1
|
Lv J, Shi S, Fu Z, Wang Y, Duan C, Hu S, Wu H, Zhang B, Li Y, Song Q. Exploring the inflammation-related mechanisms of Lingguizhugan decoction on right ventricular remodeling secondary to pulmonary arterial hypertension based on integrated strategy using UPLC-HRMS, systems biology approach, and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155879. [PMID: 39032277 DOI: 10.1016/j.phymed.2024.155879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/27/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) and the consequent right heart dysfunction persist with high morbidity and mortality, and the mechanisms and pharmacologic interventions for chronic right-sided heart failure (RHF) have not been adequately investigated. Research has shown that prolonged inflammation is critical in precipitating the progression of PAH-associated right heart pathology. Some research demonstrated that Lingguizhugan decoction (LGZGD), as a classical Chinese medicine formula, had beneficial effects in alleviating PAH and RHF, while its underlying mechanisms involved are not fully elucidated. PURPOSE Based on that, this study aims to investigate the effects and underlying mechanisms of LGZGD on PAH-induced RHF. STUDY DESIGN In this study, we identified the serum constituents and deciphered the potential anti-inflammatory mechanism and crucial components of LGZGD using combined approaches of UPLC-HRMS, transcriptomic analysis, and molecular docking techniques. Finally, we used in vivo experiments to verify the expression of key targets in the monocrotaline (MCT)-induced RHF model and the intervene effect of LGZGD. RESULTS Integrated strategies based on UPLC-HRMS and systems biology approach combined with in vivo experimental validation showed that LGZGD could improve right heart fibrosis and dysfunction via regulating diverse inflammatory signaling pathways and the activity of immune cells, including chemokine family CCL2, CXCR4, leukocyte integrins family ITGAL, ITGB2, and M2 macrophage infiltration, as well as lipid peroxidation-associated HMOX1, NOX4, and 4-HNE. CONCLUSION The present research demonstrated for the first time that LGZGD might improve PAH-induced RHF through multiple anti-inflammatory signaling and inhibition of ferroptosis, which could provide certain directions for future research in related fields.
Collapse
Affiliation(s)
- Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yajiao Wang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglin Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaowei Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Li N, Xue Y, Zhu C, Chen N, Qi M, Fang M, Huang S. The zinc-finger transcription factor KLF6 regulates cardiac fibrosis. Life Sci 2024; 351:122805. [PMID: 38851422 DOI: 10.1016/j.lfs.2024.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
AIMS Heart failure (HF) is one of the most devastating consequences of cardiovascular diseases. Regardless of etiology, cardiac fibrosis is present and promotes the loss of heart function in HF patients. Cardiac resident fibroblasts, in response to a host of pro-fibrogenic stimuli, trans-differentiate into myofibroblasts to mediate cardiac fibrosis, the underlying mechanism of which remains incompletely understood. METHODS Fibroblast-myofibroblast transition was induced in vitro by exposure to transforming growth factor (TGF-β). Cardiac fibrosis was induced in mice by either transverse aortic constriction (TAC) or by chronic infusion with angiotensin II (Ang II). RESULTS Through bioinformatic screening, we identified Kruppel-like factor 6 (KLF6) as a transcription factor preferentially up-regulated in cardiac fibroblasts from individuals with non-ischemic cardiomyopathy (NICM) compared to the healthy donors. Further analysis showed that nuclear factor kappa B (NF-κB) bound to the KLF6 promoter and mediated KLF6 trans-activation by pro-fibrogenic stimuli. KLF6 knockdown attenuated whereas KLF6 over-expression enhanced TGF-β induced fibroblast-myofibroblast transition in vitro. More importantly, myofibroblast-specific KLF6 depletion ameliorated cardiac fibrosis and rescued heart function in mice subjected to the TAC procedure or chronic Ang II infusion. SIGNIFICANCE In conclusion, our data support a role for KLF6 in cardiac fibrosis.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Chenghao Zhu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Naxia Chen
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology, the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Mengwen Qi
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Mingming Fang
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.
| | - Shan Huang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology, the First Affiliated Hospital, Hainan Medical University, Haikou, China.
| |
Collapse
|
3
|
Xie H, Jiang Y, Xiang Y, Wu B, Zhao J, Huang R, Wang M, Wang Y, Liu J, Wu D, Tian D, Bian E. Super-enhancer-driven LIF promotes the mesenchymal transition in glioblastoma by activating ITGB2 signaling feedback in microglia. Neuro Oncol 2024; 26:1438-1452. [PMID: 38554116 PMCID: PMC11300025 DOI: 10.1093/neuonc/noae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND The mesenchymal (MES) subtype of glioblastoma (GBM) is believed to be influenced by both cancer cell-intrinsic alterations and extrinsic cellular interactions, yet the underlying mechanisms remain unexplored. METHODS Identification of microglial heterogeneity by bioinformatics analysis. Transwell migration, invasion assays, and tumor models were used to determine gene function and the role of small molecule inhibitors. RNA sequencing, chromatin immunoprecipitation, and dual-luciferase reporter assays were performed to explore the underlying regulatory mechanisms. RESULTS We identified the inflammatory microglial subtype of tumor-associated microglia (TAM) and found that its specific gene integrin beta 2 (ITGB2) was highly expressed in TAM of MES GBM tissues. Mechanistically, the activation of ITGB2 in microglia promoted the interaction between the SH2 domain of STAT3 and the cytoplasmic domain of ITGB2, thereby stimulating the JAK1/STAT3/IL-6 signaling feedback to promote the MES transition of GBM cells. Additionally, microglia communicated with GBM cells through the interaction between the receptor ITGB2 on microglia and the ligand ICAM-1 on GBM cells, while an increased secretion of ICAM-1 was induced by the proinflammatory cytokine leukemia inhibitory factor (LIF). Further studies demonstrated that inhibition of cyclin-dependent kinase 7 substantially reduced the recruitment of SNW1 to the super-enhancer of LIF, resulting in transcriptional inhibition of LIF. We identified notoginsenoside R1 as a novel LIF inhibitor that exhibited synergistic effects in combination with temozolomide. CONCLUSIONS Our research reveals that the epigenetic-mediated interaction of GBM cells with TAM drives the MES transition of GBM and provides a novel therapeutic avenue for patients with MES GBM.
Collapse
Affiliation(s)
- Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyi Jiang
- Institute of Health and Medical Technology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yufei Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Baoming Wu
- School of pharmacy, Anhui Medical University, Hefei, China
| | - Jiajia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengting Wang
- School of pharmacy, Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunlong Wang
- School of pharmacy, Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Liu
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erbao Bian
- School of pharmacy, Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Venugopal S, Dan Q, Sri Theivakadadcham VS, Wu B, Kofler M, Layne MD, Connelly KA, Rzepka MF, Friedberg MK, Kapus A, Szászi K. Regulation of the RhoA exchange factor GEF-H1 by profibrotic stimuli through a positive feedback loop involving RhoA, MRTF, and Sp1. Am J Physiol Cell Physiol 2024; 327:C387-C402. [PMID: 38912734 DOI: 10.1152/ajpcell.00088.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
RhoA and its effectors, the transcriptional coactivators myocardin-related transcription factor (MRTF) and serum response factor (SRF), control epithelial phenotype and are indispensable for profibrotic epithelial reprogramming during fibrogenesis. Context-dependent control of RhoA and fibrosis-associated changes in its regulators, however, remain incompletely characterized. We previously identified the guanine nucleotide exchange factor GEF-H1 as a central mediator of RhoA activation in renal tubular cells exposed to inflammatory or fibrotic stimuli. Here we found that GEF-H1 expression and phosphorylation were strongly elevated in two animal models of fibrosis. In the Unilateral Ureteral Obstruction mouse kidney fibrosis model, GEF-H1 was upregulated predominantly in the tubular compartment. GEF-H1 was also elevated and phosphorylated in a rat pulmonary artery banding (PAB) model of right ventricular fibrosis. Prolonged stimulation of LLC-PK1 tubular cells with tumor necrosis factor (TNF)-α or transforming growth factor (TGF)-β1 increased GEF-H1 expression and activated a luciferase-coupled GEF-H1 promoter. Knockdown and overexpression studies revealed that these effects were mediated by RhoA, cytoskeleton remodeling, and MRTF, indicative of a positive feedback cycle. Indeed, silencing endogenous GEF-H1 attenuated activation of the GEF-H1 promoter. Of importance, inhibition of MRTF using CCG-1423 prevented GEF-H1 upregulation in both animal models. MRTF-dependent increase in GEF-H1 was prevented by inhibition of the transcription factor Sp1, and mutating putative Sp1 binding sites in the GEF-H1 promoter eliminated its MRTF-dependent activation. As the GEF-H1/RhoA axis is key for fibrogenesis, this novel MRTF/Sp1-dependent regulation of GEF-H1 abundance represents a potential target for reducing renal and cardiac fibrosis.NEW & NOTEWORTHY We show that expression of the RhoA regulator GEF-H1 is upregulated in tubular cells exposed to fibrogenic cytokines and in animal models of kidney and heart fibrosis. We identify a pathway wherein GEF-H1/RhoA-dependent MRTF activation through its noncanonical partner Sp1 upregulates GEF-H1. Our data reveal the existence of a positive feedback cycle that enhances Rho signaling through control of both GEF-H1 activation and expression. This feedback loop may play an important role in organ fibrosis.
Collapse
Affiliation(s)
- Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Veroni S Sri Theivakadadcham
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Brian Wu
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mark F Rzepka
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Xu R, Du W, Yang Q, Du A. ITGB2 related to immune cell infiltration as a potential therapeutic target of inflammatory bowel disease using bioinformatics and functional research. J Cell Mol Med 2024; 28:e18501. [PMID: 39088353 PMCID: PMC11293422 DOI: 10.1111/jcmm.18501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 08/03/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic systemic inflammatory condition regarded as a major risk factor for colitis-associated cancer. However, the underlying mechanisms of IBD remain unclear. First, five GSE data sets available in GEO were used to perform 'batch correction' and Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs). Candidate molecules were identified using CytoHubba, and their diagnostic effectiveness was predicted. The CIBERSORT algorithm evaluated the immune cell infiltration in the intestinal epithelial tissues of patients with IBD and controls. Immune cell infiltration in the IBD and control groups was determined using the least absolute shrinkage selection operator algorithm and Cox regression analysis. Finally, a total of 51 DEGs were screened, and nine hub genes were identified using CytoHubba and Cytoscape. GSE87466 and GSE193677 were used as extra data set to validate the expression of the nine hub genes. CD4-naïve T cells, gamma-delta T cells, M1 macrophages and resting dendritic cells (DCs) are the main immune cell infiltrates in patients with IBD. Signal transducer and activator of transcription 1, CCR5 and integrin subunit beta 2 (ITGB2) were significantly upregulated in the IBD mouse model, and suppression of ITGB2 expression alleviated IBD inflammation in mice. Additionally, the expression of ITGB2 was upregulated in IBD-associated colorectal cancer (CRC). The silence of ITGB2 suppressed cell proliferation and tumour growth in vitro and in vivo. ITGB2 resting DCs may provide a therapeutic strategy for IBD, and ITGB2 may be a potential diagnostic marker for IBD-associated CRC.
Collapse
Affiliation(s)
- Rong Xu
- Department of Pathology, Changde Hospital, Xiangya School of MedicineCentral South University (The First People's Hospital of Changde City)ChangdeHunanChina
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of MedicineCentral South University (The First People's Hospital of Changde City)ChangdeHunanChina
| | - Qinglong Yang
- Department of General SurgeryGuizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Ashuai Du
- Department of Infectious DiseasesGuizhou Provincial People's HospitalGuiyangGuizhouChina
| |
Collapse
|
6
|
Zhao Q, Shao T, Huang S, Zhang J, Zong G, Zhuo L, Xu Y, Hong W. The insulin-like growth factor binding protein-microfibrillar associated protein-sterol regulatory element binding protein axis regulates fibroblast-myofibroblast transition and cardiac fibrosis. Br J Pharmacol 2024; 181:2492-2508. [PMID: 38586912 DOI: 10.1111/bph.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND AND PURPOSE Excessive fibrogenesis is associated with adverse cardiac remodelling and heart failure. The myofibroblast, primarily derived from resident fibroblast, is the effector cell type in cardiac fibrosis. Megakaryocytic leukaemia 1 (MKL1) is considered the master regulator of fibroblast-myofibroblast transition (FMyT). The underlying transcriptional mechanism is not completely understood. Our goal was to identify novel transcriptional targets of MKL1 that might regulate FMyT and contribute to cardiac fibrosis. EXPERIMENTAL APPROACH RNA sequencing (RNA-seq) performed in primary cardiac fibroblasts identified insulin-like growth factor binding protein 5 (IGFBP5) as one of the genes most significantly up-regulated by constitutively active (CA) MKL1 over-expression. IGFBP5 expression was detected in heart failure tissues using RT-qPCR and western blots. KEY RESULTS Once activated, IGFBP5 translocated to the nucleus to elicit a pro-FMyT transcriptional programme. Consistently, IGFBP5 knockdown blocked FMyT in vitro and dampened cardiac fibrosis in mice. Of interest, IGFBP5 interacted with nuclear factor of activated T-cell 4 (NFAT4) to stimulate the transcription of microfibril-associated protein 5 (MFAP5). MFAP5 contributed to FMyT and cardiac fibrosis by enabling sterol response element binding protein 2 (SREBP2)-dependent cholesterol synthesis. CONCLUSIONS AND IMPLICATIONS Our data unveil a previously unrecognized transcriptional cascade, initiated by IGFBP5, that promotes FMyT and cardiac fibrosis. Screening for small-molecule compounds that target this axis could yield potential therapeutics against adverse cardiac remodelling.
Collapse
Affiliation(s)
- Qianwen Zhao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Shan Huang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Junjie Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Genjie Zong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Wenxuan Hong
- Department of Cardiology, Zhongshan Hospital Affiliated with Fudan University, Shanghai, China
| |
Collapse
|
7
|
Zhao R, Hu J, Wen H, Zhao J, Wang Y, Niu X, Zhang M, Wang T, Li Y. Inhibition of N-acetylglucosaminyltransferase V alleviates diabetic cardiomyopathy in mice by attenuating cardiac hypertrophy and fibrosis. Nutr Metab (Lond) 2024; 21:53. [PMID: 39080739 PMCID: PMC11290217 DOI: 10.1186/s12986-024-00797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The pathogenesis of diabetic cardiomyopathy is closely linked to abnormal glycosylation modifications. N-acetylglucosaminyltransferase V (GnT-V), which catalyzes the production of N-linked -1-6 branching of oligosaccharides, is involved in several pathophysiological mechanisms of many disorders, including cardiac hypertrophy and heart failure. However, the mechanism by which GnT-V regulates cardiac hypertrophy in diabetic cardiomyopathy is currently poorly understood. In this study, we investigated the role of GnT-V on myocardial hypertrophy in diabetic cardiomyopathy and elucidated the underlying mechanisms. MATERIAL AND METHODS Streptozotocin (STZ) was intraperitoneally injected into mice to induce diabetic cardiomyopathy. An adeno-associated virus (AAV) carrying negative control small hairpin RNA (shNC) or GnT-V-specifc small hairpin RNA (shGnT-V) was used to manipulate GnT-V expression. In our study, forty male C57BL/6J mice were randomly divided into four groups (10 mice per group): control mice with AAV-shNC, diabetic cardiomyopathy mice with AAV-shNC, control mice with AAV-shGnT-V, and diabetic cardiomyopathy mice with AAV-shGnT-V. In addition, H9C2 cells and primary neonatal cardiac fibroblasts treated with high glucose were used as a cell model of diabetes. Analysis of cardiac hypertrophy and fibrosis, as well as functional studies, were used to investigate the underlying molecular pathways. RESULTS AAV-mediated GnT-V silencing dramatically improved cardiac function and alleviated myocardial hypertrophy and fibrosis in diabetic mice. In vitro experiments demonstrated that GnT-V was elevated in cardiomyocytes and induced cardiomyocyte hypertrophy in response to high glucose stimulation. GnT-V knockdown significantly reduced the expression of the integrinβ1 signaling pathway, as evidenced by decreased downstream ERK1/2 activity, which inhibited cardiomyocyte hypertrophy accompanied by reduced ANP, BNP, and β-MHC expression. Furthermore, knocking down GnT-V expression lowered the TGF-β1-Smads signaling pathway, which reduced the expression of α-SMA, collagen I, and collagen III. CONCLUSIONS Overall, our research indicated that GnT-V may be a useful therapeutic target to treat diabetic cardiomyopathy, primarily in the inhibition of myocardial hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China
| | - Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China
| | - He Wen
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China
| | - Jieqiong Zhao
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China
| | - Ying Wang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China
| | - Xiaona Niu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China.
| | - Tingting Wang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China.
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China.
| |
Collapse
|
8
|
Meng XM, Pang QY, Zhou ZF, Yuan JH, You L, Feng QP, Zhu BM. Histone methyltransferase MLL4 protects against pressure overload-induced heart failure via a THBS4-mediated protection in ER stress. Pharmacol Res 2024; 205:107263. [PMID: 38876442 DOI: 10.1016/j.phrs.2024.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Pressure overload-induced pathological cardiac hypertrophy eventually leads to heart failure (HF). Unfortunately, lack of effective targeted therapies for HF remains a challenge in clinical management. Mixed-lineage leukemia 4 (MLL4) is a member of the SET family of histone methyltransferase enzymes, which possesses histone H3 lysine 4 (H3K4)-specific methyltransferase activity. However, whether and how MLL4 regulates cardiac function is not reported in adult HF. Here we report that MLL4 is required for endoplasmic reticulum (ER) stress homeostasis of cardiomyocytes and protective against pressure overload-induced cardiac hypertrophy and HF. We observed that MLL4 is increased in the heart tissue of HF mouse model and HF patients. The cardiomyocyte-specific deletion of Mll4 (Mll4-cKO) in mice leads to aggravated ER stress and cardiac dysfunction following pressure overloading. MLL4 knockdown neonatal rat cardiomyocytes (NRCMs) also display accelerated decompensated ER stress and hypertrophy induced by phenylephrine (PE). The combined analysis of Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) and RNA sequencing (RNA-seq) data reveals that, silencing of Mll4 alters the chromatin landscape for H3K4me1 modification and gene expression patterns in NRCMs. Interestingly, the deficiency of MLL4 results in a marked reduction of H3K4me1 and H3K27ac occupations on Thrombospondin-4 (Thbs4) gene loci, as well as Thbs4 gene expression. Mechanistically, MLL4 acts as a transcriptional activator of Thbs4 through mono-methylation of H3K4 and further regulates THBS4-dependent ER stress response, ultimately plays a role in HF. Our study indicates that pharmacologically targeting MLL4 and ER stress might be a valid therapeutic approach to protect against cardiac hypertrophy and HF.
Collapse
Affiliation(s)
- Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen-Fang Zhou
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing-Han Yuan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi-Pu Feng
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Li Y, Gao W, Lei S, Wu X, Yuan T, Ma K, Chi K. Sevoflurane blocks KLF5-mediated transcriptional activation of ITGB2 to inhibit macrophage infiltration in hepatic ischemia/reperfusion injury. J Gene Med 2024; 26:e3692. [PMID: 38745073 DOI: 10.1002/jgm.3692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/01/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Sevoflurane (Sevo) preconditioning and postconditioning play a protective role against injury induced by hepatic ischemia/reperfusion (I/R). At the same time, the involvement of macrophage infiltration in this process and the precise mechanisms are unclear. Here, we designed this research to elucidate the protective effects of Sevo against hepatic I/R injury and the molecules involved. METHODS The alleviating effect of Sevo on the liver injury was analyzed by liver function analysis, hematoxylin and eosin staining, Masson trichrome staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling, western blot analysis and an enzyme-linked immunosorbent assay. An in vitro cell model was developed using alpha mouse liver 12 (AML12) cells, and the cell model was treated with oxygen-glucose deprivation and reoxygenation and Sevo. Multiple bioinformatics databases were used to screen transcriptional regulators related to hepatic I/R injury and the targets of Krueppel-like factor 5 (KLF5). KLF5 expression was artificially upregulated alone or with integrin beta-2 (ITGB2) knockdown to substantiate their involvement in Sevo-mediated hepatoprotection. RESULTS Sevo protected the liver against I/R injury by reducing cell apoptosis and inflammatory response. KLF5 was upregulated in liver tissues following I/R injury, whereas KLF5 overexpression aggravated macrophage infiltration and liver injury induced by I/R injury. KLF5 bound to the promoter of ITGB2 to enhance ITGB2 transcription. Knockdown of ITGB2 reversed the aggravation of injury caused by KLF5 overexpression in mice and AML12 cells. CONCLUSIONS Sevo blocked KLF5-mediated transcriptional activation of ITGB2, thereby inhibiting macrophage infiltration in hepatic I/R injury.
Collapse
Affiliation(s)
- Ye Li
- Department of Anaesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weinian Gao
- Department of Cardiovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuyan Lei
- Department of Anaesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoning Wu
- Department of Anaesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tao Yuan
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kai Ma
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kui Chi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Beslika E, Leite-Moreira A, De Windt LJ, da Costa Martins PA. Large animal models of pressure overload-induced cardiac left ventricular hypertrophy to study remodelling of the human heart with aortic stenosis. Cardiovasc Res 2024; 120:461-475. [PMID: 38428029 PMCID: PMC11060489 DOI: 10.1093/cvr/cvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 03/03/2024] Open
Abstract
Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis (AS). AS is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. At a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, known as cardiomyocyte hypertrophy, while their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity, and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis, and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of AS consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiological, cellular and molecular mechanisms that sufficiently resemblance humans and in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries), and porcine (pig, Sus scrofa), have contributed to research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming at prevention of the disease progress or, alternatively, at regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that currently better mimic the condition.
Collapse
Affiliation(s)
- Evangelia Beslika
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Leon J De Windt
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| | - Paula A da Costa Martins
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| |
Collapse
|
11
|
Zhang S, Zhang Q, Lu Y, Chen J, Liu J, Li Z, Xie Z. Roles of Integrin in Cardiovascular Diseases: From Basic Research to Clinical Implications. Int J Mol Sci 2024; 25:4096. [PMID: 38612904 PMCID: PMC11012347 DOI: 10.3390/ijms25074096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat due to their complex pathogenesis and high incidence, imposing a substantial burden on global healthcare systems. Integrins, a group of heterodimers consisting of α and β subunits that are located on the cell membrane, have emerged as key players in mediating the occurrence and progression of CVDs by regulating the physiological activities of endothelial cells, vascular smooth muscle cells, platelets, fibroblasts, cardiomyocytes, and various immune cells. The crucial role of integrins in the progression of CVDs has valuable implications for targeted therapies. In this context, the development and application of various integrin antibodies and antagonists have been explored for antiplatelet therapy and anti-inflammatory-mediated tissue damage. Additionally, the rise of nanomedicine has enhanced the specificity and bioavailability of precision therapy targeting integrins. Nevertheless, the complexity of the pathogenesis of CVDs presents tremendous challenges for monoclonal targeted treatment. This paper reviews the mechanisms of integrins in the development of atherosclerosis, cardiac fibrosis, hypertension, and arrhythmias, which may pave the way for future innovations in the diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Yutong Lu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
| |
Collapse
|
12
|
Kong M, Zhou J, Kang A, Kuai Y, Xu H, Li M, Miao X, Guo Y, Fan Z, Xu Y, Li Z. Histone methyltransferase Suv39h1 regulates hepatic stellate cell activation and is targetable in liver fibrosis. Gut 2024; 73:810-824. [PMID: 38176898 DOI: 10.1136/gutjnl-2023-329671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE Liver fibrosis is a prelude to a host of end-stage liver diseases. Hepatic stellate cells (HSCs), switching from a quiescent state to myofibroblasts, are the major source for excessive production of extracellular matrix proteins. In the present study, we investigated the role of Suv39h1, a lysine methyltransferase, in HSC-myofibroblast transition and the implication in liver fibrosis. DESIGN HSC-specific or myofibroblast-specific Suv39h1 deletion was achieved by crossbreeding the Suv39h1 f/f mice to the Lrat-Cre mice or the Postn-CreERT2 mice. Liver fibrosis was induced by CCl4 injection or bile duct ligation. RESULTS We report that Suv39h1 expression was universally upregulated during HSC-myofibroblast transition in different cell and animal models of liver fibrosis and in human cirrhotic liver tissues. Consistently, Suv39h1 knockdown blocked HSC-myofibroblast transition in vitro. HSC-specific or myofibroblast-specific deletion of Suv39h1 ameliorated liver fibrosis in mice. More importantly, Suv39h1 inhibition by a small-molecule compound chaetocin dampened HSC-myofibroblast transition in cell culture and mitigated liver fibrosis in mice. Mechanistically, Suv39h1 bound to the promoter of heme oxygenase 1 (HMOX1) and repressed HMOX1 transcription. HMOX1 depletion blunted the effects of Suv39h1 inhibition on HSC-myofibroblast transition in vitro and liver fibrosis in vivo. Transcriptomic analysis revealed that HMOX1 might contribute to HSC-myofibroblast transition by modulating retinol homeostasis. Finally, myofibroblast-specific HMOX1 overexpression attenuated liver fibrosis in both a preventive scheme and a therapeutic scheme. CONCLUSIONS Our data demonstrate a previously unrecognised role for Suv39h1 in liver fibrosis and offer proof-of-concept of its targetability in the intervention of cirrhosis.
Collapse
Affiliation(s)
- Ming Kong
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Junjing Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of JiangnanUniversity, Wuxi, People's Republic of China
| | - Aoqi Kang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yameng Kuai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Min Li
- Department of Pathophysiology, Jiangsu Health Vocational College, Nanjing, People's Republic of China
| | - Xiulian Miao
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, People's Republic of China
| | - Yan Guo
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, People's Republic of China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Chen T, Wu X, Zhang P, Wu W, Dai H, Chen S. Strontium-Doped Hydroxyapatite Coating Improves Osteo/Angiogenesis for Ameliorative Graft-Bone Integration via the Macrophage-Derived Cytokines-Mediated Integrin Signal Pathway. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15687-15700. [PMID: 38511302 DOI: 10.1021/acsami.3c14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Polyethylene terephthalate (PET) artificial ligaments, renowned for their superior mechanical properties, have been extensively adopted in anterior cruciate ligament (ACL) reconstruction surgeries. However, the inherent bio-inertness of PET introduces formidable barriers to graft-bone integration, a critical aspect of rehabilitation. Previous interventions, ranging from surface roughening to chemical modifications, have aimed to address this challenge; however, consistently effective techniques for inducing graft-bone integration remain scarce. Our study employed advanced surface-coating methodologies to introduce strontium-doped hydroxyapatite (SrHA) onto PET ligaments. Detailed scanning electron microscopy (SEM) examinations revealed a uniform and integrative coating of SrHA on PET fibers. Furthermore, spectroscopic analysis confirmed the steady release of strontium ions from the coated surface under physiological conditions. In-depth cellular studies proved that extracellular strontium emanating from SrHA-coated PET (PET@SrHA) ligaments actively steers the M2 macrophage polarization. Additionally, macrophages (Mφs) manifested a heightened secretion of prohealing cytokines when exposed to PET@SrHA. Subsequent investigations showed that these cytokines acted as mediators, activating integrin signaling pathways among macrophages, vascular endothelial cells, and osteoblasts. As a direct consequence, an increased rate of angiogenesis and osteogenic differentiation was observed, vital for graft-bone integration following ACL reconstruction with PET@SrHA ligaments. From a biochemical standpoint, our results pinpoint strontium ions as influential immunomodulators, sculpting the graft-bone interface's immune environment. This insight presents the SrHA-coating technique as a viable therapeutic strategy, holding sound promise for improving angiogenesis and osseointegration outcomes during ACL reconstruction using PET-based grafts.
Collapse
Affiliation(s)
- Tianwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Peng Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
14
|
Hong W, Zhu Y, Lin Y, Tang S, Chen J, Xu L, Jiang J, Zong Y, Zhang Y, Sun A, Wu X. The chromatin remodeling protein BRG1 mediates Ang II induced pro-fibrogenic response in renal fibroblasts. Life Sci 2024; 340:122320. [PMID: 38272440 DOI: 10.1016/j.lfs.2023.122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024]
Abstract
AIMS Renal fibrosis is an important pathophysiological process commonly observed in patients chronic kidney disease (CKD). Angiotensin II (Ang II) is a major risk factor for CKD in part by promoting renal fibrosis. In the present study we investigated Brahma-Related Gene 1 (BRG1, encoded by Smarca4) in Ang II induced pro-fibrogenic response in renal fibroblasts. METHODS AND MATERIALS CKD was induced by chronic angiotensin II infusion. Fibroblast- and myofibroblast-specific BRG1 deletion was achieved by crossing the BRG1f/f mice to the Col1a1-CreERT2 mice and the Postn-CreERT2 mice, respectively. KEY FINDINGS BRG1 expression was up-regulated when fibroblasts were exposed to Ang II in vitro and in vivo. BRG1 silencing in primary renal fibroblasts blocked transition to myofibroblasts as evidenced by down-regulation of myofibroblast marker genes and reduction in cell proliferation, migration, and contraction. Consistently, deletion of BRG1 from fibroblasts or from myofibroblasts significantly attenuated renal fibrosis in mice subjected to chronic Ang II infusion. Transcriptomic analysis indicated that BRG1 primarily regulated expression of genes involved in cell migroproliferative behavior and extracellular matrix remodeling. Importantly, administration of PFI-3, a small-molecule BRG1 inhibition, markedly ameliorated Ang II induced renal fibrosis in mice. SIGNIFICANCE Our data support a role for BRG1 in Ang II induced fibrogenic response in renal fibroblasts and suggest that targeting BRG1 could be considered as a reasonable approach for the intervention of CKD.
Collapse
Affiliation(s)
- Wenxuan Hong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Yanshan Lin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Shifan Tang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Jinsi Chen
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Lei Xu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Jie Jiang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yuting Zong
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yongchen Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China.
| | - Xiaoyan Wu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
| |
Collapse
|
15
|
Shao X, Shi Y, Wang Y, Zhang L, Bai P, Wang J, Aniwan A, Lin Y, Zhou S, Yu P. Single-Cell Sequencing Reveals the Expression of Immune-Related Genes in Macrophages of Diabetic Kidney Disease. Inflammation 2024; 47:227-243. [PMID: 37777674 DOI: 10.1007/s10753-023-01906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Diabetic kidney disease (DKD) is characterized by macrophage infiltration, which requires further investigation. This study aims to identify immune-related genes (IRGs) in macrophage and explore their potential as therapeutic targets. This study analyzed isolated glomerular cells from three diabetic mice and three control mice. A total of 59 glomeruli from normal kidney samples and 66 from DKD samples were acquired from four kidney transcriptomic profiling datasets. Bioinformatics analysis was conducted using both single-cell RNA (scRNA) and bulk RNA sequencing data to investigate inflammatory responses in DKD. Additionally, the "AUCell" function was used to investigate statistically different gene sets. The significance of each interaction pair was determined by assigning a probability using "CellChat." The study also analyzed the biological diagnostic importance of immune hub genes for DKD and validated the expression of these immune genes in mice models. The top 2000 highly variable genes (HVGs) were identified after data normalization. Subsequently, a total of eight clusters were identified. It is worth mentioning that macrophages showed the highest percentage increase among all cell types in the DKD group. Furthermore, the present study observed significant differences in gene sets related to inflammatory responses and complement pathways. The study also identified several receptor-ligand pairs and co-stimulatory interactions between endothelial cells and macrophages. Notably, SYK, ITGB2, FCER1G, and VAV1 were identified as immunological markers of DKD with promising predictive ability. This study identified distinct cell clusters and four marker genes. SYK, ITGB2, FCER1G, and VAV1 may be important roles. Consequently, the present study extends our understanding regarding IRGs in DKD and provides a foundation for future investigations into the underlying mechanisms.
Collapse
Affiliation(s)
- Xian Shao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yueyue Shi
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300134, China
| | - Yao Wang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, People's Republic of China
| | - Li Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Pufei Bai
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - JunMei Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Ashanjiang Aniwan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
16
|
Zhou J, Sun X, Chen X, Liu H, Miao X, Guo Y, Fan Z, Li J, Xu Y, Li Z. Phosphatidic acid-enabled MKL1 contributes to liver regeneration: Translational implication in liver failure. Acta Pharm Sin B 2024; 14:256-272. [PMID: 38261867 PMCID: PMC10793099 DOI: 10.1016/j.apsb.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 01/25/2024] Open
Abstract
Liver regeneration following injury aids the restoration of liver mass and the recovery of liver function. In the present study we investigated the contribution of megakaryocytic leukemia 1 (MKL1), a transcriptional modulator, to liver regeneration. We report that both MKL1 expression and its nuclear translocation correlated with hepatocyte proliferation in cell and animal models of liver regeneration and in liver failure patients. Mice with MKL1 deletion exhibited defective regenerative response in the liver. Transcriptomic analysis revealed that MKL1 interacted with E2F1 to program pro-regenerative transcription. MAPKAPK2 mediated phosphorylation primed MKL1 for its interaction with E2F1. Of interest, phospholipase d2 promoted MKL1 nuclear accumulation and liver regeneration by catalyzing production of phosphatidic acid (PA). PA administration stimulated hepatocyte proliferation and enhanced survival in a MKL1-dependent manner in a pre-clinical model of liver failure. Finally, PA levels was detected to be positively correlated with expression of pro-regenerative genes and inversely correlated with liver injury in liver failure patients. In conclusion, our data reveal a novel mechanism whereby MKL1 contributes to liver regeneration. Screening for small-molecule compounds boosting MKL1 activity may be considered as a reasonable approach to treat acute liver failure.
Collapse
Affiliation(s)
- Jiawen Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Xinyue Sun
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Xuelian Chen
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Huimin Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiulian Miao
- Institute of Biomedical Research, Liaocheng University, Liaocheng 252200, China
| | - Yan Guo
- Institute of Biomedical Research, Liaocheng University, Liaocheng 252200, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing 210008, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing 210008, China
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
- Institute of Biomedical Research, Liaocheng University, Liaocheng 252200, China
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
- Institute of Biomedical Research, Liaocheng University, Liaocheng 252200, China
| |
Collapse
|
17
|
Chu L, Xie D, Xu D. Epigenetic Regulation of Fibroblasts and Crosstalk between Cardiomyocytes and Non-Myocyte Cells in Cardiac Fibrosis. Biomolecules 2023; 13:1382. [PMID: 37759781 PMCID: PMC10526373 DOI: 10.3390/biom13091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic mechanisms and cell crosstalk have been shown to play important roles in the initiation and progression of cardiac fibrosis. This review article aims to provide a thorough overview of the epigenetic mechanisms involved in fibroblast regulation. During fibrosis, fibroblast epigenetic regulation encompasses a multitude of mechanisms, including DNA methylation, histone acetylation and methylation, and chromatin remodeling. These mechanisms regulate the phenotype of fibroblasts and the extracellular matrix composition by modulating gene expression, thereby orchestrating the progression of cardiac fibrosis. Moreover, cardiac fibrosis disrupts normal cardiac function by imposing myocardial mechanical stress and compromising cardiac electrical conduction. This review article also delves into the intricate crosstalk between cardiomyocytes and non-cardiomyocytes in the heart. A comprehensive understanding of the mechanisms governing epigenetic regulation and cell crosstalk in cardiac fibrosis is critical for the development of effective therapeutic strategies. Further research is warranted to unravel the precise molecular mechanisms underpinning these processes and to identify potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 315 Yanchang Middle Road, Shanghai 200072, China; (L.C.); (D.X.)
| |
Collapse
|
18
|
Zhu XZ, Qiu Z, Lei SQ, Leng Y, Li WY, Xia ZY. The Role of P53 in Myocardial Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07480-x. [PMID: 37389674 DOI: 10.1007/s10557-023-07480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE P53 is one of the key tumor suppressors. In normal cells, p53 is maintained at low levels by the ubiquitination of the ubiquitinated ligase MDM2. In contrast, under stress conditions such as DNA damage and ischemia, the interaction between p53 and MDM2 is blocked and activated by phosphorylation and acetylation, thereby mediating the trans-activation of p53 through its target genes to regulate a variety of cellular responses. Previous studies have shown that the expression of p53 is negligible in normal myocardium, tends to increase in myocardial ischemia and is maximally induced in ischemia-reperfused myocardium, demonstrating a possible key role of p53 in the development of MIRI. In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and describe the therapeutic agents targeting the relevant targets to provide new strategies for the prevention and treatment of MIRI. METHODS We collected 161 relevant papers mainly from Pubmed and Web of Science (search terms "p53" and "myocardial ischemia-reperfusion injury"). After that, we selected pathway studies related to p53 and classified them according to their contents. We eventually analyzed and summarized them. RESULTS AND CONCLUSION In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and validate its status as an important intermediate affecting MIRI. On the one hand, p53 is regulated and modified by multiple factors, especially non-coding RNAs; on the other hand, p53 regulates apoptosis, programmed necrosis, autophagy, iron death and oxidative stress in MIRI through multiple pathways. More importantly, several studies have reported medications targeting p53-related therapeutic targets. These medications are expected to be effective options for the alleviation of MIRI, but further safety and clinical studies are needed to convert them into clinical applications.
Collapse
Affiliation(s)
- Xi-Zi Zhu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Wen-Yuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
19
|
Sun X, Wang S, Miao X, Zeng S, Guo Y, Zhou A, Chen Y, Chen Y, Lv F, Fan Z, Wang Y, Xu Y, Li Z. TRIB1 regulates liver regeneration by antagonizing the NRF2-mediated antioxidant response. Cell Death Dis 2023; 14:372. [PMID: 37355685 PMCID: PMC10290656 DOI: 10.1038/s41419-023-05896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Robust regenerative response post liver injuries facilitates the architectural and functional recovery of the liver. Intrahepatic redox homeostasis plays a key role in liver regeneration. In the present study, we investigated the contributory role of Tribbles homolog 1 (Trib1), a pseudokinase, in liver regeneration and the underlying mechanism. We report that Trib1 expression was transiently down-regulated in animal and cell models of liver regeneration. Further analysis revealed that hepatocyte growth factor (HGF) repressed Trib1 transcription by evicting liver X receptor (LXRα) from the Trib1 promoter. Knockdown of Trib1 enhanced whereas over-expression of Trib1 suppressed liver regeneration after partial hepatectomy in mice. Of interest, regulation of liver regenerative response by Trib1 coincided with alterations of intracellular ROS levels, GSH levels, and antioxidant genes. Transcriptional assays suggested that Trib1 influenced cellular redox status by attenuating nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Mechanistically, Trib1 interacted with the C-terminus of Nrf2 thus masking a potential nuclear localization signal (NLS) and blocking nuclear accumulation of Nrf2. Finally, correlation between Trib1 expression, Nrf2 nuclear localization, and cell proliferation was identified in liver specimens taken from patients with acute liver failure. In conclusion, our data unveil a novel pathway that depicts Trib1 as a critical link between intracellular redox homeostasis and cell proliferation in liver regeneration.
Collapse
Affiliation(s)
- Xinyue Sun
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Shuai Wang
- Department of General Surgery, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Sheng Zeng
- Stem Cell Center, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Yan Guo
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Anqi Zhou
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Ying Chen
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yifei Chen
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Fangqiao Lv
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Yutong Wang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
20
|
Sun H, Kong X, Wei K, Hao J, Xi Y, Meng L, Li G, Lv X, Zou X, Gu X. Risk prediction model construction for post myocardial infarction heart failure by blood immune B cells. Front Immunol 2023; 14:1163350. [PMID: 37287974 PMCID: PMC10242647 DOI: 10.3389/fimmu.2023.1163350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Background Myocardial infarction (MI) is a common cardiac condition with a high incidence of morbidity and mortality. Despite extensive medical treatment for MI, the development and outcomes of post-MI heart failure (HF) continue to be major factors contributing to poor post-MI prognosis. Currently, there are few predictors of post-MI heart failure. Methods In this study, we re-examined single-cell RNA sequencing and bulk RNA sequencing datasets derived from the peripheral blood samples of patients with myocardial infarction, including patients who developed heart failure and those who did not develop heart failure after myocardial infarction. Using marker genes of the relevant cell subtypes, a signature was generated and validated using relevant bulk datasets and human blood samples. Results We identified a subtype of immune-activated B cells that distinguished post-MI HF patients from non-HF patients. Polymerase chain reaction was used to confirm these findings in independent cohorts. By combining the specific marker genes of B cell subtypes, we developed a prediction model of 13 markers that can predict the risk of HF in patients after myocardial infarction, providing new ideas and tools for clinical diagnosis and treatment. Conclusion Sub-cluster B cells may play a significant role in post-MI HF. We found that the STING1, HSPB1, CCL5, ACTN1, and ITGB2 genes in patients with post-MI HF showed the same trend of increase as those without post-MI HF.
Collapse
Affiliation(s)
- HouRong Sun
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - XiangJin Kong
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - KaiMing Wei
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Xi
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - LingWei Meng
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - GuanNan Li
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Lv
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - XingHua Gu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
21
|
Zhao Q, Shao T, Zhu Y, Zong G, Zhang J, Tang S, Lin Y, Ma H, Jiang Z, Xu Y, Wu X, Zhang T. An MRTF-A-ZEB1-IRF9 axis contributes to fibroblast-myofibroblast transition and renal fibrosis. Exp Mol Med 2023:10.1038/s12276-023-00990-6. [PMID: 37121967 DOI: 10.1038/s12276-023-00990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 05/02/2023] Open
Abstract
Myofibroblasts, characterized by the expression of the matricellular protein periostin (Postn), mediate the profibrogenic response during tissue repair and remodeling. Previous studies have demonstrated that systemic deficiency in myocardin-related transcription factor A (MRTF-A) attenuates renal fibrosis in mice. In the present study, we investigated the myofibroblast-specific role of MRTF-A in renal fibrosis and the underlying mechanism. We report that myofibroblast-specific deletion of MRTF-A, achieved through crossbreeding Mrtfa-flox mice with Postn-CreERT2 mice, led to amelioration of renal fibrosis. RNA-seq identified zinc finger E-Box binding homeobox 1 (Zeb1) as a downstream target of MRTF-A in renal fibroblasts. MRTF-A interacts with TEA domain transcription factor 1 (TEAD1) to bind to the Zeb1 promoter and activate Zeb1 transcription. Zeb1 knockdown retarded the fibroblast-myofibroblast transition (FMyT) in vitro and dampened renal fibrosis in mice. Transcriptomic assays showed that Zeb1 might contribute to FMyT by repressing the transcription of interferon regulatory factor 9 (IRF9). IRF9 knockdown overcame the effect of Zeb1 depletion and promoted FMyT, whereas IRF9 overexpression antagonized TGF-β-induced FMyT. In conclusion, our data unveil a novel MRTF-A-Zeb1-IRF9 axis that can potentially contribute to fibroblast-myofibroblast transition and renal fibrosis. Screening for small-molecule compounds that target this axis may yield therapeutic options for the mollification of renal fibrosis.
Collapse
Affiliation(s)
- Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Gengjie Zong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Junjie Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Shifan Tang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yanshan Lin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hongzhen Ma
- Department of Geriatric Nephrology, First Affiliated Hospital to Nanjing Medical University, Nanjing, China
| | - Zhifan Jiang
- Department of Geriatric Nephrology, First Affiliated Hospital to Nanjing Medical University, Nanjing, China
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiaoyan Wu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
| | - Tao Zhang
- Department of Geriatric Nephrology, First Affiliated Hospital to Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Wang K, Sun X, Sun Y, Jiao B, Yao J, Hu Y, Deng Q, Dong J, Wang W, Wang Y, Li C. Transcriptional regulation of macrophages in heart failure. Front Cardiovasc Med 2023; 10:1148041. [PMID: 37063966 PMCID: PMC10097991 DOI: 10.3389/fcvm.2023.1148041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Adverse cardiac remodeling after acute myocardial infarction is the most important pathological mechanism of heart failure and remains a major problem in clinical practice. Cardiac macrophages, derived from tissue resident macrophages and circulating monocyte, undergo significant phenotypic and functional changes following cardiac injury and play crucial roles in inflammatory response and tissue repair response. Currently, numerous studies indicate that epigenetic regulatory factors and transcription factors can regulate the transcription of inflammatory and reparative genes and timely conversion of inflammatory macrophages into reparative macrophages and then alleviate cardiac remodeling. Accordingly, targeting transcriptional regulation of macrophages may be a promising option for heart failure treatment. In this review, we not only summarize the origin and function of cardiac macrophages, but more importantly, describe the transcriptional regulation of macrophages in heart failure, aiming to provide a potential therapeutic target for heart failure.
Collapse
Affiliation(s)
- Keyan Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Jiao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Junkai Yao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyao Hu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Deng
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianteng Dong
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Chun Li
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine (TCM), Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| |
Collapse
|
23
|
Zhang Q, Zhang S, Chen J, Xie Z. The Interplay between Integrins and Immune Cells as a Regulator in Cancer Immunology. Int J Mol Sci 2023; 24:6170. [PMID: 37047140 PMCID: PMC10093897 DOI: 10.3390/ijms24076170] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Integrins are a group of heterodimers consisting of α and β subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.
Collapse
Affiliation(s)
- Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China
| |
Collapse
|
24
|
Liu L, Sun K, Luo Y, Wang B, Yang Y, Chen L, Zheng S, Wu T, Xiao P. Myocardin-related transcription factor A, regulated by serum response factor, contributes to diabetic cardiomyopathy in mice. Life Sci 2023; 317:121470. [PMID: 36758668 DOI: 10.1016/j.lfs.2023.121470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
AIMS Diabetic cardiomyopathy is a significant contributor to the global pandemic of heart failure. In the present study we investigated the involvement of myocardin-related transcription factor A (MRTF-A), a transcriptional regulator, in this process. MATERIALS AND METHODS Diabetic cardiomyopathy was induced in mice by feeding with a high-fat diet (HFD) or streptozotocin (STZ) injection. KEY FINDINGS We report that MRTF-A was up-regulated in the hearts of mice with diabetic cardiomyopathy. MRTF-A expression was also up-regulated by treatment with palmitate in cultured cardiomyocytes in vitro. Mechanistically, serum response factor (SRF) bound to the MRTF-A gene promoter and activated MRTF-A transcription in response to pro-diabetic stimuli. Knockdown of SRF abrogated MRTF-A induction in cardiomyocytes treated with palmitate. When cardiomyocytes conditional MRTF-A knockout mice (MRTF-A CKO) and wild type (WT) mice were placed on an HFD to induce diabetic cardiomyopathy, it was found that the CKO mice and the WT mice displayed comparable metabolic parameters including body weight, blood insulin concentration, blood cholesterol concentration, and glucose tolerance. However, both systolic and diastolic cardiac function were exacerbated by MRTF-A deletion in the heart. SIGNIFICANCE These data suggest that MRTF-A up-regulation might serve as an important compensatory mechanism to safeguard the deterioration of cardiac function during diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ke Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yajun Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bingshu Wang
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Medical Research Center of The First Affiliated Hospital, Hainan Women and Children Medical Center, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China; Department of Pathology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shaojiang Zheng
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Medical Research Center of The First Affiliated Hospital, Hainan Women and Children Medical Center, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China.
| | - Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| | - Pingxi Xiao
- Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Wu X, Miao X, Guo Y, Shao T, Tang S, Lin Y, Xu Y, Li N, Zhang T. Slug enables redox-sensitive trans-activation of LRP1 by COUP-TFII: Implication in antifibrotic intervention in the kidneys. Life Sci 2023; 316:121412. [PMID: 36682522 DOI: 10.1016/j.lfs.2023.121412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
AIMS Excessive fibrogenesis in the kidney causes structural and functional damages and is considered a hallmark event in end-stage renal diseases (ESRD). During renal fibrosis, resident fibroblasts undergo profound changes to become myofibroblasts. In the present study we investigated the involvement of Slug (encoded by Snai2) in this process. MATERIALS AND METHODS Renal fibrosis was induced by unilateral ureteral obstruction (UUO) in mice. Cellular transcriptome was evaluated by RNA-seq. KEY FINDINGS We report that Slug expression was up-regulated during fibroblast-myofibroblast transition (FMyT) in vivo and in vitro. Slug knockdown attenuated TGF-β induced FMyT in primary renal fibroblasts and ameliorated renal fibrosis in mice. RNA-seq analysis revealed that Slug promoted FMyT by enabling key pro-fibrogenic transcription factors including the orphan nuclear receptor COUP-TFII. Mechanistically, Slug enhanced intracellular ROS levels by modulating the expression of redox-related genes. Elevated ROS levels in turn stimulated transcription of LDL receptor related protein 1 (Lrp1) by COUP-TFII. Importantly, both a COUP-TFII antagonist and an Lrp1 neutralization antibody mitigated renal fibrosis in mice. SIGNIFICANCE Our data support a role for Slug in regulating FMyT and renal fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yan Guo
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Shifan Tang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Yanshan Lin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China.
| | - Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China.
| | - Tao Zhang
- Department of Geriatric Nephrology, First Affiliated Hospital to Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
Ying H, Guo W, Yu P, Qiu H, Jiang R, Jiang C. Characteristics of immune clusters and cell abundance in patients with different subtypes of nonparoxysmal atrial fibrillation. Sci Rep 2023; 13:968. [PMID: 36653368 PMCID: PMC9849221 DOI: 10.1038/s41598-022-26749-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. Inflammation plays an important role in the initiation and perpetuation of AF. The present study was conducted to characterize immune clusters in nonparoxysmal AF and to distinguish immune subtypes of nonparoxysmal AF. Immune-related algorithms (CIBERSORT, ESTIMATE, and ssGSEA) were used to evaluate the immune cluster characterization and cell abundance, and multivariable logistics analysis was performed to determine the most relevant immune cells. We identified differentially expressed genes (DEGs) and used consensus clustering analysis to identify nonparoxysmal AF subtypes. Weighted gene coexpression network analysis (WGCNA) was used for finding highly correlated gene sets and attach to external sample traits. And it was conducted twice to identify the immune- and subtype- related modules. Finally, Metascape was used to compare the biological functions of the two nonparoxysmal AF subtypes we obtained. CytoHubba was used to identify the hub genes of these two subtypes. Based on the results of bioinformatics analysis, regulatory T cells, resting NK cells, active mast cells and neutrophils were considered to be closely related to nonparoxysmal AF. The brown module was identified as the most relevant module to the above immune cells by WGCNA. We identified two major nonparoxysmal AF subtypes by consensus clustering analysis and their enriched biological functions by Metascape. The hub genes are TYROBP, PTPRC, ITGB2, SPI1, PLEK, and CSF1R in permanent AF and JAM3, S100P, ARPC5, TRIM34, and GREB1L in persistent AF. This study revealed two major nonparoxysmal AF subtypes and eleven hub genes, which provide potential therapeutic targets for anti-inflammatory treatments of nonparoxysmal AF.
Collapse
Affiliation(s)
- Hangying Ying
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Wenpu Guo
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Pengcheng Yu
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Hangyuan Qiu
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Ruhong Jiang
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
| | - Chenyang Jiang
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
27
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
28
|
Wu T, Li N, Zhang Q, Liu R, Zhao H, Fan Z, Zhuo L, Yang Y, Xu Y. MKL1 fuels ROS-induced proliferation of vascular smooth muscle cells by modulating FOXM1 transcription. Redox Biol 2022; 59:102586. [PMID: 36587486 PMCID: PMC9823229 DOI: 10.1016/j.redox.2022.102586] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) promotes vascular injury and neointima formation in part by stimulating proliferation of vascular smooth muscle cells (VSMC). The underlying transcriptional mechanism, however, is not completely understood. Here we report that VSMC-specific deletion of MKL1 in mice suppressed neointima formation in a classic model of vascular injury. Likewise, pharmaceutical inhibition of MKL1 activity by CCG-1423 similarly mollified neointima formation in mice. Over-expression of a constitutively active MKL1 in vascular smooth muscle cells enhanced proliferation in a ROS-dependent manner. On the contrary, MKL1 depletion or inhibition attenuated VSMC proliferation. PCR array based screening identified forkhead box protein M1 (FOXM1) as a direct target for MKL1. MKL1 interacted with E2F1 to activate FOXM1 expression. Concordantly, FOXM1 depletion ameliorated MKL1-dependent VSMC proliferation. Of interest, ROS-induced MKL1 phosphorylation through MK2 was essential for its interaction with E2F1 and consequently FOXM1 trans-activation. Importantly, a positive correlation between FOXM1 expression and VSMC proliferation was identified in arterial specimens from patients with restenosis. Taken together, our data suggest that a redox-sensitive phosphorylation-switch of MKL1 activates FOXM1 transcription and mediates ROS fueled vascular smooth muscle proliferation. Targeting the MK-2/MKL1/FOXM1 axis may be considered as a reasonable approach for treatment of restenosis.
Collapse
Affiliation(s)
- Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Nan Li
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Qiumei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruiqi Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hongwei Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China; Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China.
| |
Collapse
|
29
|
Loss of KDM5B ameliorates pathological cardiac fibrosis and dysfunction by epigenetically enhancing ATF3 expression. Exp Mol Med 2022; 54:2175-2187. [PMID: 36481938 PMCID: PMC9794816 DOI: 10.1038/s12276-022-00904-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Excessive cardiac fibrosis is central to adverse cardiac remodeling and dysfunction leading to heart failure in many cardiac diseases. Histone methylation plays a crucial role in various pathophysiological events. However, the role of histone methylation modification enzymes in pathological cardiac fibrosis needs to be fully elucidated. Here, we identified lysine demethylase 5B (KDM5B), a histone H3K4me2/me3 demethylase, as a key epigenetic mediator of pathological cardiac fibrosis. KDM5B expression was upregulated in cardiac fibroblasts and myocardial tissues in response to pathological stress. KDM5B deficiency markedly ameliorated cardiac fibrosis, improved cardiac function, and prevented adverse cardiac remodeling following myocardial infarction (MI) or pressure overload. KDM5B knockout or inhibitor treatment constrained the transition of cardiac fibroblasts to profibrogenic myofibroblasts and suppressed fibrotic responses. KDM5B deficiency also facilitated the transformation of cardiac fibroblasts to endothelial-like cells and promoted angiogenesis in response to myocardial injury. Mechanistically, KDM5B bound to the promoter of activating transcription factor 3 (Atf3), an antifibrotic regulator of cardiac fibrosis, and inhibited ATF3 expression by demethylating the activated H3K4me2/3 modification, leading to the enhanced activation of TGF-β signaling and excessive expression of profibrotic genes. Our study indicates that KDM5B drives pathological cardiac fibrosis and represents a candidate target for intervention in cardiac dysfunction and heart failure.
Collapse
|
30
|
Li R, Frangogiannis NG. Integrins in cardiac fibrosis. J Mol Cell Cardiol 2022; 172:1-13. [PMID: 35872324 DOI: 10.1016/j.yjmcc.2022.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
Cells sense mechanical stress and changes in their matrix environment through the integrins, a family of heterodimeric surface receptors that bind to extracellular matrix ligands and trigger cytoskeletal remodeling, while transducing a wide range of intracellular signals. Integrins have been extensively implicated in regulation of inflammation, repair and fibrosis in many different tissues. This review manuscript discusses the role of integrin-mediated cascades in myocardial fibrosis. In vitro studies have demonstrated that β1 and αv integrins play an important role in fibrogenic conversion of cardiac fibroblast, acting through direct stimulation of FAK/Src cascades, or via accentuation of growth factor signaling. Fibrogenic actions of αv integrins may be mediated, at least in part, through pericellular activation of latent TGF-β stores. In vivo evidence supporting the role of integrin heterodimers in fibrotic cardiac remodeling is limited to associative evidence, and to experiments using pharmacologic inhibitors, or global loss-of-function approaches. Studies documenting in vivo actions of integrins on fibroblasts using cell-specific strategies are lacking. Integrin effects on leukocytes may also contribute to the pathogenesis of fibrotic myocardial responses by mediating recruitment and activation of fibrogenic macrophages. The profile and role of integrins in cardiac fibrosis may be dependent on the underlying pathologic condition. Considering their cell surface localization and the availability of small molecule inhibitors, integrins may be attractive therapeutic targets for patients with heart failure associated with prominent fibrotic remodeling.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
31
|
Al-Hetty HRAK, Ismaeel GL, Mohammad WT, Toama MA, Kandeel M, Saleh MM, Turki Jalil A. SRF/MRTF-A and liver cirrhosis: Pathologic associations. J Dig Dis 2022; 23:614-619. [PMID: 36601855 DOI: 10.1111/1751-2980.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Liver cirrhosis results from prolonged and extensive liver fibrosis in which fibrotic tissues replace functional hepatic cells. Chronic liver disease due to various viral, chemical, or metabolic factors initiates hepatic fibrogenesis. Cirrhosis is associated with multiple clinical complications and a poor patient prognosis; therefore, developing novel antifibrotic therapies to prevent cirrhosis is of high priority. Mounting evidence points to the key role of serum response factor (SRF) and myocardin-related transcription factor (MRTF)-A in the pathogenesis of liver fibrosis. SRF is a transcription factor and MRTF-A is a co-activator of SRF and normally resides in the cytoplasm. Upon the induction of fibrotic pathways, MRTF-A translocates into the nucleus and forms the active SRF/MRTF-A complex, leading to the expression of a multitude of fibrotic proteins and components of extracellular matrix. Silencing or inhibiting MRTF-A impedes hepatic stellate cell transdifferentiation into myofibroblasts and slows down the deposition of extracellular matrix in the liver, making it a potential therapeutic target. Here, we review the recent findings regarding the role of the SRF/MRTF-A complex in liver fibrosis and its therapeutic potential for the management of cirrhosis.
Collapse
Affiliation(s)
| | | | | | - Mariam Alaa Toama
- College of Health and Medical Technologies, National University of Science and Technology, Dhi-Qar, Iraq
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Anbar, Iraq
| | | |
Collapse
|
32
|
Cao G, Lu Z, Gu R, Xuan X, Zhang R, Hu J, Dong H. Deciphering the Intercellular Communication Between Immune Cells and Altered Vascular Smooth Muscle Cell Phenotypes in Aortic Aneurysm From Single-Cell Transcriptome Data. Front Cardiovasc Med 2022; 9:936287. [PMID: 35837612 PMCID: PMC9273830 DOI: 10.3389/fcvm.2022.936287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Vascular smooth muscle cell (VSMC) phenotype switching has been preliminarily found in aortic aneurysms. However, two major questions were raised: (1) What factors drive phenotypic switching of VSMCs in aortic aneurysms? (2) What role does VSMC phenotype transformation play in aortic aneurysms? We speculated that the interaction between infiltrated immune cells and VSMCs played a pivotal role in aortic aneurysm expansion. Materials and Methods We obtained single-cell transcriptome data GSE155468 that incorporate eight aortic aneurysm samples and three normal aorta samples. A standard single-cell analysis procedure was performed by Seurat (v3.1.2) for identifying the general cell components. Subsequently, VSMCs were extracted separately and re-clustered for identifying switched VSMC phenotypes. VSMC phenotype annotation was relied on the definitions of specific VSMC phenotypes in published articles. Vital VSMC phenotypes were validated by immunofluorescence. Next, identified immune cells and annotated vital VSMC phenotypes were extracted for analyzing the intercellular communication. R package CellChat (v1.1.3) was used for investigating the communication strength, signaling pathways, and communication patterns between various VSMC phenotypes and immune cells. Result A total of 42,611 cells were identified as CD4 + T cells, CD8 + T cells, VSMC, monocytes, macrophages, fibroblasts, endothelial cells, and B cells. VSMCs were further classified into contractile VSMCs, secreting VSMCs, macrophage-like VSMCs, mesenchymal-like VSMCs, adipocyte-like VSMCs, and T-cell-like VSMCs. Intercellular communication analysis was performed between immune cells (macrophages, B cells, CD4 + T cells, CD8 + T cells) and immune related VSMCs (macrophage-like VSMCs, mesenchymal-like VSMCs, T-cell-like VSMCs, contractile VSMCs). Among selected cell populations, 27 significant signaling pathways with 61 ligand–receptor pairs were identified. Macrophages and macrophage-like VSMCs both assume the roles of a signaling sender and receiver, showing the highest communication capability. T cells acted more as senders, while B cells acted as receivers in the communication network. T-cell-like VSMCs and contractile VSMCs were used as senders, while mesenchymal-like VSMCs played a poor role in the communication network. Signaling macrophage migration inhibitory factor (MIF), galectin, and C-X-C motif chemokine ligand (CXCL) showed high information flow of intercellular communication, while signaling complement and chemerin were completely turned on in aortic aneurysms. MIF and galectin promoted VSMC switch into macrophage-like phenotypes, CXCL, and galectin promoted VSMCs transform into T-cell-like phenotypes. MIF, galectin, CXCL, complement, and chemerin all mediated the migration and recruitment of immune cells into aortic aneurysms. Conclusion The sophisticated intercellular communication network existed between immune cells and immune-related VSMCs and changed as the aortic aneurysm progressed. Signaling MIF, galectin, CXCL, chemerin, and complement made a significant contribution to aortic aneurysm progression through activating immune cells and promoting immune cell migration, which could serve as the potential target for the treatment of aortic aneurysms.
Collapse
Affiliation(s)
- Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhengchao Lu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruiyuan Gu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Honglin Dong,
| |
Collapse
|
33
|
Li S, Zhang Q, Huang Z, Tao W, Zeng C, Yan L, Chen F. Comprehensive analysis of immunocyte infiltration and the key genes associated with intraplaque hemorrhage in carotid atherosclerotic plaques. Int Immunopharmacol 2022; 106:108633. [DOI: 10.1016/j.intimp.2022.108633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
|
34
|
SIRT6 mediates MRTF-A deacetylation in vascular endothelial cells to antagonize oxLDL-induced ICAM-1 transcription. Cell Death Dis 2022; 8:96. [PMID: 35246513 PMCID: PMC8897425 DOI: 10.1038/s41420-022-00903-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 01/01/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL), a known risk factor for atherosclerosis, activates the transcription of adhesion molecules (ICAM-1) in endothelial cells. We previously showed that myocardin-related transcription factor A (MRTF-A) mediates oxLDL-induced ICAM-1 transcription. Here we confirm that ICAM-1 transactivation paralleled dynamic alterations in MRTF-A acetylation. Since treatment with the antioxidant NAC dampened MRTF-A acetylation, MRTF-A acetylation appeared to be sensitive to cellular redox status. Of interest, silencing of SIRT6, a lysine deacetylase, restored MRTF-A acetylation despite the addition of NAC. SIRT6 directly interacted with MRTF-A to modulate MRTF-A acetylation. Deacetylation of MRTF-A by SIRT6 led to its nuclear expulsion thus dampening MRTF-A occupancy on the ICAM-1 promoter. Moreover, SIRT6 expression was downregulated with oxLDL stimulation likely owing to promoter hypermethylation in endothelial cells. DNA methyltransferase 1 (DNMT1) was recruited to the SIRT6 promoter and mediated SIRT6 repression. The ability of DNMT1 to repress SIRT6 promoter partly was dependent on ROS-sensitive serine 154 phosphorylation. In conclusion, our data unveil a novel DNMT1-SIRT6 axis that contributes to the regulation of MRTF-A acetylation and ICAM-1 transactivation in endothelial cells.
Collapse
|
35
|
Huang S, Shao T, Liu H, Li T, Gui X, Zhao Q. Resident Fibroblast MKL1 Is Sufficient to Drive Pro-fibrogenic Response in Mice. Front Cell Dev Biol 2022; 9:812748. [PMID: 35178401 PMCID: PMC8844195 DOI: 10.3389/fcell.2021.812748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is an evolutionarily conserved pathophysiological process serving bifurcated purposes. On the one hand, fibrosis is essential for wound healing and contributes to the preservation of organ function. On the other hand, aberrant fibrogenic response may lead to tissue remodeling and precipitate organ failure. Recently lineage tracing studies have shown that resident fibroblasts are the primary mediator of fibrosis taking place in key organs such as the heart, the lungs, and the kidneys. Megakaryocytic leukemia 1 (MKL1) is transcriptional regulator involved in tissue fibrosis. Here we generated resident fibroblast conditional MKL1 knockout (CKO) mice by crossing the Mkl1f/f mice to the Col1a2-CreERT2 mice. Models of cardiac fibrosis, pulmonary fibrosis, and renal fibrosis were reproduced in the CKO mice and wild type (WT) littermates. Compared to the WT mice, the CKO mice displayed across-the-board attenuation of fibrosis in different models. Our data cement the pivotal role MKL1 plays in tissue fibrosis but point to the cellular origin from which MKL1 exerts its pro-fibrogenic effects.
Collapse
Affiliation(s)
- Shan Huang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianfa Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xianhua Gui
- Department of Respiratory Medicine, Affiliated Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
36
|
Liu X, Zhou J, Zhang B, Liu G, Hu Q, Chen J. Lysine demethylase 3A is a positive regulator of cardiac myofibroblast transdifferentiation that increases Smad3 phosphorylation following transforming growth factor beta1 stimulation. Mol Biol Rep 2022; 49:3177-3185. [PMID: 35113304 DOI: 10.1007/s11033-022-07150-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The epigenetic modifier molecule lysine demethylase 3A (KDM3A) has been shown to help ameliorate cardiovascular diseases, but its effect on cardiac fibroblasts (CFs) remains unclear. METHODS AND RESULTS We designed gain- and loss-of-function experiments to investigate the biological functions of KDM3A in CFs. Moreover, we used SIS3-HCl (a specific inhibitor of p-Smad3) to explore the underlying mechanism. Cell viability and migration were verified by CCK-8 and cell migration experiments, respectively, and the degree of fibrosis was measured by Western blot analysis. Our data revealed that KDM3A enhanced the proliferation and migration of CFs and increased the fibroblast-to-myofibroblast transition while enabling the Smad3 phosphorylation response to transforming growth factor beta1 (TGFβ1) stimulation. However, these effects were abolished by SIS3-HCl. Furthermore, KDM3A inhibition obviously protected against cardiac myofibroblast transdifferentiation under TGFβ1 stimulation. CONCLUSIONS KDM3A may act as a novel regulator of cardiac myofibroblast transdifferentiation through its ability to modulate the phosphorylation of Smad3 following TGFβ1 stimulation.
Collapse
Affiliation(s)
- Xiaopei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Jining Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Bofang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Gen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China.
| |
Collapse
|
37
|
Li N, Liu H, Xue Y, Chen J, Kong X, Zhang Y. Upregulation of Neogenin-1 by a CREB1-BAF47 Complex in Vascular Endothelial Cells is Implicated in Atherogenesis. Front Cell Dev Biol 2022; 10:803029. [PMID: 35186922 PMCID: PMC8851423 DOI: 10.3389/fcell.2022.803029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis is generally considered a human pathology of chronic inflammation, to which endothelial dysfunction plays an important role. Here we investigated the role of neogenin 1 (Neo-1) in oxidized low-density lipoprotein (oxLDL) induced endothelial dysfunction focusing on its transcriptional regulation. We report that Neo-1 expression was upregulated by oxLDL in both immortalized vascular endothelial cells and primary aortic endothelial cells. Neo-1 knockdown attenuated whereas Neo-1 over-expression enhanced oxLDL-induced leukocyte adhesion to endothelial cells. Neo-1 regulated endothelial-leukocyte interaction by modulating nuclear factor kappa B (NF-κB) activity to alter the expression of adhesion molecules. Neo-1 blockade with a blocking antibody ameliorated atherogenesis in Apoe−/− mice fed a Western diet. Ingenuity pathway analysis combined with validation assays confirmed that cAMP response element binding protein 1 (CREB1) and Brg1-associated factor 47 (BAF47) mediated oxLDL induced Neo-1 upregulation. CREB1 interacted with BAF47 and recruited BAF47 to the proximal Neo-1 promoter leading to Neo-1 trans-activation. In conclusion, our data delineate a novel transcriptional mechanism underlying Neo-1 activation in vascular endothelial cells that might contribute to endothelial dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Nan Li
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Junliang Chen
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Institute of Biomedical Research, Liaocheng Univeristy, Liaocheng, China
- *Correspondence: Xiaocen Kong, ; Yuanyuan Zhang,
| | - Yuanyuan Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Xiaocen Kong, ; Yuanyuan Zhang,
| |
Collapse
|
38
|
Zhang X, Gao Y, Wu H, Mao Y, Qi Y. LncRNA HOX transcript antisense RNA mitigates cardiac function injury in chronic heart failure via regulating microRNA-30a-5p to target KDM3A. J Cell Mol Med 2022; 26:1473-1485. [PMID: 35083842 PMCID: PMC8899154 DOI: 10.1111/jcmm.17160] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Long noncoding RNA HOX transcript antisense RNA (HOTAIR) has been studied in multiple diseases, but the role of HOTAIR on chronic heart failure (CHF) through the regulation of microRNA (miR)‐30a‐5p and lysine‐specific demethylase 3A (KDM3A) remains unexplored. This research aims to probe the effects of HOTAIR on CHF progression via modulating miR‐30a‐5p to target KDM3A. CHF mouse model was established by intraperitoneal injection of doxorubicin. The CHF mice were then injected with high‐expressed HOTAIR, miR‐30a‐5p or KDM3A adenovirus vectors to determine the cardiac function, oxidative stress, inflammatory response, pathological change and cardiomyocyte apoptosis. HOTAIR, miR‐30a‐5p, KDM3A and Bcl‐2/adenovirus E1B 19kDa interacting protein 3 (BNIP3) expression in CHF mice was detected. The binding relations among HOTAIR, miR‐30a‐5p and KDM3A were validated. HOTAIR and KDM3A were depleted, while miR‐30a‐5p was augmented in CHF mice. The elevated HOTAIR or KDM3A or could improve cardiac function, mitigate oxidative stress and pathological change, reduce inflammatory factor levels and cardiomyocyte apoptosis, while the increased miR‐30a‐5p exerted opposite effects. The miR‐30a‐5p elevation could reverse the effects of enriched HOTAIR, while BNIP3 reduction abrogated the effects of KDM3A on CHF. HOTAIR sponged miR‐30a‐5p that targeted KDM3A. HOTAIR improves cardiac injury in CHF via modulating miR‐30a‐5p to target KDM3A. This study provides novel therapeutic strategies for CHF treatment.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yakun Gao
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Hongyu Wu
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yong Mao
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yanqing Qi
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
39
|
Affiliation(s)
- Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, 185 South Orange Ave G609, Newark, NJ 07103, USA
| |
Collapse
|
40
|
Shao T, Xue Y, Fang M. Epigenetic Repression of Chloride Channel Accessory 2 Transcription in Cardiac Fibroblast: Implication in Cardiac Fibrosis. Front Cell Dev Biol 2021; 9:771466. [PMID: 34869368 PMCID: PMC8633401 DOI: 10.3389/fcell.2021.771466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is a key pathophysiological process that contributes to heart failure. Cardiac resident fibroblasts, exposed to various stimuli, are able to trans-differentiate into myofibroblasts and mediate the pro-fibrogenic response in the heart. The present study aims to investigate the mechanism whereby transcription of chloride channel accessory 2 (Clca2) is regulated in cardiac fibroblast and its potential implication in fibroblast-myofibroblast transition (FMyT). We report that Clca2 expression was down-regulated in activated cardiac fibroblasts (myofibroblasts) compared to quiescent cardiac fibroblasts in two different animal models of cardiac fibrosis. Clca2 expression was also down-regulated by TGF-β, a potent inducer of FMyT. TGF-β repressed Clca2 expression at the transcriptional level likely via the E-box element between -516 and -224 of the Clca2 promoter. Further analysis revealed that Twist1 bound directly to the E-box element whereas Twist1 depletion abrogated TGF-β induced Clca2 trans-repression. Twist1-mediated Clca2 repression was accompanied by erasure of histone H3/H4 acetylation from the Clca2 promoter. Mechanistically Twist1 interacted with HDAC1 and recruited HDAC1 to the Clca2 promoter to repress Clca2 transcription. Finally, it was observed that Clca2 over-expression attenuated whereas Clca2 knockdown enhanced FMyT. In conclusion, our data demonstrate that a Twist1-HDAC1 complex represses Clca2 transcription in cardiac fibroblasts, which may contribute to FMyT and cardiac fibrosis.
Collapse
Affiliation(s)
- Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
41
|
Fan Z, Kong M, Miao X, Guo Y, Ren H, Wang J, Wang S, Tang N, Shang L, Zhu Z, Liu H, Zhu W, Shi X. An E2F5-TFDP1-BRG1 Complex Mediates Transcriptional Activation of MYCN in Hepatocytes. Front Cell Dev Biol 2021; 9:742319. [PMID: 34746136 PMCID: PMC8569672 DOI: 10.3389/fcell.2021.742319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022] Open
Abstract
Liver regeneration is characterized by cell cycle reentrance of hepatocytes. N-Myc, encoded by MYCN, is a member of the Myc family of transcription factors. Elevation of MYCN expression has been noted in the course of liver regeneration whereas the underlying mechanism remains unclear. Here we describe that up-regulation of MYCN expression, as measured by quantitative PCR, Western blotting, and immunohistochemical staining, paralleled liver regeneration in animal and cell models. MYCN expression was up-regulated as a result of transcriptional activation. Ingenuity pathway analysis (IPA) revealed several up-stream transcriptional regulators for MYCN and RNA interference validated E2F5 and TFDP1 as essential for hepatocyte growth factor (HGF)-induced MYCN trans-activation. Further examination showed that deficiency of BRG1, a chromatin remodeling protein, attenuated MYCN induction during liver regeneration. BRG1 interacted with and was recruited by E2F5/TFDP1 to the MYCN promoter. Mechanistically, BRG1 might play a role regulating histone H3 acetylation and H3K4 trimethylation and facilitating/stabilizing the binding of RNA polymerase II surrounding the MYCN promoter. Over-expression of ectopic MYCN in BRG1-null hepatocytes overcame deficiency of proliferation. Importantly, a positive correlation between MYCN expression and BRG1/E2F5/TFDP1 expression was observed in human liver specimens. In conclusion, our data identify a novel epigenetic pathway where an E2F5-TFDP1-BRG1 complex regulates MYCN transcription to promote liver regeneration.
Collapse
Affiliation(s)
- Zhiwen Fan
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Ning Tang
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Longcheng Shang
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengyi Zhu
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hanyi Liu
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Zhu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| |
Collapse
|
42
|
HES5-mediated repression of LIGHT transcription may contribute to apoptosis in hepatocytes. Cell Death Discov 2021; 7:308. [PMID: 34689159 PMCID: PMC8542050 DOI: 10.1038/s41420-021-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is prototypical form of metabolic syndrome and has become a global pandemic. Hepatocytes undergo apoptosis in the pathogenesis of NAFLD. We report that the lymphokine LIGHT/TNFSF14 was upregulated in the murine NAFLD livers and in hepatocytes treated with free fatty acids (palmitate, PA). LIGHT knockdown or neutralization attenuated PA-induced apoptosis of hepatocytes. Similarly, knockdown or blockade of LTβR, the receptor for LIGHT, ameliorated apoptosis in hepatocytes exposed to PA. Ingenuity pathway analysis (IPA) revealed several Notch-related transcription factors as upstream regulators of LIGHT, of which HES5 expression was downregulated paralleling LIGHT induction in the pathogenesis of NAFLD. HES5 knockdown enhanced whereas HES5 over-expression weakened LIGHT induction in hepatocytes. HES5 was found to directly bind to the LIGHT promoter and repress LIGHT transcription. Mechanistically, HES5 interacted with SIRT1 to deacetylate histone H3/H4 on the LIGHT promoter to repress LIGHT transcription. SIRT1 knockdown or inhibition offset the effect of HES5 over-expression on LIGHT transcription and hepatocyte apoptosis. In conclusion, our data unveil a novel mechanism that might contribute to excessive apoptosis in hepatocyte exposed to free fatty acids.
Collapse
|
43
|
Lv F, Shao T, Xue Y, Miao X, Guo Y, Wang Y, Xu Y. Dual Regulation of Tank Binding Kinase 1 by BRG1 in Hepatocytes Contributes to Reactive Oxygen Species Production. Front Cell Dev Biol 2021; 9:745985. [PMID: 34660604 PMCID: PMC8517266 DOI: 10.3389/fcell.2021.745985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 01/14/2023] Open
Abstract
Excessive accumulation of reactive oxygen species (ROS) is considered a major culprit for the pathogenesis of non-alcoholic fatty liver disease (NAFLD). We have previously shown that deletion of Brahma related gene 1 (BRG1) mitigated NAFLD in mice in part by attenuating ROS production in hepatocyte. Here we report that BRG1 deletion led to simultaneous down-regulation in expression and phosphorylation of tank binding kinase 1 (TBK1) in vivo and in vitro. On the one hand, BRG1 interacted with AP-1 to bind to the TBK1 promoter and directly activated TBK1 transcription in hepatocytes. On the other hand, BRG1 interacted with Sp1 to activate the transcription of c-SRC, a tyrosine kinase essential for TBK1 phosphorylation. Over-expression of c-SRC and TBK1 corrected the deficiency in ROS production in BRG1-null hepatocytes whereas depletion of TBK1 or c-SRC attenuated ROS production. In conclusion, our data suggest that dual regulation of TBK1 activity, at the transcription level and the post-transcriptional level, by BRG1 may constitute an important mechanism underlying excessive ROS production in hepatocytes.
Collapse
Affiliation(s)
- Fangqiao Lv
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yutong Wang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
44
|
Chen B, Dong W, Shao T, Miao X, Guo Y, Liu X, Feng Y. A KDM4-DBC1-SIRT1 Axis Contributes to TGF-b Induced Mesenchymal Transition of Intestinal Epithelial Cells. Front Cell Dev Biol 2021; 9:697614. [PMID: 34631698 PMCID: PMC8493255 DOI: 10.3389/fcell.2021.697614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Intestinal fibrosis is one of the common pathophysiological processes in inflammatory bowel diseases (IBDs). Previously it has been demonstrated that epithelial-mesenchymal transition (EMT) can contribute to the development of intestinal fibrosis. Here we report that conditional ablation of SIRT1, a class III lysine deacetylase, in intestinal epithelial cells exacerbated 2, 4, 6-trinitro-benzene sulfonic acid (TNBS) induced intestinal fibrosis in mice. SIRT1 activity, but not SIRT1 expression, was down-regulated during EMT likely due to up-regulation of its inhibitor deleted in breast cancer 1 (DBC1). TGF-β augmented the recruitment of KDM4A, a histone H3K9 demethylase, to the DBC1 promoter in cultured intestinal epithelial cells (IEC-6) leading to DBC1 trans-activation. KDM4A depletion or inhibition abrogated DBC1 induction by TGF-β and normalized SIRT1 activity. In addition, KDM4A deficiency attenuated TGF-β induced EMT in IEC-6 cells. In conclusion, our data identify a KDM4-DBC1-SIRT1 pathway that regulates EMT to contribute to intestinal fibrosis.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tinghui Shao
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xingyu Liu
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Kong M, Dong W, Zhu Y, Fan Z, Miao X, Guo Y, Li C, Duan Y, Lu Y, Li Z, Xu Y. Redox-sensitive activation of CCL7 by BRG1 in hepatocytes during liver injury. Redox Biol 2021; 46:102079. [PMID: 34454163 PMCID: PMC8406035 DOI: 10.1016/j.redox.2021.102079] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Liver injuries induced by various stimuli share in common an acute inflammatory response, in which circulating macrophages home to the liver parenchyma to participate in the regulation of repair, regeneration, and fibrosis. In the present study we investigated the role of hepatocyte-derived C-C motif ligand 7 (CCL7) in macrophage migration during liver injury focusing on its transcriptional regulation. We report that CCL7 expression was up-regulated in the liver by lipopolysaccharide (LPS) injection (acute liver injury) or methionine-and-choline-deficient (MCD) diet feeding (chronic liver injury) paralleling increased macrophage infiltration. CCL7 expression was also inducible in hepatocytes, but not in hepatic stellate cells or in Kupffer cells, by LPS treatment or exposure to palmitate in vitro. Hepatocyte-specific deletion of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, resulted in a concomitant loss of CCL7 induction and macrophage infiltration in the murine livers. Of interest, BRG1-induced CCL7 transcription and macrophage migration was completely blocked by the antioxidant N-acetylcystine. Further analyses revealed that BRG1 interacted with activator protein 1 (AP-1) to regulate CCL7 transcription in hepatocytes in a redox-sensitive manner mediated in part by casein kinase 2 (CK2)-catalyzed phosphorylation of BRG1. Importantly, a positive correlation between BRG1/CCL7 expression and macrophage infiltration was identified in human liver biopsy specimens. In conclusion, our data unveil a novel role for BRG1 as a redox-sensitive activator of CCL7 transcription.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Chengping Li
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Yunfei Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China.
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China.
| |
Collapse
|
46
|
Kong M, Dong W, Xu H, Fan Z, Miao X, Guo Y, Li C, Ye Q, Wang Y, Xu Y. Choline Kinase Alpha Is a Novel Transcriptional Target of the Brg1 in Hepatocyte: Implication in Liver Regeneration. Front Cell Dev Biol 2021; 9:705302. [PMID: 34422825 PMCID: PMC8377418 DOI: 10.3389/fcell.2021.705302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Liver regeneration is a key compensatory process in response to liver injury serving to contain damages and to rescue liver functions. Hepatocytes, having temporarily exited the cell cycle after embryogenesis, resume proliferation to regenerate the injured liver parenchyma. In the present study we investigated the transcriptional regulation of choline kinase alpha (Chka) in hepatocytes in the context of liver regeneration. We report that Chka expression was significantly up-regulated in the regenerating livers in the partial hepatectomy (PHx) model and the acetaminophen (APAP) injection model. In addition, treatment with hepatocyte growth factor (HGF), a strong pro-proliferative cue, stimulated Chka expression in primary hepatocytes. Chka depletion attenuated HGF-induced proliferation of hepatocytes as evidenced by quantitative PCR and Western blotting measurements of pro-proliferative genes as well as EdU incorporation into replicating DNA. Of interest, deletion of Brahma-related gene 1 (Brg1), a chromatin remodeling protein, attenuated Chka induction in the regenerating livers in mice and in cultured hepatocytes. Further analysis revealed that Brg1 interacted with hypoxia-inducible factor 1 alpha (HIF-1α) to directly bind to the Chka promoter and activate Chka transcription. Finally, examination of human acute liver failure (ALF) specimens identified a positive correlation between Chka expression and Brg1 expression. In conclusion, our data suggest that Brg1-dependent trans-activation of Chka expression may contribute to liver regeneration.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yan Guo
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Chengping Li
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Qing Ye
- Division of Life Sciences and Medicine, Department of Pathology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Yutong Wang
- Department of Cell Biology, The Municipal Laboratory of Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Beijing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|