1
|
Strydom LH, Conradie SR, Smit IPJ, Greve M, Boucher PB, Davies AB, McKechnie AE. Mapping tree canopy thermal refugia for birds using biophysical models and LiDAR. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024:10.1007/s00484-024-02833-z. [PMID: 39585399 DOI: 10.1007/s00484-024-02833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Accurately predicting exposure of animals to climate change requires evaluating the effects of warming on the microclimates they occupy. Birds, like many other taxa, make extensive use of cool microsites in vegetation during hot weather. Taking advantage of recent advances in modelling tree canopy microclimates, we combined LiDAR-based individual tree canopy mapping and biophysical modelling to evaluate the current and future availability of cool microsites in a subtropical African savanna landscape. We constructed biophysical models for two common bird species, an ~ 40-g bulbul and an ~ 200-g hornbill, and modelled exposure to conditions under which the body temperature (Tb) of individuals resting in canopies exceeds 42 °C, equivalent to ~ 2 °C above resting thermoneutral Tb. At present, 34.5% of trees taller than 2 m in our 139-ha study site provide microclimates in which resting Tb remained below 42 °C for both species during our study period. Under a Representative Concentration Pathway 8.5 climate change scenario and assuming no change in vegetation structure, by the end of the Century the availability of microsites characterized by Tb < 42 °C will decrease to just 0.4% and 3.8% for bulbuls and hornbills, respectively. The proportion of trees in whose canopies bulbuls' and hornbills' exposure to Tb > 42 °C is limited to < 10 d summer- 1 will decrease from 98 to 99% currently to 3.0% and 24.3% by end-century, respectively. These findings reveal the magnitude of changes for birds in a savanna thermal landscape under a business-as-usual emissions scenario.
Collapse
Affiliation(s)
- Lara H Strydom
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
| | - Shannon R Conradie
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Izak P J Smit
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- Scientific Services, South African National Parks, Private Bag X402, Skukuza, 1350, South Africa
| | - Michelle Greve
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Peter B Boucher
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew B Davies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew E McKechnie
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa.
| |
Collapse
|
2
|
Udino E, Pessato A, Addison B, Crino OL, Buchanan KL, Mariette MM. Prenatal Acoustic Signals Influence Nestling Heat Shock Protein Response to Heat and Heterophil-to-Lymphocyte Ratio in a Desert Bird. Int J Mol Sci 2024; 25:12194. [PMID: 39596260 PMCID: PMC11595141 DOI: 10.3390/ijms252212194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Heat shock proteins (HSPs) are essential to cellular protection against heat stress. However, the causes of inter-individual variation in HSP regulation remain unclear. This study aimed to test the impact of early-life conditions on the HSP response to heat in zebra finches. In this arid-adapted bird, incubating parents emit "heat-calls" at high temperatures, which adaptively alter offspring's phenotypes. Embryos were exposed to heat-calls or control-calls, and at 13 days post-hatch nestlings were separated into two different experiments to test responses to either chronic nest temperature ("in-nest" experiment) or an acute "heat-challenge". Blood samples were collected to measure levels of heat shock cognate 70, heat shock protein 90α, corticosterone and the heterophil-to-lymphocyte (H/L) ratio. In the in-nest experiment, both HSPs were upregulated in response to increasing nest temperatures only in control-calls nestlings (HSC70: p = 0.010, HSP90α: p = 0.050), which also had a marginally higher H/L ratio overall than heat-call birds (p = 0.066). These results point to a higher heat sensitivity in control-call nestlings. Furthermore, comparing across experiments, only the H/L ratio differed, being higher in heat-challenged than in in-nest nestlings (p = 0.009). Overall, this study shows for the first time that a prenatal acoustic signal of heat affects the nestling HSP response to postnatal temperature.
Collapse
Affiliation(s)
- Eve Udino
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Anaïs Pessato
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Centre d’Écologie et des Sciences de la Conservation (CESCO), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, CP 135, 57 rue Cuvier, 75005 Paris, France
| | - BriAnne Addison
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Ondi L. Crino
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Katherine L. Buchanan
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Mylene M. Mariette
- School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Doñana Biological Station EBC-CSIC, Calle Américo-Vespucio 26, 41092 Sevilla, Spain
| |
Collapse
|
3
|
Hoffman AJ, Finger JW, Kavazis AN, Wada H. Early life thermal conditioning alters heat-shock protein expression in response to an adult thermal stressor. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1030-1040. [PMID: 39005228 DOI: 10.1002/jez.2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Developmental environmental stressors can have instructive effects on an organism's phenotype. This developmental plasticity can prepare organisms for potentially stressful future environments, circumventing detrimental effects on fitness. However, the physiological mechanisms underlying such adaptive plasticity are understudied, especially in vertebrates. We hypothesized that captive male zebra finches (Taeniopygia castanotis) exposed to a mild heat conditioning during development would acquire a persisting thermotolerance, and exhibit increased heat-shock protein (HSP) levels associated with a decrease in oxidative damage when exposed to a high-intensity stressor in adulthood. To test this, we exposed male finches to a prolonged mild heat conditioning (38°C) or control (22°C) treatment as juveniles. Then in a 2 × 2 factorial manner, these finches were exposed to a high heat stressor (42°C) or control (22°C) treatment as adults. Following the adult treatment, we collected testes and liver tissue and measured HSP70, HSP90, and HSP60 protein levels. In the testes, finches exhibited lower levels of HSP90 and HSP60 when exposed to the high heat stressor in adulthood if they were exposed to the mild heat conditioning as juveniles. In the liver, finches exposed to the high heat stressor in adulthood had reduced HSP90 and HSP60 levels, regardless of whether they were conditioned as juveniles. In some cases, elevated testes HSP60 levels were associated with increased liver oxidative damage and diminishment of a condition-dependent trait, indicating potential stress-induced tradeoffs. Our results indicate that a mild conditioning during development can have persisting effects on HSP expression and acquired thermotolerance.
Collapse
Affiliation(s)
| | - John W Finger
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
- Biomedical Sciences Department, Missouri State University, Springfield, Missouri, USA
| | | | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
4
|
McKechnie AE, Freeman MT, Kemp R, Wolter K, Naidoo V. Effects of lead on avian thermoregulation in the heat: An experimental test with pied crows (Corvus albus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104519. [PMID: 39059727 DOI: 10.1016/j.etap.2024.104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Many of the negative physiological effects of lead involve the hypothalamus, but the possibility that thermoregulation is affected has received little attention. We tested the hypothesis that lead exposure reduces avian thermoregulatory performance under hot conditions in pied crows (Corvus albus) experimentally exposed to lead in their diet. Crows in our high lead treatment (blood [Pb] = 87.3 ± 44.7 μg dL-1) showed significantly higher air temperature (Tair) inflections for evaporative water loss (EWL) and resting metabolic rate (RMR) compared to control (6.4 ± 1.8 μg dL-1) or intermediate (53.9 ± 23.7 μg dL-1) lead groups, which did not differ. EWL, RMR and body temperature (Tb) all increased more rapidly at Tair > Tb in the high lead treatment. In contrast, neither maximum Tair tolerated by the crows nor maximum Tb varied with treatment. Our data reveal that water and energy balance during hot weather is affected by lead exposure.
Collapse
Affiliation(s)
- Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, South Africa; DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, South Africa.
| | - Marc T Freeman
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, South Africa; DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - Ryno Kemp
- Vulture Programme (VulPro), Plot 121, Rietfontein 0216, South Africa
| | - Kerri Wolter
- Vulture Programme (VulPro), Plot 121, Rietfontein 0216, South Africa
| | - Vinny Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| |
Collapse
|
5
|
Ding C, Newbold T, Ameca EI. Assessing the global vulnerability of dryland birds to heatwaves. GLOBAL CHANGE BIOLOGY 2024; 30:e17136. [PMID: 38273501 DOI: 10.1111/gcb.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
As global average surface temperature increases, extreme climatic events such as heatwaves are becoming more frequent and intense, which can drive biodiversity responses such as rapid population declines and/or shifts in species distributions and even local extirpations. However, the impacts of extreme climatic events are largely ignored in conservation plans. Birds are known to be susceptible to heatwaves, especially in dryland ecosystems. Understanding which birds are most vulnerable to heatwaves, and where these birds occur, can offer a scientific basis for adaptive management and conservation. We assessed the relative vulnerability of 1196 dryland bird species to heatwaves using a trait-based approach. Among them, 888 bird species are estimated to be vulnerable to heatwaves (170 highly vulnerable, eight extremely vulnerable), of which ~91% are currently considered non-threatened by the IUCN, which suggests that many species will likely become newly threatened with intensifying climate change. We identified the top three hotspot areas of heatwave-vulnerable species in Australia (208 species), Southern Africa (125 species) and Eastern Africa (99 species). Populations of vulnerable species recorded in the Living Planet Database were found to be declining significantly faster than those of non-vulnerable species (p = .048) after heatwaves occurred. In contrast, no significant difference in population trends between vulnerable and non-vulnerable species was detected when no heatwave occurred (p = .34). This suggests that our vulnerability framework correctly identified vulnerable species and that heatwaves are already impacting the population trends of these species. Our findings will help prioritize heatwave-vulnerable birds in dryland ecosystems in risk mitigation and adaptation management as the frequency of heatwaves accelerates in the coming decades.
Collapse
Affiliation(s)
- Chenchen Ding
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Eric I Ameca
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Climate Change Specialist Group, Species Survival Commission, International Union for Conservation of Nature, Gland, Switzerland
| |
Collapse
|
6
|
Soravia C, Ashton BJ, Thornton A, Ridley AR. High temperatures are associated with reduced cognitive performance in wild southern pied babblers. Proc Biol Sci 2023; 290:20231077. [PMID: 37989242 PMCID: PMC10688443 DOI: 10.1098/rspb.2023.1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
Global temperatures are increasing rapidly. While considerable research is accumulating regarding the lethal and sublethal effects of heat on wildlife, its potential impact on animal cognition has received limited attention. Here, we tested wild southern pied babblers (Turdoides bicolor) on three cognitive tasks (associative learning, reversal learning and inhibitory control) under naturally occurring heat stress and non-heat stress conditions. We determined whether cognitive performance was explained by temperature, heat dissipation behaviours, individual and social attributes, or proxies of motivation. We found that temperature, but not heat dissipation behaviours, predicted variation in associative learning performance. Individuals required on average twice as many trials to learn an association when the maximum temperature during testing exceeded 38°C compared with moderate temperatures. Higher temperatures during testing were also associated with reduced inhibitory control performance, but only in females. By contrast, we found no temperature-related decline in performance in the reversal learning task, albeit individuals reached learning criterion in only 14 reversal learning tests. Our findings provide novel evidence of temperature-mediated cognitive impairment in a wild animal and indicate that its occurrence depends on the cognitive trait examined and individual sex.
Collapse
Affiliation(s)
- Camilla Soravia
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - Benjamin J. Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia 2109
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa, 7701
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa, 7701
| |
Collapse
|
7
|
Pessato A, Udino E, McKechnie AE, Bennett ATD, Mariette MM. Thermal acclimatisation to heatwave conditions is rapid but sex-specific in wild zebra finches. Sci Rep 2023; 13:18297. [PMID: 37880274 PMCID: PMC10600105 DOI: 10.1038/s41598-023-45291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Under climate change, increasing air temperature average and variability pose substantial thermal challenges to animals. While plasticity in thermoregulatory traits could potentially attenuate this impact, whether thermal acclimatisation can occur quickly enough to track weather variability in hot climates is unknown in any endotherm, and sex differences have never been tested. We investigated acclimatisation responsiveness of male and female wild zebra finches to short-term (< 2 weeks) summer temperature fluctuations in the Australian desert. Hotter weather before respirometry trials triggered a typical acclimatisation response (especially at chamber temperature Tchamb ≥ 40). However, acclimatisation occurred remarkably rapidly: metabolic rate responded within just one day, while body temperature (Tb) and evaporative cooling capacity (EHL/MHP) were best predicted by weather on the trial day; whereas evaporative water loss responded more slowly (1 week). Nonetheless, rapid acclimatisation only occurred in males, and females had higher Tb and lower EHL/MHP than males, potentially increasing hyperthermia risk. Furthermore, acclimatisation did not translate into greater acute heat tolerance (i.e. ability to tolerate Tchamb = 46 °C). Our results therefore reveal surprisingly rapid acclimatisation and even anticipatory adjustments to heat. However, with no changes in acute heat tolerance, and in females, phenotypic flexibility may provide only limited buffering against the detrimental impact of heatwaves.
Collapse
Affiliation(s)
- Anaïs Pessato
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong 3216, VIC, Australia
| | - Eve Udino
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong 3216, VIC, Australia
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, 0001, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0001, South Africa
| | - Andrew T D Bennett
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong 3216, VIC, Australia
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, VIC, 3030, Australia
| | - Mylene M Mariette
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong 3216, VIC, Australia.
- Doñana Biological Station EBD-CSIC, 41092, Seville, Spain.
| |
Collapse
|
8
|
Eastwood JR, Dupoué A, Verhulst S, Cockburn A, Peters A. Cool, dry nights and short heatwaves during growth result in longer telomeres in temperate songbird nestlings. Mol Ecol 2023; 32:5382-5393. [PMID: 37606092 DOI: 10.1111/mec.17107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Exposure to rising sublethal temperatures can affect development and somatic condition, and thereby Darwinian fitness. In the context of climate warming, these changes could have implications for population viability, but they can be subtle and consequently difficult to quantify. Using telomere length (TL) as a known biomarker of somatic condition in early life, we investigated the impact of pre-hatching and nestling climate on six cohorts of wild nestling superb fairy wrens (Malurus cyaneus) in temperate south-eastern Australia. Models incorporating only climate information from the nestling phase were best supported compared to those including the (pre-)laying to incubation phase (previously shown to affect mass) or both phases combined. This implies that nestling TL is most sensitive to ambient climate in the nestling phase. The top model showed a negative relationship between early-life TL and nestling mean daily minimum temperature when rainfall was low which gradually became positive with increasing rainfall. In addition, there was a positive relationship between TL and the frequency of hot days (daily maximum temperature ≥35°C), although these temperatures were rare and short-term. Including other pre-hatching and nestling period, climate variables (e.g., mean daily maximum temperature and mean diurnal temperature variability) did not improve the prediction of nestling TL. Overall, our results suggest that cooler nights when conditions are dry and short-term temperature spikes above 35°C during development are conducive for somatic maintenance. While these findings indicate a potential pathway for climate warming to impact wildlife fitness, they emphasize the need to elucidate the mechanisms underlying these complex associations.
Collapse
Affiliation(s)
- Justin R Eastwood
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Andréaz Dupoué
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, Plouzane, France
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Andrew Cockburn
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anne Peters
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany
| |
Collapse
|
9
|
Corregidor-Castro A, Morinay J, McKinlay SE, Ramellini S, Assandri G, Bazzi G, Glavaschi A, De Capua EL, Grapputo A, Romano A, Morganti M, Cecere JG, Pilastro A, Rubolini D. Experimental nest cooling reveals dramatic effects of heatwaves on reproduction in a Mediterranean bird of prey. GLOBAL CHANGE BIOLOGY 2023; 29:5552-5567. [PMID: 37469036 DOI: 10.1111/gcb.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Future climatic scenarios forecast increases in average temperatures as well as in the frequency, duration, and intensity of extreme events, such as heatwaves. Whereas behavioral adjustments can buffer direct physiological and fitness costs of exposure to excessive temperature in wild animals, these may prove more difficult during specific life stages when vagility is reduced (e.g., early developmental stages). By means of a nest cooling experiment, we tested the effects of extreme temperatures on different stages of reproduction in a cavity-nesting Mediterranean bird of prey, the lesser kestrel (Falco naumanni), facing a recent increase in the frequency of heatwaves during its breeding season. Nest temperature in a group of nest boxes placed on roof terraces was reduced by shading them from direct sunlight in 2 consecutive years (2021 and 2022). We then compared hatching failure, mortality, and nestling morphology between shaded and non-shaded (control) nest boxes. Nest temperature in control nest boxes was on average 3.9°C higher than in shaded ones during heatwaves, that is, spells of extreme air temperature (>37°C for ≥2 consecutive days) which hit the study area during the nestling-rearing phase in both years. Hatching failure markedly increased with increasing nest temperature, rising above 50% when maximum nest temperatures exceeded 44°C. Nestlings from control nest boxes showed higher mortality during heatwaves (55% vs. 10% in shaded nest boxes) and those that survived further showed impaired morphological growth (body mass and skeletal size). Hence, heatwaves occurring during the breeding period can have both strong lethal and sublethal impacts on different components of avian reproduction, from egg hatching to nestling growth. More broadly, these findings suggest that the projected future increases of summer temperatures and heatwave frequency in the Mediterranean basin and elsewhere in temperate areas may threaten the local persistence of even relatively warm-adapted species.
Collapse
Affiliation(s)
- Alejandro Corregidor-Castro
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca sulle Acque (CNR-IRSA), Brugherio, Italy
| | - Jennifer Morinay
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Bologna, Italy
- Centre for Biodiversity Dynamics, Institutt for Biologi, NTNU, Trondheim, Norway
| | - Susan E McKinlay
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Samuele Ramellini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Assandri
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Bologna, Italy
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Gaia Bazzi
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Bologna, Italy
| | | | | | - Alessandro Grapputo
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
- National Biodiversity Future Centre, Palermo, Italy
| | - Andrea Romano
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Michelangelo Morganti
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca sulle Acque (CNR-IRSA), Brugherio, Italy
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Bologna, Italy
| | - Andrea Pilastro
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
- National Biodiversity Future Centre, Palermo, Italy
| | - Diego Rubolini
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca sulle Acque (CNR-IRSA), Brugherio, Italy
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Zuluaga JD, Danner RM. Novel approaches for assessing acclimatization in birds reveal seasonal changes in peripheral heat exchange and thermoregulatory behaviors. J Exp Biol 2023; 226:jeb245772. [PMID: 37665269 DOI: 10.1242/jeb.245772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Using thermography and behavioral analyses, we found that heat exchange and thermoregulatory behaviors changed seasonally in chipping sparrows (Spizella passerina). Studies on seasonal acclimatization in birds have primarily involved metabolic measurements, few of which have investigated behaviors, and none have investigated changes in peripheral heat exchange. We captured chipping sparrows in the winter and summer of 2022 in Wilmington, North Carolina, USA, and we collected thermal images of these birds at 15.0, 27.5 and 40.0°C. We found that heat dissipation through the bill and legs changed seasonally, but surprisingly both were higher in winter than in summer. We found that heat dissipating behaviors were more common in winter, whereas heat conserving behaviors were more common in summer, and that behaviors associated with resource costs (e.g. panting) or predation risk (e.g. bill tucking) showed the most distinct differences between seasons. Meanwhile, low-cost and low-risk postural adjustments (e.g. feather adjustments and tarsus exposure) did not vary as strongly between seasons but followed similar trends. The seasonal adjustments to behaviors suggest that non-acclimatized birds must use costly thermoregulatory behaviors more frequently than acclimatized birds. The use of thermography resulted in the discovery of one completely novel behavior, and the first detection of a known behavior in a new species. Both novel behaviors aided in evaporative heat loss and occurred more commonly in winter, supporting the presence of seasonal acclimatization as evidenced by behavioral adjustments. These results provide novel insights into the process of acclimatization and suggest a role for behavioral adjustments in seasonal acclimatization.
Collapse
Affiliation(s)
- Juan D Zuluaga
- University of North Carolina Wilmington Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403-5915, USA
| | - Raymond M Danner
- University of North Carolina Wilmington Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403-5915, USA
| |
Collapse
|
11
|
Hoffman AJ, Dees L, Wada H. Heat-induced maternal effects shape avian eggshell traits and embryo development and phenotype at high incubation temperatures. Ecol Evol 2023; 13:e10546. [PMID: 37745787 PMCID: PMC10515880 DOI: 10.1002/ece3.10546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Phenotypic plasticity is an important avenue by which organisms may persist in the face of rapid environmental change. Environmental cues experienced by the mother can also influence the phenotype of offspring, a form of plasticity called maternal effects. Maternal effects can adaptively prepare offspring for the environmental conditions they will likely experience; however, their ability to buffer offspring against environmental stressors as embryos is understudied. Using captive zebra finches, we performed a maternal-offspring environmental match-mismatch experiment utilizing a 2 × 2 × 2 factorial design. Mothers were exposed to a mild heat conditioning (38°C) or control (22°C) treatment as juveniles, an acute high heat (42°C) or control (22°C) treatment as adults, then paired for breeding. The eggs produced by those females were incubated at a hyperthermic (38.5°C) or optimal temperature (37.2°C). We found that when mothers were exposed to a mild heat conditioning as juveniles, their embryos exhibited reduced water loss, longer development times, and produced hatchlings with heavier pectoralis muscles when incubated at high incubation temperatures, compared to embryos from control mothers. Mothers exposed to both the mild heat conditioning as juveniles and a high heat stressor as adults produced eggs with a higher density of shell pores and embryos with lower heart rates during development. However, there was a cost when there was a mismatch between maternal and embryo environment. Embryos from these conditioned and heat-stressed mothers had reduced survival at control incubation temperatures, indicating the importance of offspring environment when interpreting potential adaptive effects.
Collapse
Affiliation(s)
| | | | - Haruka Wada
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
12
|
Seebacher F, Narayan E, Rummer JL, Tomlinson S, Cooke SJ. How can physiology best contribute to wildlife conservation in a warming world? CONSERVATION PHYSIOLOGY 2023; 11:coad038. [PMID: 37287992 PMCID: PMC10243909 DOI: 10.1093/conphys/coad038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Global warming is now predicted to exceed 1.5°C by 2033 and 2°C by the end of the 21st century. This level of warming and the associated environmental variability are already increasing pressure on natural and human systems. Here we emphasize the role of physiology in the light of the latest assessment of climate warming by the Intergovernmental Panel on Climate Change. We describe how physiology can contribute to contemporary conservation programmes. We focus on thermal responses of animals, but we acknowledge that the impacts of climate change are much broader phylogenetically and environmentally. A physiological contribution would encompass environmental monitoring, coupled with measuring individual sensitivities to temperature change and upscaling these to ecosystem level. The latest version of the widely accepted Conservation Standards designed by the Conservation Measures Partnership includes several explicit climate change considerations. We argue that physiology has a unique role to play in addressing these considerations. Moreover, physiology can be incorporated by institutions and organizations that range from international bodies to national governments and to local communities, and in doing so, it brings a mechanistic approach to conservation and the management of biological resources.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| | - Edward Narayan
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia QLD4072, Australia
| | - Jodie L Rummer
- College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4810, Australia
| | - Sean Tomlinson
- School of Biological Sciences, University of Adelaide, SA 5000, Australia
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
13
|
Sumasgutner P, Cunningham SJ, Hegemann A, Amar A, Watson H, Nilsson JF, Andersson MN, Isaksson C. Interactive effects of rising temperatures and urbanisation on birds across different climate zones: A mechanistic perspective. GLOBAL CHANGE BIOLOGY 2023; 29:2399-2420. [PMID: 36911976 PMCID: PMC10947105 DOI: 10.1111/gcb.16645] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 05/28/2023]
Abstract
Climate change and urbanisation are among the most pervasive and rapidly growing threats to biodiversity worldwide. However, their impacts are usually considered in isolation, and interactions are rarely examined. Predicting species' responses to the combined effects of climate change and urbanisation, therefore, represents a pressing challenge in global change biology. Birds are important model taxa for exploring the impacts of both climate change and urbanisation, and their behaviour and physiology have been well studied in urban and non-urban systems. This understanding should allow interactive effects of rising temperatures and urbanisation to be inferred, yet considerations of these interactions are almost entirely lacking from empirical research. Here, we synthesise our current understanding of the potential mechanisms that could affect how species respond to the combined effects of rising temperatures and urbanisation, with a focus on avian taxa. We discuss potential interactive effects to motivate future in-depth research on this critically important, yet overlooked, aspect of global change biology. Increased temperatures are a pronounced consequence of both urbanisation (through the urban heat island effect) and climate change. The biological impact of this warming in urban and non-urban systems will likely differ in magnitude and direction when interacting with other factors that typically vary between these habitats, such as resource availability (e.g. water, food and microsites) and pollution levels. Furthermore, the nature of such interactions may differ for cities situated in different climate types, for example, tropical, arid, temperate, continental and polar. Within this article, we highlight the potential for interactive effects of climate and urban drivers on the mechanistic responses of birds, identify knowledge gaps and propose promising future research avenues. A deeper understanding of the behavioural and physiological mechanisms mediating species' responses to urbanisation and rising temperatures will provide novel insights into ecology and evolution under global change and may help better predict future population responses.
Collapse
Affiliation(s)
- Petra Sumasgutner
- Konrad Lorenz Research Centre, Core Facility for Behavior and Cognition, Department of Behavioral & Cognitive BiologyUniversity of ViennaViennaAustria
- FitzPatrick Institute of African Ornithology, DSI‐NRF Centre of ExcellenceUniversity of Cape TownCape TownSouth Africa
| | - Susan J. Cunningham
- FitzPatrick Institute of African Ornithology, DSI‐NRF Centre of ExcellenceUniversity of Cape TownCape TownSouth Africa
| | | | - Arjun Amar
- FitzPatrick Institute of African Ornithology, DSI‐NRF Centre of ExcellenceUniversity of Cape TownCape TownSouth Africa
| | | | | | | | | |
Collapse
|
14
|
Monge O, Maggini I, Schulze CH, Dullinger S, Fusani L. Physiologically vulnerable or resilient? Tropical birds, global warming, and redistributions. Ecol Evol 2023; 13:e9985. [PMID: 37082319 PMCID: PMC10111238 DOI: 10.1002/ece3.9985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Tropical species are considered to be more threatened by climate change than those of other world regions. This increased sensitivity to warming is thought to stem from the assumptions of low physiological capacity to withstand temperature fluctuations and already living near their limits of heat tolerance under current climatic conditions. For birds, despite thorough documentation of community-level rearrangements, such as biotic attrition and elevational shifts, there is no consistent evidence of direct physiological sensitivity to warming. In this review, we provide an integrative outlook into the physiological response of tropical birds to thermal variation and their capacity to cope with warming. In short, evidence from the literature suggests that the assumed physiological sensitivity to warming attributed to tropical biotas does not seem to be a fundamental characteristic of tropical birds. Tropical birds do possess the physiological capacities to deal with fluctuating temperatures, including high-elevation species, and are prepared to withstand elevated levels of heat, even those living in hot and arid environments. However, there are still many unaddressed points that hinder a more complete understanding of the response of tropical birds to warming, such as cooling capacities when exposed to combined gradients of heat and humidity, the response of montane species to heat, and thermoregulation under increased levels of microclimatic stress in disturbed ecosystems. Further research into how populations and species from different ecological contexts handle warming will increase our understanding of current and future community rearrangements in tropical birds.
Collapse
Affiliation(s)
- Otto Monge
- Vienna Doctoral School of Ecology and EvolutionUniversity of ViennaDjerassiplatz 11030ViennaAustria
| | - Ivan Maggini
- Konrad‐Lorenz Institute of EthologyUniversity of Veterinary MedicineSavoyenstrasse 1a1160ViennaAustria
| | - Christian H. Schulze
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Stefan Dullinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Leonida Fusani
- Konrad‐Lorenz Institute of EthologyUniversity of Veterinary MedicineSavoyenstrasse 1a1160ViennaAustria
- Department of Behavioural and Cognitive BiologyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| |
Collapse
|
15
|
Hector TE, Gehman ALM, King KC. Infection burdens and virulence under heat stress: ecological and evolutionary considerations. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220018. [PMID: 36744570 PMCID: PMC9900716 DOI: 10.1098/rstb.2022.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/17/2022] [Indexed: 02/07/2023] Open
Abstract
As a result of global change, hosts and parasites (including pathogens) are experiencing shifts in their thermal environment. Despite the importance of heat stress tolerance for host population persistence, infection by parasites can impair a host's ability to cope with heat. Host-parasite eco-evolutionary dynamics will be affected if infection reduces host performance during heating. Theory predicts that within-host parasite burden (replication rate or number of infecting parasites per host), a key component of parasite fitness, should correlate positively with virulence-the harm caused to hosts during infection. Surprisingly, however, the relationship between within-host parasite burden and virulence during heating is often weak. Here, we describe the current evidence for the link between within-host parasite burden and host heat stress tolerance. We consider the biology of host-parasite systems that may explain the weak or absent link between these two important host and parasite traits during hot conditions. The processes that mediate the relationship between parasite burden and host fitness will be fundamental in ecological and evolutionary responses of host and parasites in a warming world. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- T. E. Hector
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - A.-L. M. Gehman
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC Canada, V0N 1M0
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC Canada, V6T 1Z4
| | - K. C. King
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| |
Collapse
|
16
|
Zuluaga JD, Danner RM. Acute stress and restricted diet reduce bill-mediated heat dissipation in the song sparrow (Melospiza melodia): implications for optimal thermoregulation. J Exp Biol 2023; 226:286688. [PMID: 36651227 DOI: 10.1242/jeb.245316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
We used thermal imaging to show that two environmental factors - acute stress and diet - influence thermoregulatory performance of a known thermal window, the avian bill. The bill plays important roles in thermoregulation and water balance. Given that heat loss through the bill is adjustable through vasoconstriction and vasodilation, and acute stress can cause vasoconstriction in peripheral body surfaces, we hypothesized that stress may influence the bill's role as a thermal window. We further hypothesized that diet influences heat dissipation from the bill, given that body condition influences the surface temperature of another body region (the eye region). We measured the surface temperature of the bills of song sparrows (Melospiza melodia) before, during and after handling by an observer at 37°C ambient temperature. We fed five birds a restricted diet intended to maintain body mass typical of wild birds, and we fed six birds an unrestricted diet for 5 months prior to experiments. Acute stress caused a decrease in the surface temperature of the bill, resulting in a 32.4% decrease in heat dissipation immediately following acute stress, before recovering over approximately 2.3 min. The initial reduction and subsequent recovery provide partial support for the hemoprotective and thermoprotective hypotheses, which predict a reduction or increase in peripheral blood flow, respectively. Birds with unrestricted diets had larger bills and dissipated more heat, indicating that diet and body condition influence bill-mediated heat dissipation and thermoregulation. These results indicate that stress-induced vascular changes and diet can influence mechanisms of heat loss and potentially inhibit optimal thermoregulation.
Collapse
Affiliation(s)
- Juan D Zuluaga
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403-5915, USA
| | - Raymond M Danner
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403-5915, USA.,Smithsonian Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, D.C. 20008, USA
| |
Collapse
|
17
|
Cabello-Vergel J, González-Medina E, Parejo M, Abad-Gómez JM, Playà-Montmany N, Patón D, Sánchez-Guzmán JM, Masero JA, Gutiérrez JS, Villegas A. Heat tolerance limits of Mediterranean songbirds and their current and future vulnerabilities to temperature extremes. J Exp Biol 2022; 225:285906. [PMID: 36408945 PMCID: PMC9789400 DOI: 10.1242/jeb.244848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022]
Abstract
Songbirds are one of the groups most vulnerable to extreme heat events. Although several recent studies have assessed their physiological responses to heat, most of them have focused solely on arid-zone species. We investigated thermoregulatory responses to heat in eight small-sized songbirds occurring in the Mediterranean Basin, where heatwaves are becoming more frequent and intense. Specifically, we determined their heat tolerance limits (HTLs) and evaporative cooling efficiency, and evaluated their current and future vulnerabilities to heat in southwestern Iberia, a Mediterranean climate warming hotspot. To do this, we exposed birds to an increasing profile of air temperatures (Ta) and measured resting metabolic rate (RMR), evaporative water loss (EWL), evaporative cooling efficiency (the ratio between evaporative heat loss and metabolic heat production) and body temperature (Tb). HTL ranged between 40 and 46°C across species, and all species showed rapid increases in RMR, EWL and Tb in response to increasing Ta. However, only the crested lark (Galerida cristata) achieved an evaporative cooling efficiency greater than 1. The studied songbirds currently experience summer Ta maxima that surpass the upper critical temperatures of their thermoneutral zone and even their HTL. Our estimates indicate that five of the eight species will experience moderate risk of lethal dehydration by the end of the century. We argue that the limited heat tolerance and evaporative cooling efficiency of small-sized Mediterranean songbirds make them particularly vulnerable to heatwaves, which will be exacerbated under future climate change scenarios.
Collapse
Affiliation(s)
- Julián Cabello-Vergel
- Conservation Biology Research Group, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain,Author for correspondence ()
| | - Erick González-Medina
- Conservation Biology Research Group, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Manuel Parejo
- Conservation Biology Research Group, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - José M. Abad-Gómez
- Conservation Biology Research Group, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Núria Playà-Montmany
- Conservation Biology Research Group, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Daniel Patón
- Ecology Department, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Juan M. Sánchez-Guzmán
- Conservation Biology Research Group, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain,Ecology in the Anthropocene, Associated Unit CSIC-UEX, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - José A. Masero
- Conservation Biology Research Group, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain,Ecology in the Anthropocene, Associated Unit CSIC-UEX, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Jorge S. Gutiérrez
- Conservation Biology Research Group, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain,Ecology in the Anthropocene, Associated Unit CSIC-UEX, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Auxiliadora Villegas
- Conservation Biology Research Group, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain,Ecology in the Anthropocene, Associated Unit CSIC-UEX, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
18
|
Galletta L, Craven MJ, Meillère A, Crowley TM, Buchanan KL, Mariette MM. Acute exposure to high temperature affects expression of heat shock proteins in altricial avian embryos. J Therm Biol 2022; 110:103347. [PMID: 36462856 DOI: 10.1016/j.jtherbio.2022.103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022]
Abstract
As the world warms, understanding the fundamental mechanisms available to organisms to protect themselves from thermal stress is becoming ever more important. Heat shock proteins are highly conserved molecular chaperones which serve to maintain cellular processes during stress, including thermal extremes. Developing animals may be particularly vulnerable to elevated temperatures, but the relevance of heat shock proteins for developing altricial birds exposed to a thermal stressor has never been investigated. Here, we sought to test whether three stress-induced genes - HSPD1, HSPA2, HSP90AA1 - and two constitutively expressed genes - HSPA8, HSP90B1 - are upregulated in response to acute thermal shock in zebra finch (Taeniopygia guttata) embryos half-way through incubation. Tested on a gradient from 37.5 °C (control) to 45 °C, we found that all genes, except HSPD1, were upregulated. However, not all genes initiated upregulation at the same temperature. For all genes, the best fitting model included a correlate of developmental stage that, although it was never significant after multiple-test correction, hints that heat shock protein upregulation might increase through embryonic development. Together, these results show that altricial avian embryos are capable of upregulating a known protective mechanism against thermal stress, and suggest that these highly conserved cellular mechanisms may be a vital component of early developmental protection under climate change.
Collapse
Affiliation(s)
- Lorenzo Galletta
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| | - Meagan J Craven
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia.
| | - Alizée Meillère
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| | - Tamsyn M Crowley
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia; Poultry Hub Australia, University of New England, Armidale, NSW, Australia.
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| | - Mylene M Mariette
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia; Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.
| |
Collapse
|
19
|
Warrington MH, Waterman J. Temperature-associated morphological changes in an African arid-zone ground squirrel. J Mammal 2022. [DOI: 10.1093/jmammal/gyac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
The ecology, life histories, and physiology of many animals are changing in response to human-induced climate change. As the Earth warms, the ability of an animal to thermoregulate becomes ecologically and physiologically significant. Morphological adaptations to warmer temperatures include larger appendages and smaller bodies. We examined morphological features in a ground squirrel, Xerus inauris, living in the arid zones of South Africa, to examine whether squirrels have responded to increases in temperature and changes in seasonal rainfall with morphological modifications over the last 18 years. We found that over time, absolute hindfoot length and proportional hindfoot length increased, while spine length decreased. These changes are consistent with ecogeographical rules (Allen’s rule and Bergmann’s rule) and provide evidence in support of “shape-shifting” in response to climatic warming. Body mass also increased with time; however, these changes were not consistent with Bergmann’s rule, indicating that mass is influenced by other ecological factors (e.g., resource availability). Our study adds to the growing evidence that animal morphologies are changing in response to changing climatic conditions, although it remains to be seen whether these changes are adaptive.
Collapse
Affiliation(s)
- Miyako H Warrington
- Department of Biological Sciences, University of Manitoba , Winnipeg, Manitoba R3T 2N2 , Canada
| | - Jane Waterman
- Department of Biological Sciences, University of Manitoba , Winnipeg, Manitoba R3T 2N2 , Canada
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria , Pretoria 0028 , South Africa
| |
Collapse
|
20
|
Swanson DL, Vézina F, McKechnie AE, Nord A. Editorial: Avian behavioral and physiological responses to challenging thermal environments and extreme weather events. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1034659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Pessato A, McKechnie AE, Mariette MM. A prenatal acoustic signal of heat affects thermoregulation capacities at adulthood in an arid-adapted bird. Sci Rep 2022; 12:5842. [PMID: 35393484 PMCID: PMC8991222 DOI: 10.1038/s41598-022-09761-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding animal physiological adaptations for tolerating heat, and the causes of inter-individual variation, is key for predicting climate change impacts on biodiversity. Recently, a novel mechanism for transgenerational heat adaptation was identified in a desert-adapted bird, where parents acoustically signal hot conditions to embryos. Prenatal exposure to "heat-calls" adaptively alters zebra finch development and their thermal preferences in adulthood, suggesting a long-term shift towards a heat-adapted phenotype. However, whether such acoustic experience improves long-term thermoregulatory capacities is unknown. We measured metabolic rate (MR), evaporative water loss (EWL) and body temperature in adults exposed to a stepped profile of progressively higher air temperatures (Ta) between 27 and 44 °C. Remarkably, prenatal acoustic experience affected heat tolerance at adulthood, with heat-call exposed individuals more likely to reach the highest Ta in morning trials. This was despite MR and EWL reaching higher levels at the highest Ta in heat-call individuals, partly driven by a stronger metabolic effect of moderate activity. At lower Ta, however, heat-call exposed individuals had greater relative water economy, as expected. They also better recovered mass lost during morning trials. We therefore provide the first evidence that prenatal acoustic signals have long-term consequences for heat tolerance and physiological adaptation to heat.
Collapse
Affiliation(s)
- Anaïs Pessato
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, 3216, Australia.
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, 0001, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0001, South Africa
| | - Mylene M Mariette
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, 3216, Australia.
- Doñana Biological Station EBD-CSIC, 41092, Seville, Spain.
| |
Collapse
|
22
|
Relative Water Economy Is a Useful Index of Aridity Tolerance for Australian Poephiline Finches. BIRDS 2022. [DOI: 10.3390/birds3020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We evaluate if the iconic Australian Zebra Finch (Taeniopygia guttata) has a unique physiology or if its metabolic, thermal and hygric physiology are similar to other Australian poephiline finches, by comparing it with three other species, the arid-habitat Painted Finch (Emblema pictum) and the mesic-habitat Double-barred (Taeniopygia bichenovii) and Red-browed (Neochmia temporalis) Finches. All physiological variables responded to ambient temperature as expected. There were no species differences for any of the standard physiological variables, consistent with the hypotheses that birds are pre-adapted to arid habitats, the recent development of Australian deserts has limited opportunity for physiological adaptation, and all four species share similar behavioural and ecological traits. Nevertheless, the ambient temperature where metabolic water production equals evaporative water loss (point of relative water economy) was highest for the Zebra (19.1 °C), lower for Double-barred (16.4 °C) and Painted (15.2 °C) and lowest for Red-Browed (4.1 °C) Finches, corresponding with their general patterns of habitat aridity. The point of relative water economy may be a sensitive index for assessing a species’ tolerance of aridity because it integrates individual physiological variables. We conclude that the Zebra Finch is not a physiological outlier amongst Australian finches, but is at the end of a continuum of aridity tolerance for the four study species.
Collapse
|
23
|
Pacheco-Fuentes H, Cooper CE, Withers PC, Griffith SC. Re-evaluating model assumptions suggests that Australian birds are more tolerant of heat and aridity than predicted: a response to Conradie et al. (2020). CONSERVATION PHYSIOLOGY 2022; 10:coac010. [PMID: 35492422 PMCID: PMC9040279 DOI: 10.1093/conphys/coac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/05/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Conradie et al. (2020) recently modelled the vulnerability of Australian arid birds to a changing climate. While the approach used by Conradie et al. (2020) is valuable, we argue that key assumptions in their study are poorly supported and the risks of a changing climate to arid zone avifauna are consequently overstated.
Collapse
Affiliation(s)
- Hector Pacheco-Fuentes
- Corresponding author: Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | - Christine E Cooper
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6102 Australia
| | - Philip C Withers
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
24
|
Sharpe LL, Prober SM, Gardner JL. In the Hot Seat: Behavioral Change and Old-Growth Trees Underpin an Australian Songbird’s Response to Extreme Heat. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.813567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic climate change is increasing the frequency and intensity of heat waves, thereby threatening biodiversity, particularly in hot, arid regions. Although free-ranging endotherms can use behavioral thermoregulation to contend with heat, it remains unclear to what degree behavior can buffer organisms from unprecedented temperatures. Thermoregulatory behaviors that facilitate dry heat loss during moderate heat become maladaptive once environmental temperatures exceed body temperature. Additionally, the costs associated with behavioral thermoregulation may become untenable with greater heat exposure, and effective cooling may be dependent upon the availability of specific microhabitats. Only by understanding the interplay of these three elements (responses, costs and habitat) can we hope to accurately predict how heat waves will impact wild endotherms. We quantified the thermoregulatory behaviors and microhabitat use of a small passerine, the Jacky Winter (Microeca fascinans), in the mallee woodland of SE Australia. At this location, the annual number of days ≥ 42°C has doubled over the last 25 years. The birds’ broad repertoire of behavioral responses to heat was nuanced and responsive to environmental conditions, but was associated with reduced foraging effort and increased foraging costs, accounting for the loss of body condition that occurs at high temperatures. By measuring microsite surface temperatures, which varied by up to 35°C at air temperatures > 44°C, we found that leaf-litter coverage and tree size were positively correlated with thermal buffering. Large mallee eucalypts were critical to the birds’ response to very high temperatures, providing high perches that facilitated convective cooling, the coolest tree-base temperatures and the greatest prevalence of tree-base crevices or hollows that were used as refuges at air temperatures > 38°C. Tree-base hollows, found only in large mallees, were cooler than all other microsites, averaging 2°C cooler than air temperature. Despite the plasticity of the birds’ response to heat, 29% of our habituated study population died when air temperatures reached a record-breaking 49°C, demonstrating the limits of behavioral thermoregulation and the potential vulnerability of organisms to climate change.
Collapse
|
25
|
Conradie SR, Woodborne SM, Wolf BO, Pessato A, Mariette MM, McKechnie AE. Global heating poses a serious threat to Australia's birds: reply to Pacheco-Fuentes et al. CONSERVATION PHYSIOLOGY 2022; 10:coac011. [PMID: 35492411 PMCID: PMC9041427 DOI: 10.1093/conphys/coac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Shannon R Conradie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, 2 Cussonia Ave, Brummeria, Pretoria 0184, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Lynnwood Rd., Pretoria 0002, South Africa
| | - Stephan M Woodborne
- iThemba LABS, 514 Empire Rd, Johannesburg 2193, South Africa
- Mammal Research Institute, University of Pretoria, Lynnwood Rd., Pretoria 0002, South Africa
| | - Blair O Wolf
- UNM Biology Department, University of New Mexico, Albuquerque, NM 87131, USA
| | - Anaïs Pessato
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds VIC 3216, Australia
| | - Mylene M Mariette
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds VIC 3216, Australia
- Estación Biológica de Doñana (EBD-CSIC), Calle Américo-Vespucio, Edificio I, 41092 Sevilla, Spain
| | - Andrew E McKechnie
- Corresponding author: South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, South Africa.
| |
Collapse
|
26
|
Udino E, Mariette MM. How to Stay Cool: Early Acoustic and Thermal Experience Alters Individual Behavioural Thermoregulation in the Heat. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.818278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate change is pushing organisms closer to their physiological limits. Animals can reduce heat exposure – and the associated risks of lethal hyperthermia and dehydration – by retreating into thermal refuges. Refuge use nonetheless reduces foraging and reproductive activities, and thereby potentially fitness. Behavioural responses to heat thus define the selection pressures to which individuals are exposed. However, whether and why such behavioural responses vary between individuals remains largely unknown. Here, we tested whether early-life experience generates inter-individual differences in behavioural responses to heat at adulthood. In the arid-adapted zebra finch, parents incubating at high temperatures emit “heat-calls,” which adaptively alter offspring growth. We experimentally manipulated individual early life acoustic and thermal experience. At adulthood, across two summers, we then repeatedly recorded individual panting behaviour, microsite use, activity (N = 2,402 observations for 184 birds), and (for a small subset, N = 23 birds) body temperature, over a gradient of air temperatures (26–38°C), in outdoor aviaries. We found consistent inter-individual variation in behavioural thermoregulation, and show for the first time in endotherms that early-life experience contributes to such variation. Birds exposed prenatally to heat-calls started panting at lower temperatures than controls but panted less at high temperatures. It is possible that this corresponds to a heat-regulation strategy to improve water saving at high temperature extremes, and/or, allow maintaining high activity levels, since heat-call birds were also more active across the temperature gradient. In addition, microsite use varied with the interaction between early acoustic and thermal experiences, control-call birds from cooler nests using the cooler microsite more than their hot-nest counterparts, whereas the opposite pattern was observed in heat-call birds. Overall, our study demonstrates that a prenatal acoustic signal of heat alters how individuals adjust behaviourally to thermal challenges at adulthood. This suggests that there is scope for selection pressures to act differently across individuals, and potentially strengthen the long-term fitness impact of early-life effects.
Collapse
|
27
|
Khelifa R, Mahdjoub H, Samways MJ. Combined climatic and anthropogenic stress threaten resilience of important wetland sites in an arid region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150806. [PMID: 34626625 DOI: 10.1016/j.scitotenv.2021.150806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Climate change and anthropogenic perturbation threaten resilience of wetlands globally, particularly in regions where environmental conditions are already hot and dry, and human impacts are rapidly intensifying and expanding. Here we assess the vulnerability of Ramsar wetlands of six North African countries (Western Sahara, Morocco, Algeria, Tunisia, Libya, and Egypt) by asking three questions: (1) what are the recent anthropogenic changes that the wetlands experienced? (2) what are the projected future climatic changes? (3) how wetlands with different conservation priorities and globally threatened species are impacted by anthropogenic pressures? We used climatic data (historical and future projections) from WorldClim 2, drought index (SPEI), and human footprint index (HFI for 2000 and 2019) to estimate anthropogenic pressures, as well as waterbird conservation value (WCV: a metric indicating conservation priority of sites) and the breeding distribution of three threatened waterbird species (Aythya nyroca, Marmaronetta angustirostris, and Oxyura leucocephala) to understand how biodiversity is impacted by anthropogenic pressure. We found that temperature, precipitation, drought, and human footprint index (HFI) increased during earlier decades. Interestingly, areas with high HFI are projected to encounter lower warming but more severe drought. We also found that WCV was positively correlated with the magnitude of current HFI, indicating that sites of high conservation value for waterbirds encounter higher levels of anthropogenic pressure. The breeding range of the three threatened species of waterbirds showed a marked increase in HFI and is projected to experience a severe increase in temperature by 2081-2100, especially under the high emission scenario (SSP8.5) where environmental temperature becomes closer to the species critical maximum. Our results highlight the importance of integrating new conservation measures that increase the resilience of North African protected wetlands to reduce extinction risk to biodiversity.
Collapse
Affiliation(s)
- Rassim Khelifa
- Zoology Department, University of British Columbia, Vancouver, Canada; Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.
| | - Hayat Mahdjoub
- Department of Evolutionary Biology and Environmental Science, University of Zurich, Zurich, Switzerland
| | - Michael J Samways
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa
| |
Collapse
|
28
|
Schoenjahn J, Pavey CR, Walter GH. Delayed juvenile behavioral development and prolonged dependence are adaptations to desert life in the grey falcon. Curr Zool 2022; 68:679-687. [PMID: 36743220 PMCID: PMC9892786 DOI: 10.1093/cz/zoac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Rapid learning in the young of most endothermic animals can be expected to be favored by natural selection because early independence reduces the period of vulnerability. Cases of comparatively slow juvenile development continue, therefore, to attract scientific attention. In most species of birds, including raptors, the young depend on their parents for some time after fledging for the provisioning of food and for protection while they learn to become nutritionally and otherwise independent. Among raptors, post-fledging dependence periods that exceed 6 months are exclusive to the largest species and these have reproductive cycles that exceed 12 months. By contrast, young of the medium-sized grey falcon Falco hypoleucos have been reported in close company with their parents up to 12 months after fledging, that is, at a time when the adults are expected to breed again. We investigated the occurrence and characteristics of prolonged adult-juvenile association relative to other falcons and similar-sized raptors. We found that the behavioral development of grey falcon young is extremely delayed, and that they even depend nutritionally on their parents for up to 12 months after fledging. We suggest that these 2 distinctive features are, ultimately, adaptations of the grey falcon to its extreme environment, Australia's arid and semi-arid zone, one of the hottest environments in the world.
Collapse
Affiliation(s)
| | | | - Gimme H Walter
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia and
| |
Collapse
|
29
|
Czenze ZJ, Freeman MT, Kemp R, van Jaarsveld B, Wolf BO, McKechnie AE. Efficient Evaporative Cooling and Pronounced Heat Tolerance in an Eagle-Owl, a Thick-Knee and a Sandgrouse. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.799302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Avian evaporative cooling and the maintenance of body temperature (Tb) below lethal limits during heat exposure has received more attention in small species compared to larger-bodied taxa. Here, we examined thermoregulation at air temperatures (Tair) approaching and exceeding normothermic Tb in three larger birds that use gular flutter, thought to provide the basis for pronounced evaporative cooling capacity and heat tolerance. We quantified Tb, evaporative water loss (EWL) and resting metabolic rate (RMR) in the ∼170-g Namaqua sandgrouse (Pterocles namaqua), ∼430-g spotted thick-knee (Burhinus capensis) and ∼670-g spotted eagle-owl (Bubo africanus), using flow-through respirometry and a stepped Tair profile with very low chamber humidities. All three species tolerated Tair of 56–60°C before the onset of severe hyperthermia, with maximum Tb of 43.2°C, 44.3°C, and 44.2°C in sandgrouse, thick-knees and eagle-owls, respectively. Evaporative scope (i.e., maximum EWL/minimum thermoneutral EWL) was 7.4 in sandgrouse, 12.9 in thick-knees and 7.8 in eagle-owls. The relationship between RMR and Tair varied substantially among species: whereas thick-knees and eagle-owls showed clear upper critical limits of thermoneutrality above which RMR increased rapidly and linearly, sandgrouse did not. Maximum evaporative heat loss/metabolic heat production ranged from 2.8 (eagle-owls) to 5.5 (sandgrouse), the latter the highest avian value yet reported. Our data reveal some larger species with gular flutter possess pronounced evaporative cooling capacity and heat tolerance and, when taken together with published data, show thermoregulatory performance varies widely among species larger than 250 g. Our data for Namaqua sandgrouse reveal unexpectedly pronounced variation in the metabolic costs of evaporative cooling within the genus Pterocles.
Collapse
|
30
|
Paces B, Waringer BM, Domer A, Burns D, Zvik Y, Wojciechowski MS, Shochat E, Sapir N, Maggini I. Evaporative Water Loss and Stopover Behavior in Three Passerine Bird Species During Autumn Migration. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.704676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Migratory birds are often not specifically adapted to arid conditions, yet several species travel across deserts during their journeys, and often have more or less short stopovers there. We investigated whether differences in thermoregulatory mechanisms, specifically evaporative cooling, explain the different behavior of three passerine species while stopping over in the Negev desert, Israel. We measured cutaneous water loss (CWL) under ambient conditions and the temperature of panting onset in an experimental setup. In addition, we performed behavioral observations of birds at a stopover site where we manipulated water availability. Blackcaps had slightly higher CWL at relatively low temperatures than Willow Warblers and Lesser Whitethroats. When considered relative to total body mass, however, Willow Warblers had the highest CWL of the three species. Blackcaps started panting at lower ambient temperature than the other two species. Taken together, these results suggest that Willow Warblers are the most efficient in cooling their body, possibly with the cost of needing to regain water by actively foraging during their staging. Lesser Whitethroats had a similar pattern, which was reflected in their slightly higher levels of activity and drinking behavior when water was available. However, in general the behavior of migratory species was not affected by the availability of water, and they were observed drinking rather rarely. Our results indicate that differences in thermoregulatory mechanisms might be at the basis of the evolution of different stopover strategies of migratory birds while crossing arid areas such as deserts.
Collapse
|
31
|
Genomic Approaches for Conservation Management in Australia under Climate Change. Life (Basel) 2021; 11:life11070653. [PMID: 34357024 PMCID: PMC8304512 DOI: 10.3390/life11070653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
Conservation genetics has informed threatened species management for several decades. With the advent of advanced DNA sequencing technologies in recent years, it is now possible to monitor and manage threatened populations with even greater precision. Climate change presents a number of threats and challenges, but new genomics data and analytical approaches provide opportunities to identify critical evolutionary processes of relevance to genetic management under climate change. Here, we discuss the applications of such approaches for threatened species management in Australia in the context of climate change, identifying methods of facilitating viability and resilience in the face of extreme environmental stress. Using genomic approaches, conservation management practices such as translocation, targeted gene flow, and gene-editing can now be performed with the express intention of facilitating adaptation to current and projected climate change scenarios in vulnerable species, thus reducing extinction risk and ensuring the protection of our unique biodiversity for future generations. We discuss the current barriers to implementing conservation genomic projects and the efforts being made to overcome them, including communication between researchers and managers to improve the relevance and applicability of genomic studies. We present novel approaches for facilitating adaptive capacity and accelerating natural selection in species to encourage resilience in the face of climate change.
Collapse
|
32
|
Fragueira R, Helfenstein F, Fischer K, Beaulieu M. Birds of different morphs use slightly different strategies to achieve similar reproductive performance following heatwave exposure. J Anim Ecol 2021; 90:2594-2608. [PMID: 34191276 DOI: 10.1111/1365-2656.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022]
Abstract
Responses to extreme climatic events may differ between individuals of distinct morphs which differ in life-history strategies, resulting in climate change 'winners' and 'losers' within species. We examined the reproductive performance and carry-over effects on offspring of black- and red-headed Gouldian finches Erythrura gouldiae after exposure to simulated heatwaves of moderate or severe intensity. We expected black-headed pairs' reproductive performance to decline after the severe heatwave because only the condition of black-headed females deteriorates during such a heatwave. Supporting the fact that Gouldian finches of different morphs use alternative reproductive strategies, we found that black-headed females initiated egg-laying a month earlier than red-headed females after experiencing a severe heatwave. We also found that this severe heatwave resulted in shorter spermatozoa in males irrespective of their morph. Despite these effects associated with heatwave intensity, the overall reproductive performance of both morphs was not affected by this factor, which was possibly due to an increased nestling provisioning rate by parents after exposure to the severe heatwave. However, offspring still bore the cost of parental exposure to the severe heatwave, as they showed a reduced condition (lower plasma antioxidant capacity and transient lower breathing rate) and higher oxidative damage (at least in fledglings with black-headed parents). These results suggest that inter-morph phenotypic variability in the Gouldian finch does not result in clear differences in reproductive performance following heatwave exposure, despite basal phenotypic differences between morphs. Whether animals using alternative reproductive strategies are, in the end, differently affected by climate changes will likely depend on the capacity of their offspring to recover from altered developmental conditions.
Collapse
Affiliation(s)
- Rita Fragueira
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Klaus Fischer
- Institute for Integrated Natural Sciences, University of Koblenz-Landau, Koblenz, Germany
| | - Michaël Beaulieu
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,German Oceanographic Museum, Stralsund, Germany
| |
Collapse
|
33
|
Moagi LL, Bourne AR, Cunningham SJ, Jansen R, Ngcamphalala CA, Ganswindt A, Ridley AR, McKechnie AE. Hot days are associated with short-term adrenocortical responses in a southern African arid-zone passerine bird. J Exp Biol 2021; 224:268362. [PMID: 34032270 DOI: 10.1242/jeb.242535] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Relatively little effort has been directed towards elucidating the role of physiological stress pathways in mediating avian responses to global heating. For free-ranging southern pied babblers, Turdoides bicolor, daily maximum air temperatures (Tmax) between ∼35 and ∼40°C result in reduced foraging efficiency, loss of body mass and compromised breeding success. We tested the hypothesis that very hot days are experienced as stressors by quantifying relationships between Tmax and faecal glucocorticoid metabolite (fGCM) levels in naturally excreted droppings. On days when Tmax<38°C, fGCM levels were independent of Tmax (mean±s.d. 140.25±56.92 ng g-1 dry mass). At Tmax>38°C, however, fGCM levels increased linearly with Tmax and averaged 190.79±70.13 ng g-1 dry mass. The effects of Tmax on fGCM levels did not carry over to the following morning, suggesting that very hot days are experienced as acute stressors.
Collapse
Affiliation(s)
- Lesedi L Moagi
- South African Research Chair in Conservation Physiology, National Zoological Garden, South African National Biodiversity Institute, Pretoria 0001, South Africa.,Department of Nature Conservation, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Amanda R Bourne
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - Raymond Jansen
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Celiwe A Ngcamphalala
- South African Research Chair in Conservation Physiology, National Zoological Garden, South African National Biodiversity Institute, Pretoria 0001, South Africa.,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - André Ganswindt
- Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Amanda R Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Perth, WA 6009Australia
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, National Zoological Garden, South African National Biodiversity Institute, Pretoria 0001, South Africa.,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
34
|
Ton R, Stier A, Cooper CE, Griffith SC. Effects of Heat Waves During Post-natal Development on Mitochondrial and Whole Body Physiology: An Experimental Study in Zebra Finches. Front Physiol 2021; 12:661670. [PMID: 33986695 PMCID: PMC8110927 DOI: 10.3389/fphys.2021.661670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Human-induced climate change is increasing the frequency, duration, and intensity of heat waves and exposure to these extreme temperatures impacts individual physiology and performance (e.g., metabolism, water balance, and growth). These traits may be susceptible to thermal conditions experienced during embryonic development, but experiments focusing on post-natal development are scant. Documented effects of heat waves on whole-body metabolism may reflect changes in mitochondrial function, but most studies do not measure physiological traits at both the cellular and whole organism levels. Here, we exposed nests of zebra finches to experimentally simulated heat waves for 18 days after hatching and measured body mass, growth rate, whole-body metabolic rate, body temperature, wet thermal conductance, evaporative water loss, and relative water economy of chicks at three ages corresponding to ectothermic (day 5), poikilothermic (day 12), and homoeothermic (day 50) stages. Additionally, we measured mitochondrial bioenergetics of blood cells 80 days post-hatch. While early-life exposure to heat wave conditions did not impact whole body metabolic and hygric physiology, body temperature was lower for birds from heated compared with control nests at both 12 and 50 days of age. There was also an effect of nest heating at the cellular level, with mitochondria from heated birds having higher endogenous and proton-leak related respiration, although oxidative phosphorylation, maximum respiratory capacity, and coupling efficiency were not impacted. Our results suggest that early-life exposure to high ambient temperature induces programming effects on cellular-level and thermal physiology that may not be apparent for whole-animal metabolism.
Collapse
Affiliation(s)
- Riccardo Ton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Antoine Stier
- Department of Biology, University of Turku, Turku, Finland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Christine E. Cooper
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Simon C. Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
35
|
McKechnie AE, Rushworth IA, Myburgh F, Cunningham SJ. Mortality among birds and bats during an extreme heat event in eastern South Africa. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Andrew E. McKechnie
- South African Research Chair in Conservation Physiology South African National Biodiversity Institute P.O. Box 754 Pretoria0001South Africa
- DSI‐NRF Centre of Excellence at the FitzPatrick Institute Department of Zoology and Entomology University of Pretoria PretoriaSouth Africa
| | - Ian A. Rushworth
- Ezemvelo KZN Wildlife Pietermaritzburg KwaZulu‐NatalSouth Africa
| | - Ferdi Myburgh
- Ezemvelo KZN Wildlife Pietermaritzburg KwaZulu‐NatalSouth Africa
| | - Susan J. Cunningham
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Rondebosch South Africa
| |
Collapse
|
36
|
Danner RM, Coomes CM, Derryberry EP. Simulated heat waves reduce cognitive and motor performance of an endotherm. Ecol Evol 2021; 11:2261-2272. [PMID: 33717453 PMCID: PMC7920763 DOI: 10.1002/ece3.7194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022] Open
Abstract
Heat waves cause mass mortality of animals, including humans, across the globe annually, which has drawn new attention to how animals cope with high air temperatures. Recent field research has explored behavioral responses to high air temperatures, which can influence reproductive success and mortality.Less well studied are the effects of high air temperatures on cognition, which may underlie behavioral changes. Specifically, it is poorly known if cognitive declines occur at high temperatures, and if cognitive and motor components of behavior are similarly affected.We tested how well zebra finches (Taeniopygia guttata castanotis), a model for cognition research, performed two learned foraging tasks (color association and detour-reaching) at mild (22°C) and high (43 and 44°C) air temperatures that occur naturally in their range. We habituated birds to the trial conditions and temperatures on days preceding the test trials and at the trial temperature for 30 min immediately prior to each test trial. Trials lasted less than 10 min. At high air temperatures, zebra finches exhibited heat dissipation behaviors during most tasks, suggesting thermoregulatory challenge.Cognitive performance declined at high air temperatures in two of three measures: Color association was unaffected, but birds missed more food rewards, and did more unproductive behaviors. Motor performance declined at high temperatures on the color association task, including longer times to complete the task, move between food rewards, and process individual seeds. Performance declines varied among components of behavior and among individuals.We combined our behavioral data with existing climate data and predicted that in the austral summer of 2018-2019, zebra finches experienced air temperatures that caused cognitive and motor declines in our captive birds in 34% and 45% of their Australian range, respectively.This study provides novel experimental evidence that high air temperatures cause cognitive and motor performance decline in birds. Further, our results provide insights to how those declines might affect bird ecology and evolution. First, differences in declines among behavioral components may allow identification of behaviors that are most susceptible to decline in the wild. Second, variation in performance declines and heat dissipation behaviors among individuals suggests variability in heat tolerance, which could lead to differential fitness in the wild. Last, these results suggest that high air temperatures cause cognitive declines in the wild and that understanding cognition could help refine predictive models of population persistence.
Collapse
Affiliation(s)
- Raymond M. Danner
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNCUSA
| | - Casey M. Coomes
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLAUSA
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
| | - Elizabeth P. Derryberry
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLAUSA
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
37
|
McKechnie AE, Gerson AR, Wolf BO. Thermoregulation in desert birds: scaling and phylogenetic variation in heat tolerance and evaporative cooling. J Exp Biol 2021; 224:224/Suppl_1/jeb229211. [PMID: 33627461 DOI: 10.1242/jeb.229211] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Evaporative heat dissipation is a key aspect of avian thermoregulation in hot environments. We quantified variation in avian thermoregulatory performance at high air temperatures (T a) using published data on body temperature (T b), evaporative water loss (EWL) and resting metabolic rate (RMR) measured under standardized conditions of very low humidity in 56 arid-zone species. Maximum T b during acute heat exposure varied from 42.5±1.3°C in caprimulgids to 44.5±0.5°C in passerines. Among passerines, both maximum T b and the difference between maximum and normothermic T b decreased significantly with body mass (M b). Scaling exponents for minimum thermoneutral EWL and maximum EWL were 0.825 and 0.801, respectively, even though evaporative scope (ratio of maximum to minimum EWL) varied widely among species. Upper critical limits of thermoneutrality (T uc) varied by >20°C and maximum RMR during acute heat exposure scaled to M b 0.75 in both the overall data set and among passerines. The slope of RMR at T a>T uc increased significantly with M b but was substantially higher among passerines, which rely on panting, compared with columbids, in which cutaneous evaporation predominates. Our analysis supports recent arguments that interspecific within-taxon variation in heat tolerance is functionally linked to evaporative scope and maximum ratios of evaporative heat loss (EHL) to metabolic heat production (MHP). We provide predictive equations for most variables related to avian heat tolerance. Metabolic costs of heat dissipation pathways, rather than capacity to increase EWL above baseline levels, appear to represent the major constraint on the upper limits of avian heat tolerance.
Collapse
Affiliation(s)
- Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa .,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, Private Bag X20, Pretoria 0028, South Africa
| | - Alexander R Gerson
- Department of Biology, University of Massachusetts, Amherst, MA 01003-9297, USA
| | - Blair O Wolf
- UNM Biology Department, University of New Mexico, MSC03-2020, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
38
|
Bourne AR, Ridley AR, McKechnie AE, Spottiswoode CN, Cunningham SJ. Dehydration risk is associated with reduced nest attendance and hatching success in a cooperatively breeding bird, the southern pied babbler Turdoides bicolor. CONSERVATION PHYSIOLOGY 2021; 9:coab043. [PMID: 34150211 PMCID: PMC8208672 DOI: 10.1093/conphys/coab043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 05/12/2023]
Abstract
High air temperatures have measurable negative impacts on reproduction in wild animal populations, including during incubation in birds. Understanding the mechanisms driving these impacts requires comprehensive knowledge of animal physiology and behaviour under natural conditions. We used a novel combination of a non-invasive doubly labelled water (DLW) technique, nest temperature data and field-based behaviour observations to test effects of temperature, rainfall and group size on physiology and behaviour during incubation in southern pied babblers Turdoides bicolor, a cooperatively breeding passerine endemic to the arid savanna regions of southern Africa. The proportion of time that clutches were incubated declined as air temperatures increased, a behavioural pattern traditionally interpreted as a benefit of ambient incubation. However, we show that (i) clutches had a <50% chance of hatching when exposed to daily maximum air temperatures of >35.3°C; (ii) pied babbler groups incubated their nests almost constantly (99% of daylight hours) except on hot days; (iii) operative temperatures in unattended nests frequently exceeded 40.5°C, above which bird embryos are at risk of death; (iv) pied babblers incubating for long periods of time failed to maintain water balance on hot days; and (v) pied babblers from incubating groups lost mass on hot days. These results suggest that pied babblers might leave their nests during hot periods to lower the risk of dehydration associated with prolonged incubation at high operative temperatures. As mean air temperatures increase and extreme heat events become more frequent under climate change, birds will likely incur ever greater thermoregulatory costs of incubation, leading to compromised nest attendance and increased potential for eggs to overheat, with implications for nest success and, ultimately, population persistence.
Collapse
Affiliation(s)
- Amanda R Bourne
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Corresponding author: FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - Amanda R Ridley
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley 6009, Australia
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0184, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0002, South Africa
| | - Claire N Spottiswoode
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| |
Collapse
|
39
|
Ridley AR, Wiley EM, Bourne AR, Cunningham SJ, Nelson-Flower MJ. Understanding the potential impact of climate change on the behavior and demography of social species: The pied babbler (Turdoides bicolor) as a case study. ADVANCES IN THE STUDY OF BEHAVIOR 2021. [DOI: 10.1016/bs.asb.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Pessato A, McKechnie AE, Buchanan KL, Mariette MM. Vocal panting: a novel thermoregulatory mechanism for enhancing heat tolerance in a desert-adapted bird. Sci Rep 2020; 10:18914. [PMID: 33144650 PMCID: PMC7609653 DOI: 10.1038/s41598-020-75909-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/15/2020] [Indexed: 01/06/2023] Open
Abstract
Animals thriving in hot deserts rely on extraordinary adaptations and thermoregulatory capacities to cope with heat. Uncovering such adaptations, and how they may be favoured by selection, is essential for predicting climate change impacts. Recently, the arid-adapted zebra finch was discovered to program their offspring’s development for heat, by producing ‘heat-calls’ during incubation in hot conditions. Intriguingly, heat-calls always occur during panting; and, strikingly, avian evaporative cooling mechanisms typically involve vibrating an element of the respiratory tract, which could conceivably produce sound. Therefore, we tested whether heat-call emission results from a particular thermoregulatory mechanism increasing the parent’s heat tolerance. We repeatedly measured resting metabolic rate, evaporative water loss (EWL) and heat tolerance in adult wild-derived captive zebra finches (n = 44) at increasing air temperatures up to 44 °C. We found high within-individual repeatability in thermoregulatory patterns, with heat-calling triggered at an individual-specific stage of panting. As expected for thermoregulatory mechanisms, both silent panting and heat-calling significantly increased EWL. However, only heat-calling resulted in greater heat tolerance, demonstrating that “vocal panting” brings a thermoregulatory benefit to the emitter. Our findings therefore not only improve our understanding of the evolution of passerine thermal adaptations, but also highlight a novel evolutionary precursor for acoustic signals.
Collapse
Affiliation(s)
- Anaïs Pessato
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University Geelong, Geelong, VIC, 3216, Australia.
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, 0001, South Africa.,DST-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0001, South Africa
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University Geelong, Geelong, VIC, 3216, Australia
| | - Mylene M Mariette
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University Geelong, Geelong, VIC, 3216, Australia.
| |
Collapse
|
41
|
Phenotypic flexibility in heat production and heat loss in response to thermal and hydric acclimation in the zebra finch, a small arid-zone passerine. J Comp Physiol B 2020; 191:225-239. [PMID: 33070274 PMCID: PMC7819915 DOI: 10.1007/s00360-020-01322-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
To maintain constant body temperature (Tb) over a wide range of ambient temperatures (Ta) endothermic animals require large amounts of energy and water. In hot environments, the main threat to endothermic homeotherms is insufficient water to supply that necessary for thermoregulation. We investigated flexible adjustment of traits related to thermoregulation and water conservation during acclimation to hot conditions or restricted water availability, or both, in the zebra finch, Taeniopygia guttata a small arid-zone passerine. Using indirect calorimetry, we measured changes in whole animal metabolic rate (MR), evaporative heat loss (EHL) and Tb before and after acclimation to 23 or 40 °C, with different availability of water. Additionally, we quantified changes in partitioning of EHL into respiratory and cutaneous avenues in birds exposed to 25 and 40 °C. In response to heat and water restriction zebra finches decreased MR, which together with unchanged EHL resulted in increased efficiency of evaporative heat loss. This facilitated more precise Tb regulation in heat-acclimated birds. Acclimation temperature and water availability had no effect on the partitioning of EHL into cutaneous or respiratory avenues. At 25 °C, cutaneous EHL accounted for ~ 60% of total EHL, while at 40 °C, its contribution decreased to ~ 20%. Consistent among-individual differences in MR and EHL suggest that these traits, provided that they are heritable, may be a subject to natural selection. We conclude that phenotypic flexibility in metabolic heat production associated with acclimation to hot, water-scarce conditions is crucial in response to changing environmental conditions, especially in the face of current and predicted climate change.
Collapse
|
42
|
|