1
|
Wei X, Wang X, Xiong F, Zhang X, Liu D, Zhou W, He F, Shang X. SNPscan Combined With CNVplex as a High-Performance Diagnostic Method for Thalassemia. Prenat Diagn 2024; 44:1310-1317. [PMID: 39256948 DOI: 10.1002/pd.6661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/20/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE Thalassemia is a Mendelian-inherited blood disorder with severe consequences, including disability and mortality, making it a significant public health concern. Therefore, there is an urgent need for precise diagnostic technologies. We introduce two innovative diagnostic techniques for thalassemia, SNPscan and CNVplex, designed to enhance molecular diagnostics of thalassemia. METHODS The SNPscan and CNVplex assays utilize variations in PCR product length and fluorescence to identify multiple mutations. In the SNPscan method, we designed three probes per locus: two 5' and one 3', and incorporated allele identification link sequences into one of the 5' probes to distinguish the alleles. The detection system was designed for 67 previously reported loci in the Chinese population for a specific genetic condition. CNVplex identifies deletion types by analyzing the specific positions of probes within the globin gene. This innovative approach enables the detection of six distinct deletional mutations, enhancing the precision of thalassemia diagnostics. We evaluated and refined the methodologies in a training cohort of 100 individuals with confirmed HBA and HBB genotypes. The validation cohort, consisting of 1647 thalassemia patients and 100 healthy controls, underwent a double-blind study. Traditional diagnostic techniques served as the control methods. RESULTS In the training set of 100 samples, 10 mutations (Hb QS, Hb CS, Hb Westmead, CD17, CD26, CD41-42, IVS-II-654, --SEA, -α3.7 and -α4.2) were identified, consistent with those identified by traditional methods. The validation study showed that SNPscan/CNVplex offered superior molecular diagnostic capabilities for thalassemia, with 100% accuracy compared to 99.43% for traditional methods. Notably, the assay identified three previously undetected mutations in 10 cases, including two deletion mutations (Chinese Gγ(Aγδβ)0 del and SEA-HPFH), and one non-deletion mutation (Hb Q-Thailand). CONCLUSIONS The SNPscan/CNVplex assay is a cost-effective and user-friendly tool for diagnosing thalassemia, demonstrating high accuracy and reliability, and showing great potential as a primary diagnostic method in clinical practice.
Collapse
Affiliation(s)
- Xiaofeng Wei
- Department of Medical Genetics, School of Basic Medicine Science, Southern Medical University, Guangdong, China
- Experimental Education and Administration Center, School of Basic Medical Science, Southern Medical University, Guangdong, China
| | - Xingmin Wang
- Department of Medical Genetics, School of Basic Medicine Science, Southern Medical University, Guangdong, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medicine Science, Southern Medical University, Guangdong, China
- Experimental Education and Administration Center, School of Basic Medical Science, Southern Medical University, Guangdong, China
| | - Xinhua Zhang
- Department of Hematology, 923rd Hospital of the People's Liberation Army, Guangxi, China
| | - Dun Liu
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangdong, China
| | - Wanjun Zhou
- Department of Medical Genetics, School of Basic Medicine Science, Southern Medical University, Guangdong, China
- Experimental Education and Administration Center, School of Basic Medical Science, Southern Medical University, Guangdong, China
| | - Fei He
- Department of Medical Genetics, School of Basic Medicine Science, Southern Medical University, Guangdong, China
- Experimental Education and Administration Center, School of Basic Medical Science, Southern Medical University, Guangdong, China
| | - Xuan Shang
- Department of Medical Genetics, School of Basic Medicine Science, Southern Medical University, Guangdong, China
- Experimental Education and Administration Center, School of Basic Medical Science, Southern Medical University, Guangdong, China
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangdong, China
| |
Collapse
|
2
|
Zhang L, Chang M, Liu C, Xu Y, Feng Q, Yin S, Wu W. A case of de novo -α 3.7 thalassaemia and the utility of CATSA for detecting de novo mutations in thalassaemia. Br J Haematol 2024; 205:360-363. [PMID: 38757312 DOI: 10.1111/bjh.19507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Affiliation(s)
- Lei Zhang
- Medical Genetics Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Ming Chang
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Chao Liu
- Medical Genetics Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Yong Xu
- Medical Genetics Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Qing Feng
- Medical Genetics Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Shanshan Yin
- Medical Genetics Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Weiqing Wu
- Medical Genetics Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Huang Q, Wang Z, Teng Y, Zhang W, Wen J, Zhu H, Liang D, Wu L, Li Z. Application of whole exome sequencing in carrier screening for high-risk families without probands. Front Genet 2024; 15:1415811. [PMID: 38978874 PMCID: PMC11228263 DOI: 10.3389/fgene.2024.1415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose This study aimed to screen the genetic etiology for the high-risk families including those with an adverse pregnancy history, a history of consanguineous marriages, or a history of genetic diseases, but lack of proband via whole exome sequencing (WES). Methods 128 individuals from high-risk family were tested by WES. The candidate variants were analyzed according to the ACMG criteria to screen the potential carriers. At-risk couples (ARCs) who harbored the same causative gene were provided with precise fertility guidance to avoid the birth of children with birth defects. Results The total detection rate was 36.72%, with pathogenic/likely pathogenic (P/LP) variants found in 47 individuals, and variants of uncertain significance (VUS) were found in 34. Among couples with adverse pregnancy history: P/LP variants were found in 38 individuals, and VUS were found in 26, for a detection rate of 34.55%; among members of family history of genetic disease or consanguineous marriages: P/LP variants were found in nine individuals, and VUS were found in 8, for a detection rate of 50.00%. Otherwise, we detected 19 ARCs who both carried P/LP variants in the same gene, with a theoretical offspring prevalence of up to 7.42%. Conclusion In the absence of probands, carrier screening using WES can provide an efficient tool for screening the molecular etiology of high-risk families.
Collapse
Affiliation(s)
- Qinlin Huang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Zhongjie Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Wen Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Juan Wen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Huimin Zhu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
4
|
Chen Y, Xie T, Ma M, Yang J, Lv Y, Dong X. Case report: Identification of a novel triplication of alpha-globin gene by the third-generation sequencing: pedigree analysis and genetic diagnosis. Hematology 2023; 28:2277571. [PMID: 38059617 DOI: 10.1080/16078454.2023.2277571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Thalassemia, a common autosomal hereditary blood disorder worldwide, mainly contains α- and β-thalassemia. The α-globin gene triplicates allele is harmless for carriers, but aggravates the phenotype of β-thalassemia. Therefore, it is particularly crucial to accurately detect the structural variants of α-globin gene clusters. CASE REPORT We reported a 28-year-old man, the proband, with microcytic hypochromic anemia. From pedigree analysis, his mother and sister had hypochromic microcytosis, and his father was normal. Genetic testing of thalassemia identified a novel α-globin gene triplicate named αααanti4.2del726bp (NC_000016.10:g.170769_174300dupinsAAAAAA) by third-generation sequencing (TGS) in the proband and his father, which was further validated by multiplex ligation-dependent probe amplification (MLPA) and Sanger sequencing. The genotypes of the proband's mother and sister were both -α3.7/αα compounded with heterozygous HBB:c.126_129delCTTT. They were categorized as silent α-thalassemia with co-inheritance of β-thalassemia trait. The proband's genotype additionally had the α-globin gene triplicates compared with his mother and sister, which increased the imbalance between α/β-globin, so the proband had more severe hematological parameters. The proband's wife was diagnosed as HBA2:c.427T > C heterozygosis, and his daughter had the novel α-globin gene triplicates compounded with HBA2:c.427T > C, therefore the girl might be asymptomatic. CONCLUSION The identification of the novel α-globin gene triplicates provides more insight for the research of thalassemia variants and indicates that TGS has significant advantages on genetic testing of thalassemia for the reliability, accuracy and comprehensiveness.
Collapse
Affiliation(s)
- Yujiao Chen
- Dehong Medical Group Hospital of Traditional Chinese Medicine, Dehong Dai and Jingpo Autonomous Prefecture, People's Republic of China
| | - Tiantian Xie
- Berry Genomics Corporation, Beijing, People's Republic of China
| | - Minhui Ma
- Berry Genomics Corporation, Beijing, People's Republic of China
| | - Juan Yang
- Kunming Kingmed Institute for Clinical Laboratory, Kunming, People's Republic of China
| | - Yihang Lv
- Department of Obstetrical, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Xudong Dong
- Department of Obstetrical, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| |
Collapse
|
5
|
Feng J, Cui D, Li C, Yang Y, Li Q, Li X, Tan S, Li Z, Meng W, Li H, Zhang Y. The comprehensive analysis of thalassemia alleles (CATSA) based on single-molecule real-time technology (SMRT) is a more powerful strategy in the diagnosis of thalassemia caused by rare variants. Clin Chim Acta 2023; 551:117619. [PMID: 38375625 DOI: 10.1016/j.cca.2023.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 02/21/2024]
Abstract
Thalassemia is one of the most widely distributed monogenic disorders in the world and affects the largest number of people. It can manifest a wide spectrum of phenotypes from asymptomatic to fatal, which is associated with the degree of imbalance between α- and β-globin chains. Therefore, individuals with different genotypes could present with a similar phenotype. Genetic analysis is always needed to make a correct diagnosis. However, routine genetic analysis of thalassemia used in the Chinese population identifies only 23 common variants, resulting in many cases undiagnosed or being misdiagnosed. In this study, we applied a long-read sequencing-based approach termed comprehensive analysis of thalassemia alleles (CATSA) to 30 subjects whose hematologic screening results could not be explained by the routine genetic test results. The identification of additional variants and the correction of genotypes allowed the interpretation of the clinical phenotype in 24 subjects, which have been confirmed to be correct by independent experiments. Moreover, we identified a novel 8.4-kb deletion containing the entire HBB and HBD genes as well as part of the HBBP1 gene, expanding the genotype spectrum of β-thalassemia. CATSA showed a great advantage over other genetic tests in the diagnosis of thalassemia caused by rare variants.
Collapse
Affiliation(s)
- Jianjiang Feng
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China
| | - Di Cui
- Berry Genomics Corporation, Beijing 102200, China
| | - Caipeng Li
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China
| | - Yingsong Yang
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China
| | - Qiuli Li
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China
| | - Xiaomin Li
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China
| | - Shuming Tan
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China
| | - Zhiming Li
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China
| | - Wanli Meng
- Berry Genomics Corporation, Beijing 102200, China
| | - Haoxian Li
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China.
| | - Yanghui Zhang
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China.
| |
Collapse
|
6
|
Feng J, Mao A, Lu Y, Shi H, Meng W, Liang C. Molecular characterization of a novel 83.9-kb deletion of the α-globin upstream regulatory elements by long-read sequencing. Blood Cells Mol Dis 2023; 103:102764. [PMID: 37336681 DOI: 10.1016/j.bcmd.2023.102764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Inherited deletions of upstream regulatory elements of α-globin genes give rise to α-thalassemia, which is an autosomal recessive monogenic disease. However, conventional thalassemia target diagnosis often fails to identify these rare deletions. Here we reported a family with two previous pregnancies of Hb Bart's hydrops fetalis and was seeking for prenatal diagnosis during the third pregnancy. Both parents had low level of Hemoglobin A2 indicating α-thalassemia. Conventional Gap-PCR and PCR-reverse dot blot showed the father carried -SEA deletion but did not identify any variants in the mother. Multiplex ligation-dependent probe amplification identified a deletion containing two HS-40 probes but could not determine the exact region. Finally, a long-read sequencing (LRS)-based approach directly identified that the exact deletion region was chr16: 48,642-132,584, which was located in the α-globin upstream regulatory elements and named (αα)JM after the Jiangmen city. Gap-PCR and Sanger sequencing confirmed the breakpoint. Both the mother and fetus from the third pregnancy carried heterozygous (αα)JM, and the fetus was normally delivered at gestational age of 39 weeks. This study demonstrated that LRS technology had great advantages over conventional target diagnosis methods for identifying rare thalassemia variants and assisted better carrier screening and prenatal diagnosis of thalassemia.
Collapse
Affiliation(s)
- Jianjiang Feng
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing 102200, China
| | - Ye Lu
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China
| | - Haihong Shi
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China
| | - Wanli Meng
- Berry Genomics Corporation, Beijing 102200, China
| | - Chen Liang
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, Guangdong, China.
| |
Collapse
|
7
|
Ling X, Wang C, Li L, Pan L, Huang C, Zhang C, Huang Y, Qiu Y, Lin F, Huang Y. Third-generation sequencing for genetic disease. Clin Chim Acta 2023; 551:117624. [PMID: 37923104 DOI: 10.1016/j.cca.2023.117624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Third-generation sequencing (TGS) has led to a brave new revolution in detecting genetic diseases over the last few years. TGS has been rapidly developed for genetic disease applications owing to its significant advantages such as long read length, rapid detection, and precise detection of complex and rare structural variants. This approach greatly improves the efficiency of disease diagnosis and complements the shortcomings of short-read sequencing. In this paper, we first briefly introduce the working mechanism of one of the most important representatives of TGS, single-molecule real-time (SMRT) sequencing by Pacific Bioscience (PacBio), followed by a review and comparison of the advantages and disadvantages of different sequencing technologies. Finally, we focused on the progress of SMRT sequencing applications in genetic disease detection. Future perspectives on the applications of TGS in other fields were also presented. With the continuous innovation of the SMRT technologies and the expansion of their fields of application, SMRT sequencing has broad clinical application prospects in genetic diseases detection, and is expected to become an important tool for the molecular diagnosis of other diseases.
Collapse
Affiliation(s)
- Xiaoting Ling
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Chenghan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Linlin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Liqiu Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Chaoyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Caixia Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Yunhua Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Yuling Qiu
- NHC Key Laboratory of Thalassemia Medicine, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Thalassemia Research, Guangxi Medical University, Nanning 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China.
| | - Yifang Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
8
|
Shao M, Wan Y, Cao W, Yang J, Cui D, Ma M, Hu W. Case report: A novel 10.8-kb deletion identified in the β-globin gene through the long-read sequencing technology in a Chinese family with abnormal hemoglobin testing results. Front Med (Lausanne) 2023; 10:1192279. [PMID: 37521358 PMCID: PMC10374251 DOI: 10.3389/fmed.2023.1192279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background Thalassemia is a common inherited hemoglobin disorder caused by a deficiency of one or more globin subunits. Substitution variants and deletions in the HBB gene are the major causes of β-thalassemia, of which large fragment deletions are rare and difficult to be detected by conventional polymerase chain reaction (PCR)-based methods. Case report In this study, we reported a 26-year-old Han Chinese man, whose routine blood parameters were found to be abnormal. Hemoglobin testing was performed on the proband and his family members, of whom only the proband's mother had normal parameters. The comprehensive analysis of thalassemia alleles (CATSA, a long-read sequencing-based approach) was performed to identify the causative variants. We finally found a novel 10.8-kb deletion including the β-globin (HBB) gene (Chr11:5216601-5227407, GRch38/hg38) of the proband and his father and brother, which were consistent with their hemoglobin testing results. The copy number and exact breakpoints of the deletion were confirmed by multiplex ligation-dependent probe amplification (MLPA) and gap-polymerase chain reaction (Gap-PCR) as well as Sanger sequencing, respectively. Conclusion With this novel large deletion found in the HBB gene in China, we expand the genotype spectrum of β-thalassemia and show the advantages of long-read sequencing (LRS) for comprehensive and precise detection of thalassemia variants.
Collapse
Affiliation(s)
- Mingkun Shao
- Department of OB and GYN, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yaoyao Wan
- Department of Cardiovascular Medicine, The Second People's Hospital of Honghe Autonomous Prefecture, Yunnan, China
| | - Weipeng Cao
- Jinyu Medical Laboratory Co., Ltd., Yunnan, China
| | - Juan Yang
- Jinyu Medical Laboratory Co., Ltd., Yunnan, China
| | - Di Cui
- Berry Genomics Corporation, Beijing, China
| | - Minhui Ma
- Berry Genomics Corporation, Beijing, China
| | - Wanqin Hu
- Department of OB and GYN, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| |
Collapse
|
9
|
Zhan L, Gui C, Wei W, Liu J, Gui B. Third generation sequencing transforms the way of the screening and diagnosis of thalassemia: a mini-review. Front Pediatr 2023; 11:1199609. [PMID: 37484768 PMCID: PMC10357962 DOI: 10.3389/fped.2023.1199609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Thalassemia is an inherited blood disorder imposing a significant social and economic burden. Comprehensive screening strategies are essential for the prevention and management of this disease. Third-generation sequencing (TGS), a breakthrough technology, has shown great potential for screening and diagnostic applications in various diseases, while its application in thalassemia detection is still in its infancy. This review aims to understand the latest and most widespread uses, advantages of TGS technologies, as well as the challenges and solutions associated with their incorporation into routine screening and diagnosis of thalassemia. Overall, TGS has exhibited higher rates of positive detection and diagnostic accuracy compared to conventional methods and next-generation sequencing technologies, indicating that TGS will be a feasible option for clinical laboratories conducting in-house thalassemia testing. The implementation of TGS technology in thalassemia diagnosis will facilitate the development of effective prevention and management strategies, thereby reducing the burden of this disease on individuals and society.
Collapse
Affiliation(s)
- Lixia Zhan
- The Second School of Medicine, Guangxi Medical University, Nanning, China
- Child Healthcare Department, The Second People's Hospital of Beihai, Beihai, China
| | - Chunrong Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Wei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juliang Liu
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Baoheng Gui
- The Second School of Medicine, Guangxi Medical University, Nanning, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Laufer VA, Glover TW, Wilson TE. Applications of advanced technologies for detecting genomic structural variation. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108475. [PMID: 37931775 PMCID: PMC10792551 DOI: 10.1016/j.mrrev.2023.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Chromosomal structural variation (SV) encompasses a heterogenous class of genetic variants that exerts strong influences on human health and disease. Despite their importance, many structural variants (SVs) have remained poorly characterized at even a basic level, a discrepancy predicated upon the technical limitations of prior genomic assays. However, recent advances in genomic technology can identify and localize SVs accurately, opening new questions regarding SV risk factors and their impacts in humans. Here, we first define and classify human SVs and their generative mechanisms, highlighting characteristics leveraged by various SV assays. We next examine the first-ever gapless assembly of the human genome and the technical process of assembling it, which required third-generation sequencing technologies to resolve structurally complex loci. The new portions of that "telomere-to-telomere" and subsequent pangenome assemblies highlight aspects of SV biology likely to develop in the near-term. We consider the strengths and limitations of the most promising new SV technologies and when they or longstanding approaches are best suited to meeting salient goals in the study of human SV in population-scale genomics research, clinical, and public health contexts. It is a watershed time in our understanding of human SV when new approaches are expected to fundamentally change genomic applications.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|