1
|
Jiang C, Jin X, Li C, Wen L, Wang Y, Li X, Zhang Z, Tan R. Roles of IL-33 in the Pathogenesis of Cardiac Disorders. Exp Biol Med (Maywood) 2023; 248:2167-2174. [PMID: 37828753 PMCID: PMC10800126 DOI: 10.1177/15353702231198075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 cytokine family and is believed to play important roles in different diseases by binding to its specific receptor suppression of tumorigenicity 2 (ST2). In the heart, IL-33 is expressed in different cells including cardiomyocytes, fibroblasts, endothelium, and epithelium. Although many studies have been devoted to investigating the effects of IL-33 on heart diseases, its roles in myocardial injuries remain obscure, and thus further studies are mandatory to unravel the underlying molecular mechanisms. We highlighted the current knowledge of the molecular and cellular characteristics of IL-33 and then summarized its major roles in different myocardial injuries, mainly focusing on infection, heart transplantation, coronary atherosclerosis, myocardial infarction, and diabetic cardiomyopathy. This narrative review will summarize current understanding and insights regarding the implications of IL-33 in cardiac diseases and its diagnostic and therapeutic potential for cardiac disease management.
Collapse
Affiliation(s)
- Chunjie Jiang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Xuemei Jin
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji 133002, China
| | - Chunlei Li
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Luona Wen
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Yuqi Wang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Xiaojian Li
- Department of Burns, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220 China
| | - Zhi Zhang
- Department of Burns, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220 China
| | - Rongshao Tan
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| |
Collapse
|
2
|
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Heart failure, which contributes significantly to the incidence and prevalence of cardiovascular-related diseases, can be the result of a myriad of diverse aetiologies including viral infections, coronary heart disease and genetic abnormalities—just to name a few. Interestingly, almost every type of heart failure is characterized by the loss of cardiac myocytes, either via necrosis, apoptosis or autophagy. While the former for a long time mainly has been characterized by passive loss of cells and only the latter two have been regarded as active processes, a new view is now emerging, whereby all three forms of cell death are regarded as different types of programmed cell death which can be induced via different stimuli and pathways, most of which are probably not well understood (Kung et al., Circulation Research 108(8):1017–1036, 2011). Here, we focus on the sarcomeric Z-disc, Z-disc transcriptional coupling and its role in pro-survival pathways as well as in striated muscle specific forms of cell death (sarcomeroptosis) and mechanically induced apoptosis or mechanoptosis.
Collapse
Affiliation(s)
- Ralph Knöll
- Myocardial Genetics, British Heart Foundation-Centre of Research Excellence, National Heart & Lung Institute, Imperial College, Hammersmith Campus, London, UK.
| | | |
Collapse
|
3
|
Bortoluzzi A, Muskett FW, Waters LC, Addis PW, Rieck B, Munder T, Schleier S, Forti F, Ghisotti D, Carr MD, O'Hare HM. Mycobacterium tuberculosis RNA polymerase-binding protein A (RbpA) and its interactions with sigma factors. J Biol Chem 2013; 288:14438-14450. [PMID: 23548911 DOI: 10.1074/jbc.m113.459883] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RNA polymerase-binding protein A (RbpA), encoded by Rv2050, is specific to the actinomycetes, where it is highly conserved. In the pathogen Mycobacterium tuberculosis, RbpA is essential for growth and survival. RbpA binds to the β subunit of the RNA polymerase where it activates transcription by unknown mechanisms, and it may also influence the response of M. tuberculosis to the current frontline anti-tuberculosis drug rifampicin. Here we report the solution structure of RbpA and identify the principle sigma factor σ(A) and the stress-induced σ(B) as interaction partners. The protein has a central ordered domain with a conserved hydrophobic surface that may be a potential protein interaction site. The N and C termini are highly dynamic and are involved in the interaction with the sigma factors. RbpA forms a tight complex with the N-terminal domain of σ(B) via its N- and C-terminal regions. The interaction with sigma factors may explain how RbpA stabilizes sigma subunit binding to the core RNA polymerase and thereby promotes initiation complex formation. RbpA could therefore influence the competition between principal and alternative sigma factors and hence the transcription profile of the cell.
Collapse
Affiliation(s)
- Alessio Bortoluzzi
- Department of Biochemistry, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Frederick W Muskett
- Department of Biochemistry, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Lorna C Waters
- Department of Biochemistry, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Philip W Addis
- Department of Biochemistry, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Barbara Rieck
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Thomas Munder
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology e.V.-Hans Knöll Institute, D-07745 Jena, Germany
| | - Susanne Schleier
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology e.V.-Hans Knöll Institute, D-07745 Jena, Germany
| | - Francesca Forti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Daniela Ghisotti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mark D Carr
- Department of Biochemistry, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom.
| | - Helen M O'Hare
- Department of Biochemistry, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
4
|
The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011; 2011:569628. [PMID: 22028589 PMCID: PMC3199094 DOI: 10.1155/2011/569628] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/12/2011] [Indexed: 02/06/2023] Open
Abstract
The sarcomeric Z-disc defines the lateral borders of the sarcomere and has primarily been seen as a structure important for mechanical stability. This view has changed dramatically within the last one or two decades. A multitude of novel Z-disc proteins and their interacting partners have been identified, which has led to the identification of additional functions and which have now been assigned to this structure. This includes its importance for intracellular signalling, for mechanosensation and mechanotransduction in particular, an emerging importance for protein turnover and autophagy, as well as its molecular links to the t-tubular system and the sarcoplasmic reticulum. Moreover, the discovery of mutations in a wide variety of Z-disc proteins, which lead to perturbations of several of the above-mentioned systems, gives rise to a diverse group of diseases which can be termed Z-discopathies. This paper provides a brief overview of these novel aspects as well as points to future research directions.
Collapse
|
5
|
Regulation of IL-2 gene expression by Siva and FOXP3 in human T cells. BMC Immunol 2011; 12:54. [PMID: 21955384 PMCID: PMC3208582 DOI: 10.1186/1471-2172-12-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Severe autoinflammatory diseases are associated with mutations in the Foxp3 locus in both mice and humans. Foxp3 is required for the development, function, and maintenance of regulatory T cells (Tregs), a subset of CD4 cells that suppress T cell activation and inflammatory processes. Siva is a pro-apoptotic gene that is expressed across a range of tissues, including CD4 T cells. Siva interacts with three tumor necrosis factor receptor (TNFR) family members that are constitutively expressed on Treg cells: CD27, GITR, and OX40. RESULTS Here we report a biophysical interaction between FOXP3 and Siva. We mapped the interaction domains to Siva's C-terminus and to a central region of FOXP3. We showed that Siva repressed IL-2 induction by suppressing IL-2 promoter activity during T cell activation. Siva-1's repressive effect on IL-2 gene expression appears to be mediated by inhibition of NFkappaB, whereas FOXP3 repressed both NFkappaB and NFAT activity. CONCLUSIONS In summary, our data suggest that both FOXP3 and Siva function as negative regulators of IL-2 gene expression in Treg cells, via suppression of NFAT by FOXP3 and of NFkappaB by both FOXP3 and Siva. Our work contributes evidence for Siva's role as a T cell signalling mediator in addition to its known pro-apoptotic function. Though further investigations are needed, evidence for the biophysical interaction between FOXP3 and Siva invites the possibility that Siva may be important for proper Treg cell function.
Collapse
|
6
|
Knöll R, Linke WA, Zou P, Miocic S, Kostin S, Buyandelger B, Ku CH, Neef S, Bug M, Schäfer K, Knöll G, Felkin LE, Wessels J, Toischer K, Hagn F, Kessler H, Didié M, Quentin T, Maier LS, Teucher N, Unsöld B, Schmidt A, Birks EJ, Gunkel S, Lang P, Granzier H, Zimmermann WH, Field LJ, Faulkner G, Dobbelstein M, Barton PJR, Sattler M, Wilmanns M, Chien KR. Telethonin deficiency is associated with maladaptation to biomechanical stress in the mammalian heart. Circ Res 2011; 109:758-69. [PMID: 21799151 DOI: 10.1161/circresaha.111.245787] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Telethonin (also known as titin-cap or t-cap) is a 19-kDa Z-disk protein with a unique β-sheet structure, hypothesized to assemble in a palindromic way with the N-terminal portion of titin and to constitute a signalosome participating in the process of cardiomechanosensing. In addition, a variety of telethonin mutations are associated with the development of several different diseases; however, little is known about the underlying molecular mechanisms and telethonin's in vivo function. OBJECTIVE Here we aim to investigate the role of telethonin in vivo and to identify molecular mechanisms underlying disease as a result of its mutation. METHODS AND RESULTS By using a variety of different genetically altered animal models and biophysical experiments we show that contrary to previous views, telethonin is not an indispensable component of the titin-anchoring system, nor is deletion of the gene or cardiac specific overexpression associated with a spontaneous cardiac phenotype. Rather, additional titin-anchorage sites, such as actin-titin cross-links via α-actinin, are sufficient to maintain Z-disk stability despite the loss of telethonin. We demonstrate that a main novel function of telethonin is to modulate the turnover of the proapoptotic tumor suppressor p53 after biomechanical stress in the nuclear compartment, thus linking telethonin, a protein well known to be present at the Z-disk, directly to apoptosis ("mechanoptosis"). In addition, loss of telethonin mRNA and nuclear accumulation of this protein is associated with human heart failure, an effect that may contribute to enhanced rates of apoptosis found in these hearts. CONCLUSIONS Telethonin knockout mice do not reveal defective heart development or heart function under basal conditions, but develop heart failure following biomechanical stress, owing at least in part to apoptosis of cardiomyocytes, an effect that may also play a role in human heart failure.
Collapse
Affiliation(s)
- Ralph Knöll
- Imperial College, National Heart & Lung Institute, British Heart Foundation, Centre for Research Excellence, Myocardial Genetics, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bhatnagar S, Panguluri SK, Gupta SK, Dahiya S, Lundy RF, Kumar A. Tumor necrosis factor-α regulates distinct molecular pathways and gene networks in cultured skeletal muscle cells. PLoS One 2010; 5:e13262. [PMID: 20967264 PMCID: PMC2953497 DOI: 10.1371/journal.pone.0013262] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/14/2010] [Indexed: 11/18/2022] Open
Abstract
Background Skeletal muscle wasting is a debilitating consequence of large number of disease states and conditions. Tumor necrosis factor-α (TNF-α) is one of the most important muscle-wasting cytokine, elevated levels of which cause significant muscular abnormalities. However, the underpinning molecular mechanisms by which TNF-α causes skeletal muscle wasting are less well-understood. Methodology/Principal Findings We have used microarray, quantitative real-time PCR (QRT-PCR), Western blot, and bioinformatics tools to study the effects of TNF-α on various molecular pathways and gene networks in C2C12 cells (a mouse myoblastic cell line). Microarray analyses of C2C12 myotubes treated with TNF-α (10 ng/ml) for 18h showed differential expression of a number of genes involved in distinct molecular pathways. The genes involved in nuclear factor-kappa B (NF-kappaB) signaling, 26s proteasome pathway, Notch1 signaling, and chemokine networks are the most important ones affected by TNF-α. The expression of some of the genes in microarray dataset showed good correlation in independent QRT-PCR and Western blot assays. Analysis of TNF-treated myotubes showed that TNF-α augments the activity of both canonical and alternative NF-κB signaling pathways in myotubes. Bioinformatics analyses of microarray dataset revealed that TNF-α affects the activity of several important pathways including those involved in oxidative stress, hepatic fibrosis, mitochondrial dysfunction, cholesterol biosynthesis, and TGF-β signaling. Furthermore, TNF-α was found to affect the gene networks related to drug metabolism, cell cycle, cancer, neurological disease, organismal injury, and abnormalities in myotubes. Conclusions TNF-α regulates the expression of multiple genes involved in various toxic pathways which may be responsible for TNF-induced muscle loss in catabolic conditions. Our study suggests that TNF-α activates both canonical and alternative NF-κB signaling pathways in a time-dependent manner in skeletal muscle cells. The study provides novel insight into the mechanisms of action of TNF-α in skeletal muscle cells.
Collapse
Affiliation(s)
- Shephali Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Siva K. Panguluri
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Sanjay K. Gupta
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Saurabh Dahiya
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Robert F. Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
8
|
Shimoda HK, Shide K, Kameda T, Matsunaga T, Shimoda K. Tyrosine kinase 2 interacts with the proapoptotic protein Siva-1 and augments its apoptotic functions. Biochem Biophys Res Commun 2010; 400:252-7. [DOI: 10.1016/j.bbrc.2010.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/15/2010] [Indexed: 01/16/2023]
|