1
|
Li Y, Wang X, Bi Y, Zhang M, Xiong W, Hu X, Zhang Y, He F. SNX5-Rab11a protects against cardiac hypertrophy through regulating LRP6 membrane translocation. J Mol Cell Cardiol 2024; 194:46-58. [PMID: 38950816 DOI: 10.1016/j.yjmcc.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUNDS Pathological cardiac hypertrophy is considered one of the independent risk factors for heart failure, with a rather complex pathogenic machinery. Sorting nexins (SNXs), denoting a diverse family of cytoplasmic- and membrane-associated phosphoinositide-binding proteins, act as a pharmacological target against specific cardiovascular diseases including heart failure. Family member SNX5 was reported to play a pivotal role in a variety of biological processes. However, contribution of SNX5 to the development of cardiac hypertrophy, remains unclear. METHODS Mice underwent transverse aortic constriction (TAC) to induce cardiac hypertrophy and simulate pathological conditions. TAC model was validated using echocardiography and histological staining. Expression of SNX5 was assessed by western blotting. Then, SNX5 was delivered through intravenous administration of an adeno-associated virus serotype 9 carrying cTnT promoter (AAV9-cTnT-SNX5) to achieve SNX5 cardiac-specific overexpression. To assess the impact of SNX5, morphological analysis, echocardiography, histological staining, hypertrophic biomarkers, and cardiomyocyte contraction were evaluated. To unravel potential molecular events associated with SNX5, interactome analysis, fluorescence co-localization, and membrane protein profile were evaluated. RESULTS Our results revealed significant downregulated protein level of SNX5 in TAC-induced hypertrophic hearts in mice. Interestingly, cardiac-specific overexpression of SNX5 improved cardiac function, with enhanced left ventricular ejection fraction, fraction shortening, as well as reduced cardiac fibrosis. Mechanistically, SNX5 directly bound to Rab11a, increasing membrane accumulation of Rab11a (a Rab GTPase). Afterwards, this intricate molecular interaction upregulated the membrane content of low-density lipoprotein receptor-related protein 6 (LRP6), a key regulator against cardiac hypertrophy. Our comprehensive assessment of siRab11a expression in HL-1 cells revealed its role in antagonism of LRP6 membrane accumulation under SNX5 overexpression. CONCLUSIONS This study revealed that binding of SNX5 with LRP6 triggers their membrane translocation through Rab11a assisting, defending against cardiac remodeling and cardiac dysfunction under pressure overload. These findings provide new insights into the previously unrecognized role of SNX5 in the progression of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yutong Li
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiang Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yaguang Bi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Mengjiao Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Weidong Xiong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaolong Hu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Fei He
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China.
| |
Collapse
|
2
|
De Bartolo A, Pasqua T, Romeo N, Rago V, Perrotta I, Giordano F, Granieri MC, Marrone A, Mazza R, Cerra MC, Lefranc B, Leprince J, Anouar Y, Angelone T, Rocca C. The redox-active defensive Selenoprotein T as a novel stress sensor protein playing a key role in the pathophysiology of heart failure. J Transl Med 2024; 22:375. [PMID: 38643121 PMCID: PMC11032602 DOI: 10.1186/s12967-024-05192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024] Open
Abstract
Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.
Collapse
Affiliation(s)
- Anna De Bartolo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Naomi Romeo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Ida Perrotta
- Centre for Microscopy and Microanalysis (CM2), Department of Biology, E. and E. S. (DiBEST), University of Calabria, 87036, Rende, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Maria Concetta Granieri
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Alessandro Marrone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Rosa Mazza
- Organ and System Physiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Maria Carmela Cerra
- Organ and System Physiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Benjamin Lefranc
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000, Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183, Rouen, France
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000, Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183, Rouen, France
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000, Mont-Saint-Aignan, France
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (INRC), 40126, Bologna, Italy.
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
- National Institute of Cardiovascular Research (INRC), 40126, Bologna, Italy
| |
Collapse
|
3
|
Carrizales-Sepúlveda EF, Ordaz-Farías A, Vargas-Mendoza JA, Vera-Pineda R, Flores-Ramírez R. Initiation and Up-titration of Guideline-directed Medical Therapy for Patients with Heart Failure: Better, Faster, Stronger! Card Fail Rev 2024; 10:e03. [PMID: 38533397 PMCID: PMC10964286 DOI: 10.15420/cfr.2023.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/27/2023] [Indexed: 03/28/2024] Open
Abstract
Treatment for heart failure has experienced a major revolution in recent years, and current evidence shows that a combination of four medications (angiotensin receptor-neprilysin inhibitors + β-blockers + mineralocorticoid receptor antagonists + sodium.glucose cotransporter 2 inhibitors) offer the greatest benefit to our patients with significant reductions in cardiovascular mortality, heart failure hospitalisations and all-cause mortality. Unfortunately, despite their proven benefits, the implementation of these therapies is still low. Clinical inertia, and unfounded fear of using these drugs might contribute to this. Recently, evidence from randomised clinical trials has shown that intensive implementation of these therapies in patients with heart failure is safe and effective. In this review, we attempt to tackle some of these misconceptions/fears regarding medical therapy for heart failure and discuss the available evidence showing the best strategies for implementation of these therapies.
Collapse
Affiliation(s)
- Edgar Francisco Carrizales-Sepúlveda
- Cardiology Service, Hospital Universitario “Dr José E González”, Universidad Autónoma de Nuevo LeónMonterrey, Nuevo León, Mexico
- Heart Failure Unit, Cardiology Service, Hospital Universitario “Dr José E González”, Universidad Autónoma de Nuevo LeónMonterrey, Nuevo León, Mexico
| | - Alejandro Ordaz-Farías
- Cardiology Service, Hospital Universitario “Dr José E González”, Universidad Autónoma de Nuevo LeónMonterrey, Nuevo León, Mexico
- Echocardiography Laboratory, Cardiology Service, Hospital Universitario “Dr José E González”, Universidad Autónoma de Nuevo LeónMonterrey, Nuevo León, Mexico
| | - José Arturo Vargas-Mendoza
- Cardiology Service, Hospital Universitario “Dr José E González”, Universidad Autónoma de Nuevo LeónMonterrey, Nuevo León, Mexico
- Echocardiography Laboratory, Cardiology Service, Hospital Universitario “Dr José E González”, Universidad Autónoma de Nuevo LeónMonterrey, Nuevo León, Mexico
| | - Raymundo Vera-Pineda
- Cardiology Service, Hospital Universitario “Dr José E González”, Universidad Autónoma de Nuevo LeónMonterrey, Nuevo León, Mexico
| | - Ramiro Flores-Ramírez
- Cardiology Service, Hospital Universitario “Dr José E González”, Universidad Autónoma de Nuevo LeónMonterrey, Nuevo León, Mexico
- Heart Failure Unit, Cardiology Service, Hospital Universitario “Dr José E González”, Universidad Autónoma de Nuevo LeónMonterrey, Nuevo León, Mexico
- Echocardiography Laboratory, Cardiology Service, Hospital Universitario “Dr José E González”, Universidad Autónoma de Nuevo LeónMonterrey, Nuevo León, Mexico
| |
Collapse
|
4
|
Khan MS, Grayburn PA, Butler J. Cardiac reverse remodelling with vericiguat: Victory or no victory? Eur J Heart Fail 2023; 25:1022-1024. [PMID: 37191077 DOI: 10.1002/ejhf.2883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Affiliation(s)
| | | | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Department of Medicine, University of Mississippi, Jackson, MS, USA
| |
Collapse
|
5
|
Baloglu E. Hypoxic Stress-Dependent Regulation of Na,K-ATPase in Ischemic Heart Disease. Int J Mol Sci 2023; 24:ijms24097855. [PMID: 37175562 PMCID: PMC10177966 DOI: 10.3390/ijms24097855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
In cardiomyocytes, regular activity of the Na,K-ATPase (NKA) and its Na/K pump activity is essential for maintaining ion gradients, excitability, propagation of action potentials, electro-mechanical coupling, trans-membrane Na+ and Ca2+ gradients and, thus, contractility. The activity of NKA is impaired in ischemic heart disease and heart failure, which has been attributed to decreased expression of the NKA subunits. Decreased NKA activity leads to intracellular Na+ and Ca2+ overload, diastolic dysfunction and arrhythmias. One signal likely related to these events is hypoxia, where hypoxia-inducible factors (HIF) play a critical role in the adaptation of cells to low oxygen tension. HIF activity increases in ischemic heart, hypertension, heart failure and cardiac fibrosis; thus, it might contribute to the impaired function of NKA. This review will mainly focus on the regulation of NKA in ischemic heart disease in the context of stressed myocardium and the hypoxia-HIF axis and argue on possible consequences of treatment.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
6
|
Thum T, Lam CSP. Accelerating developments in heart failure. Cardiovasc Res 2023; 118:3401-3402. [PMID: 36583729 DOI: 10.1093/cvr/cvac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany.,REBIRTH Center for Translational Regenerative Therapies, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs Str. 1, 30625 Hannover, Germany
| | - Carolyn S P Lam
- National Heart Centre Singapore, 5 Hospital Dr, Singapore 169609.,Duke-National University of Singapore Medical School, 8 College Rd., Singapore 169857
| |
Collapse
|