1
|
Wang Y, Li N, Chen X, Zhao Y, Qu L, Cai D. Mechanistic insights into sevoflurane-induced hippocampal neuronal damage and cognitive dysfunction through the NEAT1/Nrf2 signaling axis in aged rats. Cell Biol Toxicol 2024; 41:13. [PMID: 39707048 PMCID: PMC11662051 DOI: 10.1007/s10565-024-09964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
The use of anesthetics during surgery can cause severe neurological damage and cognitive dysfunction in elderly patients. However, this health issue currently lacks corresponding therapeutic strategies. This research involved the utilization of single-cell RNA sequencing (scRNA-seq) and transcriptomic assessment to pinpoint crucial cell classifications and molecular pathways, as well as the lncRNA expression profiles, that undergo substantial alterations in aged rats experiencing sevoflurane-induced cognitive impairment. The results of our investigation pointed towards the enrichment of differentially expressed genes in neurons within the Nrf2/ARE signaling pathway, alongside an elevated expression of lncRNA NEAT1. Subsequently, by constructing a rat model to induce neuronal dysfunction with sevoflurane and performing experiments both in vivo and in vitro (including TUNEL staining, H&E staining, immunohistochemistry, immunofluorescence, and flow cytometry to assess apoptosis levels), we confirmed that NEAT1 inhibits the Nrf2/ARE/HO-1 pathway-related factors. Sevoflurane promotes oxidative stress and apoptosis in primary hippocampal neurons through the NEAT1/Nrf2/ARE/HO-1 axis. This study elucidates the molecular mechanism by which sevoflurane induces hippocampal neuronal damage and cognitive decline in elderly rats via the regulation of the lncRNA NEAT1/Nrf2 signaling axis. We discovered that upregulation of NEAT1 suppresses the Nrf2 signaling pathway, further inducing neuronal damage and cognitive dysfunction, furnishing an essential citation to grasp the molecular pathways involved in neuronal harm and devising corresponding treatment methodologies.
Collapse
Affiliation(s)
- Yiliang Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Nu Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Xiaoyu Chen
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yue Zhao
- Department of Anesthesiology, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110001, Liaoning, People's Republic of China
| | - Letian Qu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.
| | - Dasheng Cai
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: Mechanisms to clinical impact. Matrix Biol 2024; 134:1-22. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Li J, Liu L, Luo Q, Zhou W, Zhu Y, Jiang W. Exploring the causal relationship between immune cell and all-cause heart failure: a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1363200. [PMID: 38938655 PMCID: PMC11210391 DOI: 10.3389/fcvm.2024.1363200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
Background and objectives Heart failure (HF) is a disease with numerous genetic and environmental factors that affect it. The results of previous studies indicated that immune phenotypes are associated with HF, but there have been inconclusive studies regarding a causal relationship. Therefore, Mendelian randomization (MR) analyses were undertaken to confirm the causal connections between immune phenotypes and HF, providing genetic evidence supporting the association of immune cell factors with HF risk. Methods We selected instrumental variables that met the criteria based on data from the results of genome-wide association studies (GWAS) of immune phenotype and all-cause HF. An evaluation of the causal association between 731 immune cell factors and HF risk was carried out using the inverse variance weighted (IVW), MR-Egger regression (MR-Egger), and weighted median (WM) analysis methods. To determine the horizontal pleiotropy, heterogeneity, and stability of the genetic variants, the MR-Egger intercept test, Cochran's Q test, MR-PRESSO, and leave-one-out sensitivity analysis were performed. Results MR principal method (IVW) analysis showed that a total of 38 immune cell-related factors were significantly causally associated with HF. Further analyses combining three methods (IVW, MR-Egger and WME) showed that six exposure factors significantly associated with heart failure, as shown below. The effect of Dendritic cell Absolute Count, CD62l- CD86+ myeloid Dendritic cell Absolute Count, CD62l- CD86+ myeloid Dendritic cell% Dendritic cell, CD39+ CD8+ T cell% CD8+ T cell, CD3 on Central Memory CD4+ T cell on heart failure was positive. Whereas, a reverse effect was observed for CD14+ CD16+ monocyte% monocyte. Conclusion We investigated the causal relationship between immune phenotypes and all-cause HF. According to the results, Dendritic cell Absolute Count, CD62l- CD86+ myeloid Dendritic cell Absolute Count, CD62l- CD86+ myeloid Dendritic cell% Dendritic cell, CD39+ CD8+ T cell% CD8+ T cell, CD3 on Central Memory CD4+ T cell aggravate HF, and the risk of HF is decreased by CD14+ CD16+ monocyte% monocyte. These phenotypes may serve as new biomarkers, providing new therapeutic insights for the prevention and treatment of all-cause HF.
Collapse
Affiliation(s)
| | | | | | | | - Yao Zhu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weimin Jiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat Rev Cardiol 2022; 20:309-324. [PMID: 36376437 DOI: 10.1038/s41569-022-00799-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.
Collapse
|
6
|
Wang Y, Wei J, Zhang P, Zhang X, Wang Y, Chen W, Zhao Y, Cui X. Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol 2022; 13:945206. [PMID: 36120374 PMCID: PMC9471952 DOI: 10.3389/fphar.2022.945206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
NRG1 (Neuregulin-1) is an effective cardiomyocyte proliferator, secreted and released by endothelial vascular cells, and affects the cardiovascular system. It plays a major role in heart growth, proliferation, differentiation, apoptosis, and other cardiovascular processes. Numerous experiments have shown that NRG1 can repair the heart in the pathophysiology of atherosclerosis, myocardial infarction, ischemia reperfusion, heart failure, cardiomyopathy and other cardiovascular diseases. NRG1 can connect related signaling pathways through the NRG1/ErbB pathway, which form signal cascades to improve the myocardial microenvironment, such as regulating cardiac inflammation, oxidative stress, necrotic apoptosis. Here, we summarize recent research advances on the molecular mechanisms of NRG1, elucidate the contribution of NRG1 to cardiovascular disease, discuss therapeutic approaches targeting NRG1 associated with cardiovascular disease, and highlight areas for future research.
Collapse
Affiliation(s)
- Yan Wang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianliang Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhao
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| |
Collapse
|
7
|
Sun J, Wang L, Lin Y, Liu Y, Liu F, Liu X, Dong W, Cai W, Chen H, Xiao M, Luo H, Liu X, Duan J. Anthropometric parameters of obesity can be alternative biomarkers for the potential cardiac dysfunction in obese children. Front Cardiovasc Med 2022; 9:850071. [PMID: 36061547 PMCID: PMC9436000 DOI: 10.3389/fcvm.2022.850071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Childhood obesity, as one of the potential risk factors of cardiovascular diseases, is closely associated with the incidence of cardiovascular disease at a younger age and has become a public health concern worldwide. However, its potential effects on the cardiovascular system have still remained elusive. In this study, we systematically evaluated the cardiovascular characteristics of 79 obese children and 161 normal weight children in Guangzhou (China) using the potential biomarkers for cardiovascular disease. Compared with normal weight children, obese children not only exhibited significantly higher levels of creatine kinase (CK), lactate dehydrogenase (LHD), soluble fms-like tyrosine kinase-1 (s-Flt-1), high-sensitivity C-reactive protein (hs-CRP), and uric acid (UA) (p = 0.0062, 0.0012, 0.0013, 0.0225, and <0.0001, respectively) but also significantly higher diastolic blood pressure (p = 0.0074) and the heart rate (p = 0.0049) were found in obese children. Of 79 obese children, cardiac functions of 40 cases were further assessed by color Doppler echocardiography. The results showed that there were significant differences between the obesity group and the healthy weight group in terms of interventricular septal wall thickness at end-diastolic (IVSd), the left ventricular posterior wall thickness at end-diastolic (LVPWD), and aortic annulus (AO) (p < 0.0001, 0.0003, and p < 0.0001, respectively). Besides, the left and/or right ventricular functions were declined in 52.4% of obese children. Correlation analysis revealed that the anthropometric parameters of obesity were not only significantly correlated with a blood lipid profile but also exhibited a more significant correlation with most of the parameters of cardiac dysfunction than a blood lipid profile. Therefore, our study indicated that obese children in Guangzhou suffered from functional damages related to cardiovascular events, which were characterized by cardiac dysfunction, and the anthropometric parameters of obesity could be economically alternative biomarkers for monitoring of cardiac dysfunction in obese children.
Collapse
Affiliation(s)
- Jing Sun
- Department of Clinical Nutrition, Guangzhou Women’s and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jing Sun,
| | - Li Wang
- Department of Echocardiography, Heart Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yingjiong Lin
- Heart Center and Institute of Pediatrics, Guangzhou Women’s and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunfeng Liu
- Department of Laboratory, Guangzhou Women’s and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Liu
- Department of Laboratory, Guangzhou Women’s and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xumei Liu
- Department of Echocardiography, Heart Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenyan Dong
- Heart Center and Institute of Pediatrics, Guangzhou Women’s and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenqian Cai
- Heart Center and Institute of Pediatrics, Guangzhou Women’s and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huimin Chen
- Department of Clinical Nutrition, Guangzhou Women’s and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Minhua Xiao
- Department of Clinical Nutrition, Guangzhou Women’s and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongfeng Luo
- Department of Clinical Nutrition, Guangzhou Women’s and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xihong Liu
- Department of Clinical Nutrition, Guangzhou Women’s and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Xihong Liu,
| | - Jinzhu Duan
- Heart Center and Institute of Pediatrics, Guangzhou Women’s and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Matz I, Pappritz K, Springer J, Van Linthout S. Left ventricle- and skeletal muscle-derived fibroblasts exhibit a differential inflammatory and metabolic responsiveness to interleukin-6. Front Immunol 2022; 13:947267. [PMID: 35967380 PMCID: PMC9366145 DOI: 10.3389/fimmu.2022.947267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin-6 (IL-6) is an important player in chronic inflammation associated with heart failure and tumor-induced cachexia. Fibroblasts are salient mediators of both inflammation and fibrosis. Whereas the general outcome of IL-6 on the heart’s function and muscle wasting has been intensively studied, the influence of IL-6 on fibroblasts of the heart and skeletal muscle (SM) has not been analyzed so far. We illustrate that SM-derived fibroblasts exhibit higher basal mRNA expression of α-SMA, extracellular matrix molecules (collagen1a1/3a1/5a1), and chemokines (CCL2, CCL7, and CX3CL1) as compared to the left ventricle (LV)-derived fibroblasts. IL-6 drives the transdifferentiation of fibroblasts into myofibroblasts as indicated by an increase in α-SMA expression and upregulates NLRP3 inflammasome activity in both LV- and SM-derived fibroblasts. IL-6 increases the release of CCL7 to CX3CL1 in the supernatant of SM-derived fibroblasts associated with the attraction of more pro(Ly6Chi) versus anti(Ly6Clo) inflammatory monocytes as compared to unstimulated fibroblasts. IL-6-stimulated LV-derived fibroblasts attract less Ly6Chi to Ly6Clo monocytes compared to IL-6-stimulated SM-derived fibroblasts. In addition, SM-derived fibroblasts have a higher mitochondrial energy turnover and lower glycolytic activity versus LV-derived fibroblasts under basal and IL-6 conditions. In conclusion, IL-6 modulates the inflammatory and metabolic phenotype of LV- and SM-originated fibroblasts.
Collapse
Affiliation(s)
- Isabell Matz
- Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Kathleen Pappritz
- Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Jochen Springer
- Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- *Correspondence: Sophie Van Linthout,
| |
Collapse
|
9
|
González A, Richards AM, de Boer RA, Thum T, Arfsten H, Hülsmann M, Falcao-Pires I, Díez J, Foo RSY, Chan MY, Aimo A, Anene-Nzelu CG, Abdelhamid M, Adamopoulos S, Anker SD, Belenkov Y, Ben Gal T, Cohen-Solal A, Böhm M, Chioncel O, Delgado V, Emdin M, Jankowska EA, Gustafsson F, Hill L, Jaarsma T, Januzzi JL, Jhund PS, Lopatin Y, Lund LH, Metra M, Milicic D, Moura B, Mueller C, Mullens W, Núñez J, Piepoli MF, Rakisheva A, Ristić AD, Rossignol P, Savarese G, Tocchetti CG, Van Linthout S, Volterrani M, Seferovic P, Rosano G, Coats AJS, Bayés-Genís A. Cardiac remodelling - Part 1: From cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022; 24:927-943. [PMID: 35334137 DOI: 10.1002/ejhf.2493] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiac remodelling refers to changes in left ventricular structure and function over time, with a progressive deterioration that may lead to heart failure (HF) development (adverse remodelling) or vice versa a recovery (reverse remodelling) in response to HF treatment. Adverse remodelling predicts a worse outcome, whilst reverse remodelling predicts a better prognosis. The geometry, systolic and diastolic function and electric activity of the left ventricle are affected, as well as the left atrium and on the long term even right heart chambers. At a cellular and molecular level, remodelling involves all components of cardiac tissue: cardiomyocytes, fibroblasts, endothelial cells and leucocytes. The molecular, cellular and histological signatures of remodelling may differ according to the cause and severity of cardiac damage, and clearly to the global trend toward worsening or recovery. These processes cannot be routinely evaluated through endomyocardial biopsies, but may be reflected by circulating levels of several biomarkers. Different classes of biomarkers (e.g. proteins, non-coding RNAs, metabolites and/or epigenetic modifications) and several biomarkers of each class might inform on some aspects on HF development, progression and long-term outcomes, but most have failed to enter clinical practice. This may be due to the biological complexity of remodelling, so that no single biomarker could provide great insight on remodelling when assessed alone. Another possible reason is a still incomplete understanding of the role of biomarkers in the pathophysiology of cardiac remodelling. Such role will be investigated in the first part of this review paper on biomarkers of cardiac remodelling.
Collapse
Affiliation(s)
- Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - A Mark Richards
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Dunedin, New Zealand
| | - Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) and Rebirth Center for Translational Regenerative Therapies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Martin Hülsmann
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Inês Falcao-Pires
- Department od Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Departments of Cardiology and Cardiac Surgery, and Nephrology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Roger S Y Foo
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Mark Y Chan
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Chukwuemeka G Anene-Nzelu
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Montreal Heart Institute, Montreal, Canada
| | | | - Stamatis Adamopoulos
- 2nd Department of Cardiovascular Medicine, Onassis Cardiac Surgery Center, Athens, Greece
| | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | | | - Tuvia Ben Gal
- Cardiology Department, Rabin Medical Center, Beilinson, Israel
| | | | - Michael Böhm
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Saarland University, Homburg/Saar, Germany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu' Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | - Victoria Delgado
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ewa A Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Finn Gustafsson
- Rigshospitalet-Copenhagen University Hospital, Heart Centre, Department of Cardiology, Copenhagen, Denmark
| | | | | | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | - Pardeep S Jhund
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Yuri Lopatin
- Volgograd State Medical University, Volgograd, Russia
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Metra
- Cardiology, ASST Spedali Civili; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Davor Milicic
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Portugal
| | | | | | - Julio Núñez
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Massimo F Piepoli
- Cardiology Division, Castelsangiovanni Hospital, Castelsangiovanni, Italy
| | - Amina Rakisheva
- Scientific Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| | - Arsen D Ristić
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Patrick Rossignol
- Université de Lorraine, Centre d'Investigations Cliniques- Plurithématique 1433, and Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Gianluigi Savarese
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Sophie Van Linthout
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | - Petar Seferovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Giuseppe Rosano
- St. George's Hospitals, NHS Trust, University of London, London, UK
| | | | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Kercheva M, Ryabov V, Trusov A, Stepanov I, Kzhyshkowska J. Characteristics of the Cardiosplenic Axis in Patients with Fatal Myocardial Infarction. Life (Basel) 2022; 12:life12050673. [PMID: 35629341 PMCID: PMC9147017 DOI: 10.3390/life12050673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Myocardial ischemia triggers neurohumoral activation of the cardiosplenic axis. In rodents, adverse outcomes occur upon prolonged entrance of mononuclear cells from the spleen into myocardial tissue. The purpose of this study is to assess the features of spleen structure in patients with fatal myocardial infarction (MI), the dynamics of macrophage infiltration of the spleen and its relationship with cardiac macrophage infiltration and unfavorable outcomes. Using immunohistochemistry techniques, we analyzed the macrophage infiltration of the spleen and myocardium sections collected from patients (n = 30) with fatal MI. The spleen of the patients was decreased and showed a predominance of red pulp with a high concentration of CD68+ and stabilin-1+ cells. The white pulp contained many medium and small follicles and a lower concentration of CD68+ and stabilin-1+ cells, which was comparable to that in the infarct area of the myocardium. The concentration of CD68+ and stabilin-1+ cells increased in the myocardium in the late period of MI, but did not show any dynamics in the spleen. A high number of CD68+ cells in the red pulp and reduced concentration of stabilin-1+ cells in the white pulp were associated with unfavorable post-infarction outcomes. These fundamental findings could be a basis for the development of new personalized therapeutic and diagnostic approaches for the treatment of MI and its complications.
Collapse
Affiliation(s)
- Maria Kercheva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Street, 634012 Tomsk, Russia; (V.R.); (A.T.); (I.S.)
- Central Research Laboratory, Siberian State Medical University, 2 Moscovsky Trakt, 634055 Tomsk, Russia
- Correspondence: ; Tel.: +7-(3822)-561232
| | - Vyacheslav Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Street, 634012 Tomsk, Russia; (V.R.); (A.T.); (I.S.)
- Central Research Laboratory, Siberian State Medical University, 2 Moscovsky Trakt, 634055 Tomsk, Russia
- Laboratory of Translational and Cellular Biomedicine Department, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia
| | - Andrey Trusov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Street, 634012 Tomsk, Russia; (V.R.); (A.T.); (I.S.)
| | - Ivan Stepanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Street, 634012 Tomsk, Russia; (V.R.); (A.T.); (I.S.)
| | - Julia Kzhyshkowska
- Department for Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, University of Heidelberg, 1-3 Theodor-Kutzer Ufer, 68167 Mannheim, Germany;
| |
Collapse
|
11
|
Pesce M, Agostoni P, Bøtker HE, Brundel B, Davidson SM, Caterina RD, Ferdinandy P, Girao H, Gyöngyösi M, Hulot JS, Lecour S, Perrino C, Schulz R, Sluijter JP, Steffens S, Tancevski I, Gollmann-Tepeköylü C, Tschöpe C, Linthout SV, Madonna R. COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2021; 117:2148-2160. [PMID: 34117887 DOI: 10.1093/cvr/cvab201] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The pandemic of coronavirus disease (COVID)-19 is a global threat, causing high mortality, especially in the elderly. The main symptoms and the primary cause of death are related to interstitial pneumonia. Viral entry also into myocardial cells mainly via the angiotensin converting enzyme type 2 (ACE2) receptor and excessive production of pro-inflammatory cytokines, however, also make the heart susceptible to injury. In addition to the immediate damage caused by the acute inflammatory response, the heart may also suffer from long-term consequences of COVID-19, potentially causing a post-pandemic increase in cardiac complications. Although the main cause of cardiac damage in COVID-19 remains coagulopathy with micro- (and to a lesser extent macro-) vascular occlusion, open questions remain about other possible modalities of cardiac dysfunction, such as direct infection of myocardial cells, effects of cytokines storm, and mechanisms related to enhanced coagulopathy. In this opinion paper, we focus on these lesser appreciated possibilities and propose experimental approaches that could provide a more comprehensive understanding of the cellular and molecular bases of cardiac injury in COVID-19 patients. We first discuss approaches to characterize cardiac damage caused by possible direct viral infection of cardiac cells, followed by formulating hypotheses on how to reproduce and investigate the hyperinflammatory and pro-thrombotic conditions observed in the heart of COVID-19 patients using experimental in vitro systems. Finally, we elaborate on strategies to discover novel pathology biomarkers using omics platforms.
Collapse
Affiliation(s)
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Dipartimento di Scienze Cliniche e di Comunità, University of Milan, Milan, Italy
| | - Hans-Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Bianca Brundel
- Department of Physiology, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | | | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Henrique Girao
- Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Faculty of Medicine, Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Jean-Sebastien Hulot
- Université de Paris, PARCC, INSERM, Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Sandrine Lecour
- Faculty of Health Sciences, Hatter Institute for Cardiovascular Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Joost Pg Sluijter
- Laboratory for Experimental Cardiology, Department of Cardiology, Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, German Centre for Cardiovascular Research (DZHK), Ludwig-Maximilians-University (LMU) Munich, Partner Site Munich Heart Alliance, Munich, Germany
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Carsten Tschöpe
- Department of Cardiology, Charité, Campus Virchow Klinikum, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sophie van Linthout
- Department of Cardiology, Charité, Campus Virchow Klinikum, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätmedizin Berlin, Berlin, Germany
| | - Rosalinda Madonna
- Cardiology Chair, University of Pisa, Pisa University Hospital, Pisa, Italy
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| |
Collapse
|
12
|
Passaro F, Tocchetti CG, Spinetti G, Paudice F, Ambrosone L, Costagliola C, Cacciatore F, Abete P, Testa G. Targeting fibrosis in the failing heart with nanoparticles. Adv Drug Deliv Rev 2021; 174:461-481. [PMID: 33984409 DOI: 10.1016/j.addr.2021.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a clinical syndrome characterized by typical symptoms and signs caused by a structural and/or functional cardiac abnormality, resulting in a reduced cardiac output and/or elevated intracardiac pressures at rest or during stress. Due to increasing incidence, prevalence and, most importantly mortality, HF is a healthcare burden worldwide, despite the improvement of treatment options and effectiveness. Acute and chronic cardiac injuries trigger the activation of neurohormonal, inflammatory, and mechanical pathways ultimately leading to fibrosis, which plays a key role in the development of cardiac dysfunction and HF. The use of nanoparticles for targeted drug delivery would greatly improve therapeutic options to identify, prevent and treat cardiac fibrosis. In this review we will highlight the mechanisms of cardiac fibrosis development to depict the pathophysiological features for passive and active targeting of acute and chronic cardiac fibrosis with nanoparticles. Then we will discuss how cardiomyocytes, immune and inflammatory cells, fibroblasts and extracellular matrix can be targeted with nanoparticles to prevent or restore cardiac dysfunction and to improve the molecular imaging of cardiac fibrosis.
Collapse
|
13
|
Knecht RS, Bucher CH, Van Linthout S, Tschöpe C, Schmidt-Bleek K, Duda GN. Mechanobiological Principles Influence the Immune Response in Regeneration: Implications for Bone Healing. Front Bioeng Biotechnol 2021; 9:614508. [PMID: 33644014 PMCID: PMC7907627 DOI: 10.3389/fbioe.2021.614508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
A misdirected or imbalanced local immune composition is often one of the reasons for unsuccessful regeneration resulting in scarring or fibrosis. Successful healing requires a balanced initiation and a timely down-regulation of the inflammation for the re-establishment of a biologically and mechanically homeostasis. While biomaterial-based approaches to control local immune responses are emerging as potential new treatment options, the extent to which biophysical material properties themselves play a role in modulating a local immune niche response has so far been considered only occasionally. The communication loop between extracellular matrix, non-hematopoietic cells, and immune cells seems to be specifically sensitive to mechanical cues and appears to play a role in the initiation and promotion of a local inflammatory setting. In this review, we focus on the crosstalk between ECM and its mechanical triggers and how they impact immune cells and non-hematopoietic cells and their crosstalk during tissue regeneration. We realized that especially mechanosensitive receptors such as TRPV4 and PIEZO1 and the mechanosensitive transcription factor YAP/TAZ are essential to regeneration in various organ settings. This indicates novel opportunities for therapeutic approaches to improve tissue regeneration, based on the immune-mechanical principles found in bone but also lung, heart, and skin.
Collapse
Affiliation(s)
- Raphael S Knecht
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian H Bucher
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Department of Cardiology, Charite'-Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Madonna R. Exploring the mechanisms of action of gliflozines in heart failure and possible implications in pulmonary hypertension. Vascul Pharmacol 2021; 138:106839. [PMID: 33524548 DOI: 10.1016/j.vph.2021.106839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Although results from two major trials trials have shown a clear benefit of gliflozines in the management of heart failure (HF) irrespective of diabetes status, the mechanism of cardiac benefits remains incompletely understood. Gliflozines have an osmotic diuretic effect that differs from that of other diuretic classes, resulting in greater electrolyte-free water clearance, and clinical studies have shown that intravascular volume depletion is rare and occurs at similar frequency in the gliflozines and placebo groups. As a consequence of the negligible effects on the blood volume and body's fluid balance compared to diuretics, gliflozines may limit the reflex neurohumoral stimulation and activation of renin-angiotensin-aldosterone system (RAAS). Since neurohormonal and RAAS activation in patients with HF reduced or ejection fraction (HFrEF and HFpEF) also leads to systemic and pulmonary arterial stiffening, pulmonary hypertension (PH) and PH-related right ventricular failure, gliflozines may lead to a mitigation of systemic and pulmonary arterial stiffening, which in turn can reduce the degree of PH associated with HFrEF or HFpEF, can improve the ventricular arterial coupling and can reduce the overload of the left and right ventricle, improving their function. The current review discusses the latest findings regarding the effects of SGLT2 inhibitors on heart failure with focus also on pulmonary hypertension, discussing the molecular mechanisms involved.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States of America; Institute of Cardiology, University of Pisa, Pisa, Italy.
| |
Collapse
|
15
|
Efficacy and Mode of Action of Mesenchymal Stem Cells in Non-Ischemic Dilated Cardiomyopathy: A Systematic Review. Biomedicines 2020; 8:biomedicines8120570. [PMID: 33291410 PMCID: PMC7762005 DOI: 10.3390/biomedicines8120570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Non-ischemic dilated cardiomyopathy (NIDCM) constitutes one of the most common causes to non-ischemic heart failure. Despite treatment, the disease often progresses, causing severe morbidity and mortality, making novel treatment strategies necessary. Due to the regenerative actions of mesenchymal stem cells (MSCs), they have been proposed as a treatment for NIDCM. This systematic review aims to evaluate efficacy and mode of action (MoA) of MSC-based therapies in NIDCM. A systematic literature search was conducted in Medline (Pubmed) and Embase. A total of 27 studies were included (3 clinical trials and 24 preclinical studies). MSCs from different tissues and routes of delivery were reported, with bone marrow-derived MSCs and direct intramyocardial injections being the most frequent. All included clinical trials and 22 preclinical trials reported an improvement in cardiac function following MSC treatment. Furthermore, preclinical studies demonstrated alterations in tissue structure, gene, and protein expression patterns, primarily related to fibrosis and angiogenesis. Consequently, MSC treatment can improve cardiac function in NIDCM patients. The MoA underlying this effect involves anti-fibrosis, angiogenesis, immunomodulation, and anti-apoptosis, though these processes seem to be interdependent. These encouraging results calls for larger confirmatory clinical studies, as well as preclinical studies utilizing unbiased investigation of the potential MoA.
Collapse
|
16
|
Pappritz K, Van Linthout S. Opioid-Induced Immunomodulation: Consequences for the Experimental Coxsackievirus B3-Induced Myocarditis Model. BIOLOGY 2020; 9:biology9100335. [PMID: 33066118 PMCID: PMC7650777 DOI: 10.3390/biology9100335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023]
Abstract
Simple Summary Myocarditis is an inflammatory disorder of the heart mainly caused by viruses. To investigate viral myocarditis, the Coxsackievirus B3 (CVB3)-induced myocarditis model is the experimental model used since more than sixty years. In the pathogeneses of viral myocarditis, the subtle balance between pro-and anti-inflammatory immune responses is of great importance for disease manifestation. Parallel to the infection of the heart, experimental CVB3-induced myocarditis results in an infection of the pancreas, causing a severe burden for the challenged animals. In frame of animal welfare, application of analgesics is mandatory. So far, positive as well as negative effects of opioids on the immune system have been described. However, the impact of opioid application on the pathogenesis of experimental CVB3-induced myocarditis has not been investigated yet. Since examinations on disease pathways and new treatment options rely on established models to generate reproducible data, applicability of opioids in experimental CVB3-induced myocarditis needs to be carefully evaluated. For this purpose, we summarized published studies for 13 different opioids and discussed their potential impact on the CVB3-induced myocarditis model. Abstract Myocarditis is an inflammatory disorder of the heart predominantly caused by infectious agents. Since more than sixty years, the Coxsackievirus B3 (CVB3)-induced myocarditis mouse model is the experimental model used to investigate viral myocarditis. The pathogenesis of viral myocarditis is conceptually a multiphase process, initiated by the infection of cardiomyocytes, followed by activation of the immune system, and resulting in myocardial fibrosis and left ventricular dysfunction. In parallel to the direct infection of the heart, CVB3 replicates in lymphatic organs such as the pancreas. Due to infection of the pancreas, the model of experimental CVB3-induced myocarditis is estimated as a severe burden for the challenged animals. Application of analgesics in frame of the animal welfare act (European directive 2010/63/EU) is more and more becoming a matter of debate. For this purpose, we summarized published studies for 13 different opioids and discussed their potential impact on CVB3-induced myocarditis. In addition, with this summary we also want to provide guidance for researchers beyond the myocarditis field to estimate the impact of opioids on the immune system for their specific model. In the literature, both immunosuppressive as well as immune-activating effects of opioids have been described, but examinations in experimental CVB3-induced myocarditis have still not been reported so far. Based on the existing publications, administration of opioids in experimental CVB3-induced myocarditis might result in more severe disease progression, including higher mortality, or a less pronounced myocarditis model, failing to be used for the establishment of new treatment options. Taken together, the applicability of opioids in experimental CVB3-induced myocarditis and in inflammatory models in general needs to be carefully evaluated and further investigated.
Collapse
Affiliation(s)
- Kathleen Pappritz
- Campus Virchow Klinikum (CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-450539509
| | - Sophie Van Linthout
- Campus Virchow Klinikum (CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10115 Berlin, Germany
| |
Collapse
|
17
|
Pesce M, Bär C, Madonna R, Thum T. Debating new strategies for cardiac protection in the ageing heart in Naples, Italy: news from the joint meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2020; 116:1802-1804. [PMID: 32666085 DOI: 10.1093/cvr/cvaa218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|