department of Hematology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Baoheng Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; The Second School of Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
4
|
Yuan D, Cai R, Mao A, Tan J, Zhong Q, Zeng D, Tang N, Wei X, Huang J, Zhang Y, Chen D, Yang J, Li Y, Zheng X, Li J, Li D, Yan T. Improved Genetic Characterization of Congenital Adrenal Hyperplasia by Long-Read Sequencing Compared with Multiplex Ligation-Dependent Probe Amplification Plus Sanger Sequencing. J Mol Diagn 2024; 26:770-780. [PMID: 38925455 DOI: 10.1016/j.jmoldx.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Genetic analysis of congenital adrenal hyperplasia (CAH) has been challenging because of high homology between CYP21A2 and its pseudogene CYP21A1P. This study aimed to evaluate the clinical utility of long-read sequencing (LRS) in diagnosis of CAH attributable to 21-hydroxylase deficiency by comparing with multiplex ligation-dependent probe amplification plus Sanger sequencing. In this retrospective study, 69 samples, including 49 probands from 47 families with high-risk of CAH, were enrolled and blindly subjected to detection of CAH by LRS. The genotype results were compared with control methods, and discordant samples were validated by additional Sanger sequencing. LRS successfully identified biallelic variants of CYP21A2 in the 39 probands diagnosed as having CAH. The remaining 10 probands were not patients with CAH. Additionally, LRS directly identified two pathogenic single-nucleotide variations (SNVs; c.293-13C/A>G and c.955C>T) in the presence of interference caused by nearby insertions/deletions (indels). The cis-trans configuration of two or more SNVs and indels identified in 18 samples was directly determined by LRS without family analysis. Eight CYP21A1P/A2 or TNXA/B deletion chimeras, composed of five subtypes, were identified; and the junction sites were precisely determined. Moreover, LRS determined the exact genotype in two probands who had three heterozygous SNVs/indels and duplication, which could not be clarified by control methods. These findings highlight that LRS could assist in more accurate genotype imputation and more precise CAH diagnosis.
Collapse
Affiliation(s)
- Dejian Yuan
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China; Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Ren Cai
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Aiping Mao
- Department of Research and Development, Berry Genomics Corp., Beijing, China
| | - Jianqiang Tan
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Qingyan Zhong
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Dingyuan Zeng
- Department of Gynecology, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou 545001, Guangxi, China
| | - Ning Tang
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Xiaobao Wei
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Jun Huang
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Yu Zhang
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Dayu Chen
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Jinling Yang
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Yuanxiu Li
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Xiudan Zheng
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Jiaqi Li
- Department of Research and Development, Berry Genomics Corp., Beijing, China
| | - Danhua Li
- Department of Research and Development, Berry Genomics Corp., Beijing, China
| | - Tizhen Yan
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China; Department of Prenatal Diagnosis Center, Dongguan Maternal and Child Health Hospital, Dongguan, China.
| |
Collapse
|
5
|
Ling X, Pan L, Li L, Huang Y, Wang C, Huang C, Long Y, Zhai N, Xiao Q, Luo J, Tang R, Meng L, Huang Y. Detection of hemophilia A genetic variants using third-generation long-read sequencing. Clin Chim Acta 2024; 562:119884. [PMID: 39038592 DOI: 10.1016/j.cca.2024.119884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Hemophilia A (HA) is an X-linked recessive genetic disorder caused by pathogenic variations of the factor VIII -encoding gene, F8 gene. Due to the large size and diverse types of variations in the F8 gene, causative mutations in F8 cannot be simultaneously detected in one step by traditional molecular analysis, and genetic molecular diagnosis and prenatal screening of HA still face significant difficulties and challenges in clinical practice. Therefore, we aimed to develop and validate an efficient, accurate, and time-saving method for the genetic detection of HA. METHODS A comprehensive analysis of hemophilia A (CAHEA) method based on long-range PCR and long-read sequencing (LRS) was used to detect F8 gene mutations in 14 clinical HA samples. The LRS results were compared with those of the conventional methods to evaluate the accuracy and sensitivity of the proposed approach. RESULTS The CAHEA method successfully identified 14 F8 variants in all probands, including 3 small insertion deletions, 4 single nucleotide variants, and 7 intron 22 inversions in a "one-step" manner, of which 2 small deletions have not been reported previously. Moreover, this method provided an opportunity to analyze the mechanism of rearrangement and the pathogenicity of F8 variants. The LRS results were validated and found to be in 100% agreement with those obtained using the conventional method. CONCLUSION Our proposed LRS-based F8 gene detection method is an accurate and reproducible genetic screening and diagnostic method with significant clinical value. It provides efficient, comprehensive, and accurate genetic screening and diagnostic services for individuals at high risk of HA as well as for premarital and prenatal populations.
Collapse
Affiliation(s)
- Xiaoting Ling
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Liqiu Pan
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Linlin Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Yunhua Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Chenghan Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Chaoyu Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Yan Long
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Ningneng Zhai
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Qingxing Xiao
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Jiaqi Luo
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Rongheng Tang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Li Meng
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Yifang Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China.
| |
Collapse
|
6
|
Huang Q, Wang Z, Teng Y, Zhang W, Wen J, Zhu H, Liang D, Wu L, Li Z. Application of whole exome sequencing in carrier screening for high-risk families without probands. Front Genet 2024; 15:1415811. [PMID: 38978874 PMCID: PMC11228263 DOI: 10.3389/fgene.2024.1415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose This study aimed to screen the genetic etiology for the high-risk families including those with an adverse pregnancy history, a history of consanguineous marriages, or a history of genetic diseases, but lack of proband via whole exome sequencing (WES). Methods 128 individuals from high-risk family were tested by WES. The candidate variants were analyzed according to the ACMG criteria to screen the potential carriers. At-risk couples (ARCs) who harbored the same causative gene were provided with precise fertility guidance to avoid the birth of children with birth defects. Results The total detection rate was 36.72%, with pathogenic/likely pathogenic (P/LP) variants found in 47 individuals, and variants of uncertain significance (VUS) were found in 34. Among couples with adverse pregnancy history: P/LP variants were found in 38 individuals, and VUS were found in 26, for a detection rate of 34.55%; among members of family history of genetic disease or consanguineous marriages: P/LP variants were found in nine individuals, and VUS were found in 8, for a detection rate of 50.00%. Otherwise, we detected 19 ARCs who both carried P/LP variants in the same gene, with a theoretical offspring prevalence of up to 7.42%. Conclusion In the absence of probands, carrier screening using WES can provide an efficient tool for screening the molecular etiology of high-risk families.
Collapse
Affiliation(s)
- Qinlin Huang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Zhongjie Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Wen Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Juan Wen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Huimin Zhu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
7
|
Xu D, Mao A, Chen L, Wu L, Ma Y, Mei C. Comprehensive Analysis of PKD1 and PKD2 by Long-Read Sequencing in Autosomal Dominant Polycystic Kidney Disease. Clin Chem 2024; 70:841-854. [PMID: 38527221 DOI: 10.1093/clinchem/hvae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/23/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by heterogeneous variants in the PKD1 and PKD2 genes. Genetic analysis of PKD1 has been challenging due to homology with 6 PKD1 pseudogenes and high GC content. METHODS A single-tube multiplex long-range-PCR and long-read sequencing-based assay termed "comprehensive analysis of ADPKD" (CAPKD) was developed and evaluated in 170 unrelated patients by comparing to control methods including next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification. RESULTS CAPKD achieved highly specific analysis of PKD1 with a residual noise ratio of 0.05% for the 6 pseudogenes combined. CAPKD identified PKD1 and PKD2 variants (ranging from variants of uncertain significance to pathogenic) in 160 out of the 170 patients, including 151 single-nucleotide variants (SNVs) and insertion-deletion variants (indels), 6 large deletions, and one large duplication. Compared to NGS, CAPKD additionally identified 2 PKD1 variants (c.78_96dup and c.10729_10732dup). Overall, CAPKD increased the rate of variant detection from 92.9% (158/170) to 94.1% (160/170), and the rate of diagnosis with pathogenic or likely pathogenic variants from 82.4% (140/170) to 83.5% (142/170). CAPKD also directly determined the cis-/trans-configurations in 11 samples with 2 or 3 SNVs/indels, and the breakpoints of 6 large deletions and one large duplication, including 2 breakpoints in the intron 21 AG-repeat of PKD1, which could only be correctly characterized by aligning to T2T-CHM13. CONCLUSIONS CAPKD represents a comprehensive and specific assay toward full characterization of PKD1 and PKD2 variants, and improves the genetic diagnosis for ADPKD.
Collapse
Affiliation(s)
- Dechao Xu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Aiping Mao
- Department of Third-Generation Sequencing, Berry Genomics Corporation, Beijing, China
| | - Libao Chen
- Department of Third-Generation Sequencing, Berry Genomics Corporation, Beijing, China
| | - Le Wu
- Department of Third-Generation Sequencing, Berry Genomics Corporation, Beijing, China
| | - Yiyi Ma
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Changlin Mei
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Yin X, Lin Y, Zhang T, Miao H, Hu L, Hu Z, Zhou D, Wu B, Huang X. Rapid detection of common variants and deletions of CYP21A2 using MALDI-TOF MS. Eur J Med Genet 2024; 69:104950. [PMID: 38830573 DOI: 10.1016/j.ejmg.2024.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Newborn screening (NBS) for congenital adrenal hyperplasia (CAH) based on hormonal testing is successfully implemented in many countries. However, this method cannot detect non-classic CAH and has high false positive rates. We have developed a novel MALDI-TOF MS assay that can identify common variants and deletions of CYP21A2 in the Chinese population. Thirty-seven clinical patients with CAH confirmed by Sanger sequencing and MLPA analysis were detected by MALDI-TOF MS assay. Two CYP21A2 variants were detected in 30 patients and one CYP21A2 variant was detected in 7 patients. The MALDI-TOF MS assay detected 67 mutant alleles in 37 patients with a detection rate of 90.5%. Sanger sequencing revealed that three variants in seven patients were not included in the designed panel. Eleven distinct CYP21A2 variants were identified, including five missense variants, two nonsense variants, two large gene deletions, one splice variant, and one frameshift variant. The most frequent variant was c.293-13C > G (37.84%), followed by c.518T > A (21.62%) and exon 1-7 deletion (17.57%). The high-throughput MALDI-TOF MS assay that can simultaneously detect common variants and deletions of CYP21A2. This assay can be used for population-based genetic screening and rapid detection of suspected patients, and is expected to be a valuable complement to biochemical-based testing for the detection of CAH.
Collapse
Affiliation(s)
- Xiaoshan Yin
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China; Department of Clinical Psychology, School of Health in Social Science, The University of Edinburg, Edinburg, United Kingdom
| | - Yiming Lin
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China; Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Ting Zhang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haixia Miao
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhenzhen Hu
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dou Zhou
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Benqing Wu
- Children's Medical Center, University of Chinese Academy of Science - Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
9
|
Zhang X, Gao Y, Lu L, Cao Y, Zhang W, Sun B, Wu X, Tong A, Chen S, Wang X, Mao J, Nie M. Targeted long-read sequencing for comprehensive detection of CYP21A2 mutations in patients with 21-hydroxylase deficiency. J Endocrinol Invest 2024; 47:833-841. [PMID: 37815751 DOI: 10.1007/s40618-023-02197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND 21-Hydroxylase deficiency (21-OHD) is caused by pathogenic CYP21A2 variations. CYP21A2 is arranged in tandem with its highly homologous pseudogene CYP21A1P; therefore, it is prone to mismatch and rearrangement, producing different types of complex variations. There were few reports on using only one method to detect different CYP21A2 variants simultaneously. AIMS Targeted long-read sequencing method was used to detect all types of CYP21A2 variants in a series of patients with 21-OHD. METHODS A total of 59 patients with 21-OHD were enrolled from Peking Union Medical College Hospital. Long-range locus-specific PCR and long-read sequencing (LRS) were performed to detect the pathogenic variants in CYP21A2. RESULTS Copy-number variants of CYP21A2 were found in 25.4% of patients, including 5.1% with 3 copies of CYP21A2, 16.9% with 1 copy of CYP21A2, and 3.4% with 0 copy of CYP21A2. The remaining 74.6% of patients had 2 copies of CYP21A2. Pathogenic variants were identified in all 121 alleles of 59 patients. Specifically, single-nucleotide variants and small insertions/deletions (< 50 bp) were detected in 79 alleles, of which conversed from CYP21A1P were detected in 63 alleles, and rare variants were found in the other 16 alleles. Large gene conversions (> 50 bp) from pseudogene were detected in 10 alleles, and different chimeric genes (CYP21A1P/CYP21A2 or TNXA/TNXB) formed by large deletions were detected in 32 alleles. Of all variants, p.I173N was the most common variant (19.0%). CONCLUSIONS Our study demonstrated that targeted long-read sequencing is a comprehensive method for detecting CYP21A2 variations, which is helpful for genetic diagnosis in 21-OHD patients.
Collapse
Affiliation(s)
- X Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission (NHC), Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Y Gao
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission (NHC), Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - L Lu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission (NHC), Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Y Cao
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission (NHC), Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - W Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission (NHC), Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - B Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission (NHC), Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - X Wu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission (NHC), Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - A Tong
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission (NHC), Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - S Chen
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission (NHC), Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - X Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission (NHC), Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - J Mao
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission (NHC), Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - M Nie
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission (NHC), Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Shen J, Ding T, Sun X, Yang J, Zhang Y, Wang J, Ge M, Xu H, Xie J, Wang F, Diao F. Comprehensive analysis of genomic complexity in the 5' end coding region of the DMD gene in patients of exons 1-2 duplications based on long-read sequencing. BMC Genomics 2024; 25:292. [PMID: 38504154 PMCID: PMC10949565 DOI: 10.1186/s12864-024-10224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Dystrophinopathies are the most common X-linked inherited muscle diseases, and the disease-causing gene is DMD. Exonic duplications are a common type of pathogenic variants in the DMD gene, however, 5' end exonic duplications containing exon 1 are less common. When assessing the pathogenicity of exonic duplications in the DMD gene, consideration must be given to their impact on the reading frame. Traditional molecular methods, such as multiplex ligation-dependent probe amplification (MLPA) and next-generation sequencing (NGS), are commonly used in clinics. However, they cannot discriminate the precise physical locations of breakpoints and structural features of genomic rearrangement. Long-read sequencing (LRS) can effectively overcome this limitation. RESULTS We used LRS technology to perform whole genome sequencing on three families and analyze the structural variations of the DMD gene, which involves the duplications of exon 1 and/or exon 2. Two distinct variant types encompassing exon 1 in the DMD Dp427m isoform and/or Dp427c isoform are identified, which have been infrequently reported previously. In pedigree 1, the male individuals harboring duplication variant of consecutive exons 1-2 in the DMD canonical transcript (Dp427m) and exon 1 in the Dp427c transcript are normal, indicating the variant is likely benign. In pedigree 3, the patient carries complex SVs involving exon 1 of the DMD Dp427c transcript showing an obvious phenotype. The locations of the breakpoints and the characteristics of structural variants (SVs) are identified by LRS, enabling the classification of the variants' pathogenicity. CONCLUSIONS Our research sheds light on the complexity of DMD variants encompassing Dp427c/Dp427m promoter regions and emphasizes the importance of cautious interpretation when assessing the pathogenicity of DMD 5' end exonic duplications, particularly in carrier screening scenarios without an affected proband.
Collapse
Affiliation(s)
- Jiandong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, Nanjing, 210029, China.
| | - Taoli Ding
- Yikon Genomics Company, Ltd, Jiangsu Province, Suzhou, 215000, China
| | - Xueping Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, Nanjing, 210029, China
| | - Ji Yang
- Yikon Genomics Company, Ltd, Jiangsu Province, Suzhou, 215000, China
| | - Yue Zhang
- Yikon Genomics Company, Ltd, Jiangsu Province, Suzhou, 215000, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, Nanjing, 210029, China
| | - Mengdi Ge
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, Nanjing, 210029, China
| | - Heng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, Nanjing, 210029, China
| | - Jiazi Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, Nanjing, 210029, China
| | - Fei Wang
- Yikon Genomics Company, Ltd, Jiangsu Province, Suzhou, 215000, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, Nanjing, 210029, China.
| |
Collapse
|
11
|
Olivucci G, Iovino E, Innella G, Turchetti D, Pippucci T, Magini P. Long read sequencing on its way to the routine diagnostics of genetic diseases. Front Genet 2024; 15:1374860. [PMID: 38510277 PMCID: PMC10951082 DOI: 10.3389/fgene.2024.1374860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical application of technological progress in the identification of DNA alterations has always led to improvements of diagnostic yields in genetic medicine. At chromosome side, from cytogenetic techniques evaluating number and gross structural defects to genomic microarrays detecting cryptic copy number variants, and at molecular level, from Sanger method studying the nucleotide sequence of single genes to the high-throughput next-generation sequencing (NGS) technologies, resolution and sensitivity progressively increased expanding considerably the range of detectable DNA anomalies and alongside of Mendelian disorders with known genetic causes. However, particular genomic regions (i.e., repetitive and GC-rich sequences) are inefficiently analyzed by standard genetic tests, still relying on laborious, time-consuming and low-sensitive approaches (i.e., southern-blot for repeat expansion or long-PCR for genes with highly homologous pseudogenes), accounting for at least part of the patients with undiagnosed genetic disorders. Third generation sequencing, generating long reads with improved mappability, is more suitable for the detection of structural alterations and defects in hardly accessible genomic regions. Although recently implemented and not yet clinically available, long read sequencing (LRS) technologies have already shown their potential in genetic medicine research that might greatly impact on diagnostic yield and reporting times, through their translation to clinical settings. The main investigated LRS application concerns the identification of structural variants and repeat expansions, probably because techniques for their detection have not evolved as rapidly as those dedicated to single nucleotide variants (SNV) identification: gold standard analyses are karyotyping and microarrays for balanced and unbalanced chromosome rearrangements, respectively, and southern blot and repeat-primed PCR for the amplification and sizing of expanded alleles, impaired by limited resolution and sensitivity that have not been significantly improved by the advent of NGS. Nevertheless, more recently, with the increased accuracy provided by the latest product releases, LRS has been tested also for SNV detection, especially in genes with highly homologous pseudogenes and for haplotype reconstruction to assess the parental origin of alleles with de novo pathogenic variants. We provide a review of relevant recent scientific papers exploring LRS potential in the diagnosis of genetic diseases and its potential future applications in routine genetic testing.
Collapse
Affiliation(s)
- Giulia Olivucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Iovino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Innella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
12
|
Zhang R, Cui D, Song C, Ma X, Cai N, Zhang Y, Feng M, Cao Y, Chen L, Qiang R. Evaluating the efficacy of a long-read sequencing-based approach in the clinical diagnosis of neonatal congenital adrenocortical hyperplasia. Clin Chim Acta 2024; 555:117820. [PMID: 38307397 DOI: 10.1016/j.cca.2024.117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders predominantly characterized by impaired corticosteroid synthesis. Clinical phenotypes include hypoadrenocorticism, electrolyte disturbances, abnormal gonadal development, and short stature, of which severe hyponadrenocorticism and salt wasting can be life-threatening. Genetic analysis can help in the clinical diagnosis of CAH. However, the 21-OHD-causing gene CYP21A2 is arranged in tandem with the highly homologous CYP21A1P pseudogene, making it difficult to determine the exact genotypes using the traditional method of multiplex ligation-dependent probe amplification (MLPA) plus Sanger sequencing or next-generation sequencing (NGS). We applied a long-read sequencing-based approach termed comprehensive analysis of CAH (CACAH) to 48 newborns with CAH that were diagnosed by clinical features and the traditional MLPA plus Sanger sequencing method for retrospective analysis, to evaluate its efficacy in the clinical diagnosis of neonatal CAH. Compared with the MLPA plus Sanger sequencing method, CACAH showed 100 % consistency in detecting SNV/indel variants located in exons and exon-intron boundary regions of CAH-related genes. It can directly determine the cis-trans relationship without the need to analyze parental genotypes, which reduces the time to diagnosis. Moreover, CACAH was able to distinguish different CYP21A1P/CYP21A2 and TNXA/TNXB chimeras, and detect additional variants (CYP21A2 variants c.-121C > T, c.*13G > A, c.*52C > T, c.*440C > T, c.*443 T > C, and TNXB variants c.12463 + 2 T > C, c.12204 + 5G > A). We also identified the TNXB variant c.11435_11524 + 30del alone instead of as a part of the TNXA/TNXB-CH-1 chimera in two newborns, which might be introduced by gene conversion. All of these characteristics enabled clinicians to better explain the phenotype of subjects and manage them more effectively. CACAH has a great advantage over the traditional MLPA and Sanger sequencing methods, showing substantial potential in the genetic diagnosis and screening of neonatal CAH.
Collapse
Affiliation(s)
- Ruixue Zhang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Di Cui
- Berry Genomics Corporation, Beijing 102200, China
| | - Chengrong Song
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Xiaoping Ma
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Na Cai
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Yan Zhang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Mei Feng
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Yanlin Cao
- Berry Genomics Corporation, Beijing 102200, China
| | - Libao Chen
- Berry Genomics Corporation, Beijing 102200, China
| | - Rong Qiang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China.
| |
Collapse
|
13
|
Xu Z, Hu L, Liu Y, Peng C, Zeng G, Zeng L, Yang M, Linpeng S, Bu X, Jiang X, Xie T, Chen L, Zhou S, He J. Comparison of Third-Generation Sequencing and Routine Polymerase Chain Reaction in Genetic Analysis of Thalassemia. Arch Pathol Lab Med 2024; 148:336-344. [PMID: 37270807 DOI: 10.5858/arpa.2022-0299-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 06/06/2023]
Abstract
CONTEXT.— Thalassemia is the most widely distributed monogenic autosomal recessive disorder in the world. Accurate genetic analysis of thalassemia is crucial for thalassemia prevention. OBJECTIVE.— To compare the clinical utility of a third-generation sequencing-based approach termed comprehensive analysis of thalassemia alleles with routine polymerase chain reaction (PCR) in genetic analysis of thalassemia and explore the molecular spectrum of thalassemia in Hunan Province. DESIGN.— Subjects in Hunan Province were recruited, and hematologic testing was performed. Five hundred four subjects positive on hemoglobin testing were then used as the cohort, and third-generation sequencing and routine PCR were used for genetic analysis. RESULTS.— Of the 504 subjects, 462 (91.67%) had the same results, whereas 42 (8.33%) exhibited discordant results between the 2 methods. Sanger sequencing and PCR testing confirmed the results of third-generation sequencing. In total, third-generation sequencing correctly detected 247 subjects with variants, whereas PCR identified 205, which showed an increase in detection of 20.49%. Moreover, α triplications were identified in 1.98% (10 of 504) hemoglobin testing-positive subjects in Hunan Province. Seven hemoglobin variants with potential pathogenicity were detected in 9 hemoglobin testing-positive subjects. CONCLUSIONS.— Third-generation sequencing is a more comprehensive, reliable, and efficient approach for genetic analysis of thalassemia than PCR, and allowed for a characterization of the thalassemia spectrum in Hunan Province.
Collapse
Affiliation(s)
- Zhen Xu
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Lanping Hu
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Yinyin Liu
- Berry Genomics Corporation, Beijing, China (Liu, Xie, Chen)
| | - Can Peng
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Guo Zeng
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Li Zeng
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Mengyue Yang
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Siyuan Linpeng
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Xiufen Bu
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Xuanyu Jiang
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Tiantian Xie
- Berry Genomics Corporation, Beijing, China (Liu, Xie, Chen)
| | - Libao Chen
- Berry Genomics Corporation, Beijing, China (Liu, Xie, Chen)
| | - Shihao Zhou
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Jun He
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| |
Collapse
|
14
|
Adachi E, Nakagawa R, Tsuji-Hosokawa A, Gau M, Kirino S, Yogi A, Nakatani H, Takasawa K, Yamaguchi T, Kosho T, Murakami M, Tajima T, Hasegawa T, Yamada T, Morio T, Ohara O, Kashimada K. A MinION-based Long-Read Sequencing Application With One-Step PCR for the Genetic Diagnosis of 21-Hydroxylase Deficiency. J Clin Endocrinol Metab 2024; 109:750-760. [PMID: 37804107 DOI: 10.1210/clinem/dgad577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
CONTEXT Recently developed long-read sequencing (LRS) technology has been considered an option for CYP21A2 analysis. However, the clinical use of LRS for CYP21A2 analysis is limited. OBJECTIVE This study's objective is to develop an efficient and low-cost LRS system for CYP21A2 screening. METHODS A DNA fragment library was prepared in a single polymerase chain reaction (PCR) that covers the entire CYP21A2 gene and all known junctions caused by TNXB gene structural rearrangements, yielding a single 8-kb product of CYP21A2 or CYP21A1P/CYP21A2 chimera. After barcoding, the PCR products were sequenced on a MinION-based platform with Flongle Flow Cell R9.4.1 and R10.4.1. RESULTS The reference genotypes of 55 patients with 21-hydroxylase deficiency (21OHD) were established using the conventional method with multiplex ligation-dependent probe amplification (MLPA) and nested PCR. LRS using Flongle Flow Cell R9.4.1 yielded consistent results. Additionally, the recently updated LRS "duplex" analysis with Flongle flow cell R10.4.1 was tested to reveal an advantage of accurately sequencing a variant located on the homopolymer region. By introducing a barcode system, the cost was reduced to be comparable to that of conventional analysis. A novel single-nucleotide variation was discovered at the acceptor site of intron 7, c.940-1G > C. We also identified a subtype of the classical chimeric junction CH2, "CH2a," in the region from the latter part of intron 5 to exon 6. CONCLUSION We successfully established a novel low-cost and highly accurate LRS system for 21OHD genetic analysis. Our study provides insight into the feasibility of LRS for diagnosing 21OHD and other genetic diseases caused by structural rearrangements.
Collapse
Affiliation(s)
- Eriko Adachi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Ryuichi Nakagawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Atsumi Tsuji-Hosokawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Maki Gau
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Shizuka Kirino
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Analia Yogi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hisae Nakatani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Kei Takasawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Tomomi Yamaguchi
- Center for Medical Genetics, Shinshu University Hospital, Nagano 390-8621, Japan
- Department of Medical Genetics, Shinshu University School of Medicine, Nagano 390-8621, Japan
- Division of Clinical Sequencing, Shinshu University School of Medicine, Nagano 390-8621, Japan
| | - Tomoki Kosho
- Center for Medical Genetics, Shinshu University Hospital, Nagano 390-8621, Japan
- Department of Medical Genetics, Shinshu University School of Medicine, Nagano 390-8621, Japan
- Division of Clinical Sequencing, Shinshu University School of Medicine, Nagano 390-8621, Japan
- Research Center for Supports to Advanced Science, Shinshu University, Nagano 390-8621, Japan
| | - Masanori Murakami
- Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Toshihiro Tajima
- Department of Pediatrics, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University, School of Medicine, Tokyo 160-8582, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
15
|
Dubey S, Gupta N. Navigating the Complex Landscape of CYP21A2 Variants. Indian J Pediatr 2024; 91:113-114. [PMID: 38117440 DOI: 10.1007/s12098-023-04951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Sudhisha Dubey
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, AIIMS, New Delhi, India.
| |
Collapse
|
16
|
Zhou Y, Jiang Y. Current Advances in Genetic Testing for Spinal Muscular Atrophy. Curr Genomics 2023; 24:273-286. [PMID: 38235355 PMCID: PMC10790334 DOI: 10.2174/0113892029273388231023072050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 01/19/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most common genetic disorders worldwide, and genetic testing plays a key role in its diagnosis and prevention. The last decade has seen a continuous flow of new methods for SMA genetic testing that, along with traditional approaches, have affected clinical practice patterns to some degree. Targeting different application scenarios and selecting the appropriate technique for genetic testing have become priorities for optimizing the clinical pathway for SMA. In this review, we summarize the latest technological innovations in genetic testing for SMA, including MassArray®, digital PCR (dPCR), next-generation sequencing (NGS), and third-generation sequencing (TGS). Implementation recommendations for rationally choosing different technical strategies in the tertiary prevention of SMA are also explored.
Collapse
Affiliation(s)
- Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, P.R. China
- Biobank, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yu Jiang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, P.R. China
- Biobank, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
17
|
Xu L, Chen M, Zheng J, Zhang S, Zhang M, Chen L, He Q, Guo D, Lin N, Huang H. Identification of a novel 91.5 kb-deletion (αα) FJ in the α-globin gene cluster using single-molecule real-time (SMRT) sequencing. J Matern Fetal Neonatal Med 2023; 36:2254890. [PMID: 37673790 DOI: 10.1080/14767058.2023.2254890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVES To present a novel 91.5-kb deletion of the α-globin gene cluster (αα)FJ identified by genetic assay and prenatal diagnosis in a Chinese family. SUBJECTS AND METHODS The proband was a 34-year-old G3P1 (Gravida 3, Para 1) female at the gestational age of 21+ weeks with a history of an edematous fetus. A routine genetic assay (reverse dot blot hybridization, RDB) was performed to detect common thalassemia mutations. Multiplex ligation-dependent probe amplification (MLPA) and single-molecule real-time technology (SMRT) were used to detect rare thalassemia mutations. RESULTS The hematological phenotypes of the proband, her mother, elder sister, husband, daughter, and nephew were consistent with the phenotype of α-thalassemia trait. No mutations were found in these family members by RDB, except for the proband's husband who carried an α-globin gene deletion --SEA/αα. MLPA results showed that the proband and other α-thalassemia-suspected relatives had heterozygous deletions around the POLR3K-3-463nt, HS40-178nt, and HBA-HS40-382nt probes. The 5'-breakpoint was out of probe scope and could not be determined. SMRT was performed and a 91.5-kb deletion (NC_000016.10: g.39268_130758del) in the α-globin gene cluster (αα)FJ was identified in the proband and other suspected relatives, which could explain their phenotypes. At the proband's gestational age of 22+ weeks, an amniotic fluid sample was collected and analyzed. As only the 91.5-kb deletion (αα)FJ was identified in the fetus with RDB, MLPA, and SMRT. The proband was suggested to continue the pregnancy. CONCLUSION We first reported a 91.5-kb deletion (NC_000016.10: g.hg38-chr16:39268-_130758del) of the HS-40 region in the α-globin gene cluster (αα)FJ identified in a Chinese family. Since the HS-40 loss of heterozygosity in combination with the heterozygous deletion --SEA might result in Hb Bart's hydrops fetalis, routine genetic assay, and SMRT were recommended to individuals at risk for prenatal diagnosis.
Collapse
Affiliation(s)
- Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Junhao Zheng
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou, China
| | - Siwen Zhang
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou, China
| | - Min Zhang
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Lingji Chen
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Qianqian He
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Danhua Guo
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
18
|
Yu SY, Xi YL, Xu FQ, Zhang J, Liu YS. Application of long read sequencing in rare diseases: The longer, the better? Eur J Med Genet 2023; 66:104871. [PMID: 38832911 DOI: 10.1016/j.ejmg.2023.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 06/06/2024]
Abstract
Rare diseases encompass a diverse group of genetic disorders that affect a small proportion of the population. Identifying the underlying genetic causes of these conditions presents significant challenges due to their genetic heterogeneity and complexity. Conventional short-read sequencing (SRS) techniques have been widely used in diagnosing and investigating of rare diseases, with limitations due to the nature of short-read lengths. In recent years, long read sequencing (LRS) technologies have emerged as a valuable tool in overcoming these limitations. This minireview provides a concise overview of the applications of LRS in rare disease research and diagnosis, including the identification of disease-causing tandem repeat expansions, structural variations, and comprehensive analysis of pathogenic variants with LRS.
Collapse
Affiliation(s)
- Si-Yan Yu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Lin Xi
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Fu-Qiang Xu
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jian Zhang
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China.
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
19
|
Liu Y, Li D, Yu D, Liang Q, Chen G, Li F, Gao L, Li Z, Xie T, Wu L, Mao A, Wu L, Liang D. Comprehensive Analysis of Hemophilia A (CAHEA): Towards Full Characterization of the F8 Gene Variants by Long-Read Sequencing. Thromb Haemost 2023; 123:1151-1164. [PMID: 37285902 PMCID: PMC10686748 DOI: 10.1055/a-2107-0702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Hemophilia A (HA) is the most frequently occurring X-linked bleeding disorder caused by heterogeneous variants in the F8 gene, one of the largest genes known. Conventional molecular analysis of F8 requires a combination of assays, usually including long-range polymerase chain reaction (LR-PCR) or inverse-PCR for inversions, Sanger sequencing or next-generation sequencing for single-nucleotide variants (SNVs) and indels, and multiplex ligation-dependent probe amplification for large deletions or duplications. MATERIALS AND METHODS This study aimed to develop a LR-PCR and long-read sequencing-based assay termed comprehensive analysis of hemophilia A (CAHEA) for full characterization of F8 variants. The performance of CAHEA was evaluated in 272 samples from 131 HA pedigrees with a wide spectrum of F8 variants by comparing to conventional molecular assays. RESULTS CAHEA identified F8 variants in all the 131 pedigrees, including 35 intron 22-related gene rearrangements, 3 intron 1 inversion (Inv1), 85 SNVs and indels, 1 large insertion, and 7 large deletions. The accuracy of CAHEA was also confirmed in another set of 14 HA pedigrees. Compared with the conventional methods combined altogether, CAHEA assay demonstrated 100% sensitivity and specificity for identifying various types of F8 variants and had the advantages of directly determining the break regions/points of large inversions, insertions, and deletions, which enabled analyzing the mechanisms of recombination at the junction sites and pathogenicity of the variants. CONCLUSION CAHEA represents a comprehensive assay toward full characterization of F8 variants including intron 22 and intron 1 inversions, SNVs/indels, and large insertions and deletions, greatly improving the genetic screening and diagnosis for HA.
Collapse
Affiliation(s)
- Yingdi Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital, Shandong Medicine and Health Key Laboratory of Birth Defect Prevention and Genetic Medicine, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Jinan, Shandong, China
| | - Qiaowei Liang
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Guilan Chen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Fucheng Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Lu Gao
- Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital, Shandong Medicine and Health Key Laboratory of Birth Defect Prevention and Genetic Medicine, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Jinan, Shandong, China
| | - Zhuo Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | | | - Le Wu
- Berry Genomics Corporation, Beijing, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, China
| | - Lingqian Wu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Desheng Liang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| |
Collapse
|
20
|
Hou F, Mao A, Shan S, Li Y, Meng W, Zhan J, Nie W, Jin H. Evaluating the clinical utility of a long-read sequencing-based approach in genetic testing of fragile-X syndrome. Clin Chim Acta 2023; 551:117614. [PMID: 38375623 DOI: 10.1016/j.cca.2023.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Fragile X syndrome (FXS) arises from the FMR1 CGG expansion. Comprehensive genetic testing for FMR1 CGG expansions, AGG interruptions, and microdeletions is essential to provide genetic counseling for females carrying premutation alleles. However, conventional PCR-based FMR1 assays mainly focus on CGG repeats, and could detect AGG interruption only in males. METHODS The clinical utility of a long-read sequencing-based assay termed comprehensive analysis of FXS (CAFXS) was evaluated in 238 high-risk samples by comparing to conventional PCR assays. RESULTS PCR assays identified five premuation and three full mutation categories alleles in all the samples, and CAFXS successfully called all the FMR1 CGG expansion. CAFXS identified 24-bp microdeletions upstream to the trinucleotide region with 30 CGG repeats, which was miscalled by the length-based PCR methods. CAFXS also identified a 187-bp deletion in about 1/7 of the sequencing reads in a male patient with mosaic full mutation alleles. CAFXS allowed for precise constructing the FMR1 CGG repeat and AGG interruption pattern in all the samples, and identified a novel and alternative CGA interruption in one normal female sample. CONCLUSIONS CAFXS represents a more comprehensive and accurate approach for FXS genetic testing that potentially enables more informed genetic counseling compared to PCR-based methods.
Collapse
Affiliation(s)
- Fei Hou
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing 102200, China
| | - Shan Shan
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Yan Li
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Wanli Meng
- Berry Genomics Corporation, Beijing 102200, China
| | - Jiahan Zhan
- Berry Genomics Corporation, Beijing 102200, China
| | - Wenying Nie
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Hua Jin
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China.
| |
Collapse
|
21
|
Ling X, Wang C, Li L, Pan L, Huang C, Zhang C, Huang Y, Qiu Y, Lin F, Huang Y. Third-generation sequencing for genetic disease. Clin Chim Acta 2023; 551:117624. [PMID: 37923104 DOI: 10.1016/j.cca.2023.117624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Third-generation sequencing (TGS) has led to a brave new revolution in detecting genetic diseases over the last few years. TGS has been rapidly developed for genetic disease applications owing to its significant advantages such as long read length, rapid detection, and precise detection of complex and rare structural variants. This approach greatly improves the efficiency of disease diagnosis and complements the shortcomings of short-read sequencing. In this paper, we first briefly introduce the working mechanism of one of the most important representatives of TGS, single-molecule real-time (SMRT) sequencing by Pacific Bioscience (PacBio), followed by a review and comparison of the advantages and disadvantages of different sequencing technologies. Finally, we focused on the progress of SMRT sequencing applications in genetic disease detection. Future perspectives on the applications of TGS in other fields were also presented. With the continuous innovation of the SMRT technologies and the expansion of their fields of application, SMRT sequencing has broad clinical application prospects in genetic diseases detection, and is expected to become an important tool for the molecular diagnosis of other diseases.
Collapse
Affiliation(s)
- Xiaoting Ling
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Chenghan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Linlin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Liqiu Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Chaoyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Caixia Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Yunhua Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Yuling Qiu
- NHC Key Laboratory of Thalassemia Medicine, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Thalassemia Research, Guangxi Medical University, Nanning 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China.
| | - Yifang Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
22
|
Kim JH, Kim GH, Yoo HW, Choi JH. Molecular basis and genetic testing strategies for diagnosing 21-hydroxylase deficiency, including CAH-X syndrome. Ann Pediatr Endocrinol Metab 2023; 28:77-86. [PMID: 37401054 DOI: 10.6065/apem.2346108.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/22/2022] [Indexed: 07/05/2023] Open
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomally recessive disorders that result from impaired synthesis of glucocorticoid and mineralocorticoid. Most cases (~95%) are caused by mutations in the CYP21A2 gene, which encodes steroid 21-hydroxylase. CAH patients manifest a wide phenotypic spectrum according to their degree of residual enzyme activity. CYP21A2 and its pseudogene (CYP21A1P) are located 30 kb apart in the 6q21.3 region and share approximately 98% of their sequences in the coding region. Both genes are aligned in tandem with the C4, SKT19, and TNX genes, forming 2 segments of the RCCX modules that are arranged as STK19-C4A-CYP21A1P-TNXA-STK19B-C4B-CYP21A2-TNXB. The high sequence homology between the active gene and pseudogene leads to frequent microconversions and large rearrangements through intergenic recombination. The TNXB gene encodes an extracellular matrix glycoprotein, tenascin-X (TNX), and defects in TNXB cause Ehlers-Danlos syndrome. Deletions affecting both CYP21A2 and TNXB result in a contiguous gene deletion syndrome known as CAH-X syndrome. Because of the high homology between CYP21A2 and CYP21A1P, genetic testing for CAH should include an evaluation of copy number variations, as well as Sanger sequencing. Although it poses challenges for genetic testing, a large number of mutations and their associated phenotypes have been identified, which has helped to establish genotype-phenotype correlations. The genotype is helpful for guiding early treatment, predicting the clinical phenotype and prognosis, and providing genetic counseling. In particular, it can help ensure proper management of the potential complications of CAH-X syndrome, such as musculoskeletal and cardiac defects. This review focuses on the molecular pathophysiology and genetic diagnosis of 21-hydroxylase deficiency and highlights genetic testing strategies for CAH-X syndrome.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Bundang CHA Medical Center, CHA University, Seongnam, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Sun B, Lu L, Xie S, Zhang W, Zhang X, Tong A, Chen S, Wu X, Mao J, Wang X, Qiu L, Nie M. Molecular analysis of 12 Chinese patients with 11β-hydroxylase deficiency and in vitro functional study of 20 CYP11B1 missense variants. FASEB J 2023; 37:e22869. [PMID: 36929050 DOI: 10.1096/fj.202201398rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Steroid 11β-hydroxylase deficiency (11β-OHD) is a rare autosomal recessive disorder caused by pathogenic variants of CYP11B1 gene. This study aimed to perform molecular analysis of a Chinese 11β-OHD series and in vitro functional study of twenty CYP11B1 missense variants. Twelve Chinese patients with clinical diagnosis of 11β-OHD were included in the study to analyze their molecular etiology. Genomic DNA of patients was extracted to be sequenced all coding exons and intronic flanking sequences of CYP11B1. Fourteen missense variants found in 12 patients mentioned above along with 6 missense variants previously reported by our team were evaluated functionally. Amino acid substitutions were analyzed with computational program to determine their effects on the three-dimensional structure of CYP11B1 protein. Clinical characteristics and hormone levels at baseline of the 18 patients carrying 18 missense variants aforementioned were recorded to perform genotype-phenotype correlation. A total of 21 rare variants including 9 novel and 12 recurrent ones were identified in 12 patients, out of which 17 were missense, 2 were nonsense, 1 was a splice site variant, and 1 was a deletion-insertion variant. Results of in vitro functional study revealed that 3 out of 20 missense mutants (p.Leu3Pro, p.Gly267Ser, and p.Ala367Ser) had partial enzyme activity and the other 17 had little enzymatic activity. The impairment degree of enzymatic activity in vitro functional study was also reflected in the severity degree of interaction change between the wild-type/mutant-type amino acid and its adjacent amino acids in three-dimensional model. In conclusion, the addition of 9 novel variants expands the spectrum of CYP11B1 pathogenic variants. Our results demonstrate that twenty CYP11B1 variants lead to impaired 11β-hydroxylase activity in vitro. Visualizing these variants in the three-dimensional model structure of CYP11B1 protein can provide a plausible explanation for the results measured in vitro.
Collapse
Affiliation(s)
- Bang Sun
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Lu
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shaowei Xie
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxia Zhang
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Anli Tong
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shi Chen
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueyan Wu
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangfeng Mao
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Wang
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Qiu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Nie
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Liu Q, Chen Q, Zhang Z, Peng S, Liu J, Pang J, Jia Z, Xi H, Li J, Chen L, Liu Y, Peng Y. Identification of rare thalassemia variants using third-generation sequencing. Front Genet 2023; 13:1076035. [PMID: 36685902 PMCID: PMC9845392 DOI: 10.3389/fgene.2022.1076035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Routine PCR, Sanger sequencing, and specially designed GAP-PCR are often used in the genetic analysis of thalassemia, but all these methods have limitations. In this study, we evaluated a new third-generation sequencing-based approach termed comprehensive analysis of thalassemia alleles (CATSA) in subjects with no variants identified by routine PCR, Sanger sequencing, and specially designed GAP-PCR. Hemoglobin testing and routine PCR tests for 23 common variants were performed for 3,033 subjects. Then, Sanger sequencing and specially designed GAP-PCR were performed for a subject with no variants identified by routine PCR, no iron deficiency, and positive hemoglobin testing. Finally, the new CATSA method was conducted for the subjects with no variants identified by Sanger sequencing and specially designed GAP-PCR. In the 49 subjects tested by CATSA, eight subjects had variants identified. Sanger sequencing and independent PCR confirmed the CATSA result. In addition, it is the first time that Hb Lepore was identified in Hunan Province. In total, traditional methods identified variants in 759 of the 3,033 subjects, while CATSA identified additional variants in eight subjects. CATSA showed great advantages compared to the other genetic testing methods.
Collapse
Affiliation(s)
- Qin Liu
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Qianting Chen
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zonglei Zhang
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Shiyi Peng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jing Liu
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jialun Pang
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhengjun Jia
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Hui Xi
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jiaqi Li
- Berry Genomics Corporation, Beijing, China
| | - Libao Chen
- Berry Genomics Corporation, Beijing, China
| | - Yinyin Liu
- Berry Genomics Corporation, Beijing, China,*Correspondence: Yinyin Liu, ; Ying Peng,
| | - Ying Peng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China,*Correspondence: Yinyin Liu, ; Ying Peng,
| |
Collapse
|
25
|
Xu C, Li J, Chen S, Cai X, Jing R, Qin X, Pan D, Zhao X, Ma D, Xu X, Liu X, Wang C, Yang B, Zhang L, Li S, Chen Y, Pan N, Tang P, Song J, Liu N, Zhang C, Zhang Z, Qiu X, Lu W, Ying C, Li X, Xu C, Wang Y, Wu Y, Huang HF, Zhang J. Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening. Cell Discov 2022; 8:109. [PMID: 36229437 PMCID: PMC9562363 DOI: 10.1038/s41421-022-00457-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Current non-invasive prenatal screening (NIPS) analyzes circulating fetal cell-free DNA (cfDNA) in maternal peripheral blood for selected aneuploidies or microdeletion/duplication syndromes. Many genetic disorders are refractory to NIPS largely because the maternal genetic material constitutes most of the total cfDNA present in the maternal plasma, which hinders the detection of fetus-specific genetic variants. Here, we developed an innovative sequencing method, termed coordinative allele-aware target enrichment sequencing (COATE-seq), followed by multidimensional genomic analyses of sequencing read depth, allelic fraction, and linked single nucleotide polymorphisms, to accurately separate the fetal genome from the maternal background. Analytical confounders including multiple gestations, maternal copy number variations, and absence of heterozygosity were successfully recognized and precluded for fetal variant analyses. In addition, fetus-specific genomic characteristics, including the cfDNA fragment length, meiotic error origins, meiotic recombination, and recombination breakpoints were identified which reinforced the fetal variant assessment. In 1129 qualified pregnancies tested, 54 fetal aneuploidies, 8 microdeletions/microduplications, and 8 monogenic variants were detected with 100% sensitivity and 99.3% specificity. Using the comprehensive cfDNA genomic analysis tools developed, we found that 60.3% of aneuploidy samples had aberrant meiotic recombination providing important insights into the mechanism underlying meiotic nondisjunctions. Altogether, we show that the genetic deconvolution of the fetal and maternal cfDNA enables thorough and accurate delineation of fetal genome which paves the way for the next-generation prenatal screening of essentially all types of human genetic disorders.
Collapse
Affiliation(s)
- Chenming Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China. .,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianli Li
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Songchang Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoqiang Cai
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Ruilin Jing
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Xiaomei Qin
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Dong Pan
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Xin Zhao
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Dongyang Ma
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Xiufeng Xu
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Xiaojun Liu
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Can Wang
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Bingxin Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lanlan Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyuan Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyao Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nina Pan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Tang
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, China
| | - Jieping Song
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, China
| | - Nian Liu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, China
| | - Chen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Zhang
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Xiang Qiu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Weiliang Lu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chunmei Ying
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yanlin Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China. .,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China. .,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Jinglan Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China. .,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Beijing BioBiggen Technology Co., Ltd, Beijing, China.
| |
Collapse
|
26
|
Liang Q, Liu Y, Liu Y, Duan R, Meng W, Zhan J, Xia J, Mao A, Liang D, Wu L. Comprehensive Analysis of Fragile X Syndrome: Full Characterization of the FMR1 Locus by Long-Read Sequencing. Clin Chem 2022; 68:1529-1540. [PMID: 36171182 DOI: 10.1093/clinchem/hvac154] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most frequent cause of inherited X-linked intellectual disability. Conventional FXS genetic testing methods mainly focus on FMR1 CGG expansions and fail to identify AGG interruptions, rare intragenic variants, and large gene deletions. METHODS A long-range PCR and long-read sequencing-based assay termed comprehensive analysis of FXS (CAFXS) was developed and evaluated in Coriell and clinical samples by comparing to Southern blot analysis and triplet repeat-primed PCR (TP-PCR). RESULTS CAFXS accurately detected the number of CGG repeats in the range of 93 to at least 940 with mass fraction of 0.5% to 1% in the background of normal alleles, which was 2-4-fold analytically more sensitive than TP-PCR. All categories of mutations detected by control methods, including full mutations in 30 samples, were identified by CAFXS for all 62 clinical samples. CAFXS accurately determined AGG interruptions in all 133 alleles identified, even in mosaic alleles. CAFXS successfully identified 2 rare intragenic variants including the c.879A > C variant in exon 9 and a 697-bp microdeletion flanking upstream of CGG repeats, which disrupted primer annealing in TP-PCR assay. In addition, CAFXS directly determined the breakpoints of a 237.1-kb deletion and a 774.0-kb deletion encompassing the entire FMR1 gene in 2 samples. CONCLUSIONS Long-read sequencing-based CAFXS represents a comprehensive assay for identifying FMR1 CGG expansions, AGG interruptions, rare intragenic variants, and large gene deletions, which greatly improves the genetic screening and diagnosis for FXS.
Collapse
Affiliation(s)
- Qiaowei Liang
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Yingdi Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yaning Liu
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Ranhui Duan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Wanli Meng
- Berry Genomics Corporation, Beijing, China
| | | | - Jiahui Xia
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, China
| | - Desheng Liang
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lingqian Wu
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|