1
|
de Azevedo CS, Cipreste CF, Pizzutto CS, Young RJ. Review of the Effects of Enclosure Complexity and Design on the Behaviour and Physiology of Zoo Animals. Animals (Basel) 2023; 13:ani13081277. [PMID: 37106840 PMCID: PMC10135285 DOI: 10.3390/ani13081277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The complexity of the habitat refers to its physical geometry, which includes abiotic and biotic elements. Habitat complexity is important because it allows more species to coexist and, consequently, more interactions to be established among them. The complexity of the habitat links the physical structure of the enclosure to the biological interactions, which occur within its limits. Enclosure complexity should vary temporally, to be able to influence the animals in different ways, depending on the period of the day and season and throughout the year. In the present paper, we discuss how habitat complexity is important, and how it can positively influence the physical and mental states of zoo animals. We show how habitat complexity can ultimately affect educational projects. Finally, we discuss how we can add complexity to enclosures and, thus, make the lives of animals more interesting and functional.
Collapse
Affiliation(s)
- Cristiano Schetini de Azevedo
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/n Bauxita, Ouro Preto 35400-000, Brazil
| | | | - Cristiane Schilbach Pizzutto
- Programa de Pós-graduação em Reprodução Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, Avenida Dr. Orlando Marques de Paiva, 87, Cidade Universitária Armando Salles de Oliveira, São Paulo 05508-270, Brazil
| | - Robert John Young
- School of Science, Engineering and Environment, University of Salford Manchester, Peel Building-Room G51, Salford M5 4WT, UK
| |
Collapse
|
2
|
Henry J, Bai Y, Kreuder F, Saaristo M, Kaslin J, Wlodkowic D. A miniaturized electrothermal array for rapid analysis of temperature preference behaviors in ecology and ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120202. [PMID: 36169081 DOI: 10.1016/j.envpol.2022.120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Due to technical limitations, there have been minimal studies performed on thermal preferences and thermotactic behaviors of aquatic ectotherm species commonly used in ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built and miniaturized electrothermal array for rapid thermal preference behavioral tests. We applied the novel platform to define thermal preferences in multiple invertebrate and vertebrate species. Specifically, Dugesia notogaea (freshwater planarians), Chironomus tepperi (nonbiting midge larvae), Ostracoda (seed shrimp), Artemia franciscana (brine shrimp), Daphnia carinata (water flea), Austrochiltonia subtenuis (freshwater amphipod), Physa acuta (freshwater snail), Potamopyrgus antipodarum (New Zealand mud snail) and larval stage of Danio rerio (zebrafish) were tested. The Australian freshwater water fleas, amphipods, snail Physa acuta as well as zebrafish exhibited the most consistent preference to cool zones and clear avoidance of zones >27 °C out of nine species tested. Our results indicate the larval stage of zebrafish as the most responsive species highly suitable for prospective development of multidimensional behavioral test batteries. We also showcase preliminary data that environmentally relevant concentrations of pharmaceutical pollutants such as non-steroidal anti-inflammatory drug (NSAID) ibuprofen (9800 ng/L) and insecticide imidacloprid (4600 ng/L) but not anti-depressant venlafaxine (2200 ng/L) and (iv) anticonvulsant medications gabapentin (400 ng/L) can perturb thermal preference behavior of larval zebrafish. Collectively our results demonstrate the utility of simple and inexpensive thermoelectric technology in rapid exploration of thermal preference in diverse species of aquatic animals. We postulate that more broadly such technologies can also have added value in ecotoxicity testing of emerging contaminants.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Yutao Bai
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Minna Saaristo
- Environmental Protection Authority Victoria, EPA Science, Macleod, Victoria, 3085, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, 3083, Australia. http://www.rmit.edu.au/staff/donald-wlodkowic
| |
Collapse
|
3
|
Hung TC, Hammock BG, Sandford M, Stillway M, Park M, Lindberg JC, Teh SJ. Temperature and salinity preferences of endangered Delta Smelt (Hypomesus transpacificus, Actinopterygii, Osmeridae). Sci Rep 2022; 12:16558. [PMID: 36192440 PMCID: PMC9530165 DOI: 10.1038/s41598-022-20934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Temperature and salinity often define the distributions of aquatic organisms. This is at least partially true for Delta Smelt, an imperiled species endemic to the upper San Francisco Estuary. While much is known about the tolerances and distribution of Delta Smelt in relation to these parameters, little is known regarding the temperature and salinity preferences of the species. Therefore, the temperature and salinity preferences of sub-adult Delta Smelt were investigated across a wide range of thermal (8–28 °C) and salinity (0–23 ppt) conditions. Replicates of ten fish were allowed to swim between two circular chambers with different temperature or salinity, and the distribution of fish between the chambers was recorded. We found that Delta Smelt showed no temperature preference below 15 °C, a modest aversion to the warmer tank from 15 to 28 °C, and a strong aversion to the warmer tank with elevated mortality at temperatures above 28 °C. Delta Smelt also preferred lower salinities, and this preference became more pronounced as salinity increased toward 23 ppt. These results indicate that Delta Smelt can tolerate high temperatures and salinities for a short time, and that their preferences for lower temperature and salinity strengthens as these variables increase.
Collapse
Affiliation(s)
- Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, USA.
| | - Bruce G Hammock
- Aquatic Health Program, Veterinary Medicine: Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Marade Sandford
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, USA
| | - Marie Stillway
- Aquatic Health Program, Veterinary Medicine: Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Michael Park
- Aquatic Health Program, Veterinary Medicine: Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Joan C Lindberg
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, USA
| | - Swee J Teh
- Aquatic Health Program, Veterinary Medicine: Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Clark TD, Scheuffele H, Pratchett MS, Skeeles MR. Behavioural temperature regulation is a low priority in a coral reef fish (Plectropomus leopardus): insights from a novel behavioural thermoregulation system. J Exp Biol 2022; 225:276686. [PMID: 36039674 DOI: 10.1242/jeb.244212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022]
Abstract
Current understanding of behavioural thermoregulation in aquatic ectotherms largely stems from systems such as "shuttle boxes", which are generally limited in their capacity to test large-bodied species. Here, we introduce a controlled system that allows large aquatic ectotherms to roam freely in a tank at sub-optimal temperatures, using thermal refuges to increase body temperature to their thermal optimum as desired. Of the 10 coral grouper (Plectropomus leopardus; length ∼400 mm) implanted with thermal loggers, three fish maintained themselves at the ambient tank temperature of 17.5-20.5oC for the entire 2-4 d trial. Of the other seven fish, body temperature never exceeded ∼21.5oC, which was well below the temperature available in the thermal refuges (∼31oC) and below the species' optimal temperature of ∼27oC. This study adds to a growing literature documenting an unexpected lack of behavioural thermoregulation in aquatic ectotherms in controlled, heterothermal environments.
Collapse
Affiliation(s)
- T D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - H Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - M S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - M R Skeeles
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
5
|
Jones NAR, Webster MM, Salvanes AGV. Physical enrichment research for captive fish: Time to focus on the DETAILS. JOURNAL OF FISH BIOLOGY 2021; 99:704-725. [PMID: 33942889 DOI: 10.1111/jfb.14773] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Growing research effort has shown that physical enrichment (PE) can improve fish welfare and research validity. However, the inclusion of PE does not always result in positive effects and conflicting findings have highlighted the many nuances involved. Effects are known to depend on species and life stage tested, but effects may also vary with differences in the specific items used as enrichment between and within studies. Reporting fine-scale characteristics of items used as enrichment in studies may help to reveal these factors. We conducted a survey of PE-focused studies published in the last 5 years to examine the current state of methodological reporting. The survey results suggest that some aspects of enrichment are not adequately detailed. For example, the amount and dimensions of objects used as enrichment were frequently omitted. Similarly, the ecological relevance, or other justification, for enrichment items was frequently not made explicit. Focusing on ecologically relevant aspects of PE and increasing the level of detail reported in studies may benefit future work and we propose a framework with the acronym DETAILS (Dimensions, Ecological rationale, Timing of enrichment, Amount, Inputs, Lighting and Social environment). We outline the potential importance of each of the elements of this framework with the hope it may aid in the level of reporting and standardization across studies, ultimately aiding the search for more beneficial types of PE and the development of our understanding and ability to improve the welfare of captive fish and promote more biologically relevant behaviour.
Collapse
Affiliation(s)
- Nick A R Jones
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Mike M Webster
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
6
|
Gervais CR, Champion C, Pecl GT. Species on the move around the Australian coastline: A continental-scale review of climate-driven species redistribution in marine systems. GLOBAL CHANGE BIOLOGY 2021; 27:3200-3217. [PMID: 33835618 PMCID: PMC8251616 DOI: 10.1111/gcb.15634] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/23/2021] [Indexed: 05/02/2023]
Abstract
Climate-driven changes in the distribution of species are a pervasive and accelerating impact of climate change, and despite increasing research effort in this rapidly emerging field, much remains unknown or poorly understood. We lack a holistic understanding of patterns and processes at local, regional and global scales, with detailed explorations of range shifts in the southern hemisphere particularly under-represented. Australian waters encompass the world's third largest marine jurisdiction, extending from tropical to sub-Antarctic climate zones, and have waters warming at rates twice the global average in the north and two to four times in the south. Here, we report the results of a multi-taxon continent-wide review describing observed and predicted species redistribution around the Australian coastline, and highlight critical gaps in knowledge impeding our understanding of, and response to, these considerable changes. Since range shifts were first reported in the region in 2003, 198 species from nine Phyla have been documented shifting their distribution, 87.3% of which are shifting poleward. However, there is little standardization of methods or metrics reported in observed or predicted shifts, and both are hindered by a lack of baseline data. Our results demonstrate the importance of historical data sets and underwater visual surveys, and also highlight that approximately one-fifth of studies incorporated citizen science. These findings emphasize the important role the public has had, and can continue to play, in understanding the impact of climate change. Most documented shifts are of coastal fish species in sub-tropical and temperate systems, while tropical systems in general were poorly explored. Moreover, most distributional changes are only described at the poleward boundary, with few studies considering changes at the warmer, equatorward range limit. Through identifying knowledge gaps and research limitations, this review highlights future opportunities for strategic research effort to improve the representation of Australian marine species and systems in climate-impact research.
Collapse
Affiliation(s)
- Connor R. Gervais
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Curtis Champion
- Fisheries ResearchNSW Department of Primary IndustriesCoffs HarbourNSWAustralia
- Southern Cross UniversityNational Marine Science CentreCoffs HarbourNSWAustralia
| | - Gretta T. Pecl
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasAustralia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTasAustralia
| |
Collapse
|
7
|
Species interactions alter the selection of thermal environment in a coral reef fish. Oecologia 2021; 196:363-371. [PMID: 34036440 DOI: 10.1007/s00442-021-04942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
Increasing ocean temperatures and the resulting poleward range shifts of species has highlighted the importance of a species preferred temperature and thermal range in shaping ecological communities. Understanding the temperatures preferred and avoided by individual species, and how these are influenced by species interactions is critical in predicting the future trajectories of populations, assemblages, and ecosystems. Using an automated shuttlebox system, we established the preferred temperature and upper and lower threshold temperatures (i.e., avoided temperatures) of a common coral reef fish, the black-axil chromis, Chromis atripectoralis. We then investigated how the presence of conspecifics, heterospecifics (Neopomacentrus bankieri), or a predator (Cephalopholis spiloparaea) influenced the selection of these temperatures. Control C. atripectoralis preferred 27.5 ± 1.0 °C, with individuals avoiding temperatures below 23.5 ± 0.9 °C and above 29.7 ± 0.7 °C. When associating with either conspecifics or heterospecifics, C. atripectoralis selected significantly lower temperatures (conspecifics: preferred = 21.2 ± 1.4 °C, lower threshold = 18.1 ± 0.8 °C; heterospecifics: preferred = 21.1 ± 1.1 °C, lower threshold = 19.2 ± 0.9 °C), but not higher temperatures (conspecifics: preferred = 28.9 ± 1.2 °C, upper threshold = 30.8 ± 0.9 °C; heterospecifics: preferred = 29.7 ± 1.1 °C, upper threshold = 31.4 ± 0.8 °C). The presence of the predator, however, had a significant effect on both lower and upper thresholds. Individual C. atripectoralis exposed themselves to temperatures ~ 5.5 °C cooler or warmer (lower threshold: 18.6 ± 0.5 °C, upper threshold: 35.2 ± 0.5 °C) than control fish before moving into the chamber containing the predator. These findings demonstrate how behavioural responses due to species interactions influence the thermal ecology of a tropical reef fish; however, there appears to be limited scope for individuals to tolerate higher temperatures unless faced with the risk of predation.
Collapse
|
8
|
Christensen EAF, Andersen LEJ, Bergsson H, Steffensen JF, Killen SS. Shuttle-box systems for studying preferred environmental ranges by aquatic animals. CONSERVATION PHYSIOLOGY 2021; 9:coab028. [PMID: 34026213 PMCID: PMC8129825 DOI: 10.1093/conphys/coab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 05/12/2023]
Abstract
Animals' selection of environments within a preferred range is key to understanding their habitat selection, tolerance to stressors and responses to environmental change. For aquatic animals, preferred environmental ranges can be studied in so-called shuttle-boxes, where an animal can choose its ambient environment by shuttling between separate choice chambers with differences in an environmental variable. Over time, researchers have refined the shuttle-box technology and applied them in many different research contexts, and we here review the use of shuttle-boxes as a research tool with aquatic animals over the past 50 years. Most studies on the methodology have been published in the latest decade, probably due to an increasing research interest in the effects of environmental change, which underlines the current popularity of the system. The shuttle-box has been applied to a wide range of research topics with regards to preferred ranges of temperature, CO 2 , salinity and O 2 in a vast diversity of species, showing broad applicability for the system. We have synthesized the current state-of-the-art of the methodology and provided best practice guidelines with regards to setup, data analyses, experimental design and study reporting. We have also identified a series of knowledge gaps, which can and should be addressed in future studies. We conclude with highlighting directions for research using shuttle-boxes within evolutionary biology and behavioural and physiological ecology.
Collapse
Affiliation(s)
- Emil A F Christensen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow,
82 Hillhead Street, Glasgow, G12 8QQ, UK
| | - Lars E J Andersen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark
| | - Heiðrikur Bergsson
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark
| | - John F Steffensen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow,
82 Hillhead Street, Glasgow, G12 8QQ, UK
| |
Collapse
|