1
|
Sun A, Yang H, Li T, Luo J, Zhou L, Chen R, Han L, Lin Y. Molecular mechanisms, targets and clinical potential of berberine in regulating metabolism: a review focussing on databases and molecular docking studies. Front Pharmacol 2024; 15:1368950. [PMID: 38957396 PMCID: PMC11217548 DOI: 10.3389/fphar.2024.1368950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background: Metabolic imbalance is the common basis of many diseases. As natural isoquinoline alkaloid, berberine (BBR) has shown great promise in regulating glucose and lipids metabolism and treating metabolic disorders. However, the related mechanism still lacks systematic research. Aim: To discuss the role of BBR in the whole body's systemic metabolic regulation and further explore its therapeutic potential and targets. Method: Based on animal and cell experiments, the mechanism of BBR regulating systemic metabolic processes is reviewed. Potential metabolism-related targets were summarized using Therapeutic Target Database (TTD), DrugBank, GeneCards, and cutting-edge literature. Molecular modeling was applied to explore BBR binding to the potential targets. Results: BBR regulates the whole-body metabolic response including digestive, circulatory, immune, endocrine, and motor systems through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), sirtuin (SIRT)1/forkhead box O (FOXO)1/sterol regulatory element-binding protein (SREBP)2, nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1, and other signaling pathways. Through these reactions, BBR exerts hypoglycemic, lipid-regulating, anti-inflammatory, anti-oxidation, and immune regulation. Molecular docking results showed that BBR could regulate metabolism targeting FOXO3, Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (Gpx) 4 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). Evaluating the target clinical effects, we found that BBR has the therapeutic potential of anti-aging, anti-cancer, relieving kidney disease, regulating the nervous system, and alleviating other chronic diseases. Conclusion: This review elucidates the interaction between potential targets and small molecular metabolites by exploring the mechanism of BBR regulating metabolism. That will help pharmacologists to identify new promising metabolites interacting with these targets.
Collapse
Affiliation(s)
- Aru Sun
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinli Luo
- China Traditional Chinese Medicine Holdings Co. Limited, Guangdong e-fong Pharmaceutical Co., Ltd., Foshan, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Chen
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqun Lin
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
3
|
Yang WL, Zhang CY, Ji WY, Zhao LL, Yang FY, Zhang L, Cao X. Berberine Metabolites Stimulate GLP-1 Secretion by Alleviating Oxidative Stress and Mitochondrial Dysfunction. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:253-274. [PMID: 38351702 DOI: 10.1142/s0192415x24500113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Berberine (BBR) is a principal component of Rhizoma coptidis known for its therapeutic potential in treating diseases such as type 2 diabetes mellitus (T2DM) and obesity. Despite the trace levels of BBR in plasma, it's believed that its metabolites play a pivotal role in its biological activities. While BBR is recognized to promote GLP-1 production in intestinal L cells, the cytoprotective effects of its metabolites on these cells are yet to be explored. The present study investigates the effects of BBR metabolites on GLP-1 secretion and the underlying mechanisms. Our results revealed that, out of six BBR metabolites, berberrubine (BBB) and palmatine (PMT) significantly increased the production and glucose-stimulated secretion of GLP-1 in GLUTag cells. Notably, both BBB and PMT could facilitate GLP-1 and insulin secretion and enhance glucose tolerance in standard mice. Moreover, a single dose of PMT could markedly increase plasma GLP-1 and improve glucose tolerance in mice with obesity induced by a high-fat diet. In palmitic acid or TNF[Formula: see text]-treated GLUTag cells, BBB and PMT alleviated cell death, oxidative stress, and mitochondrial dysfunction. Furthermore, they could effectively reverse inflammation-induced inhibition of the Akt signaling pathway. In general, these insights suggest that the beneficial effects of orally administered BBR on GLP-1 secretion are largely attributed to the pharmacological activity of BBB and PMT by their above cytoprotective effects on L cells, which provide important ideas for stimulating GLP-1 secretion and the treatment of T2DM.
Collapse
Affiliation(s)
- Wei-Li Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Chen-Yang Zhang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Wen-Yi Ji
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Li-Li Zhao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Fang-Yuan Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Lin Zhang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| |
Collapse
|
4
|
Askari VR, Khosravi K, Baradaran Rahimi V, Garzoli S. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects. Pharmaceuticals (Basel) 2023; 17:7. [PMID: 38275993 PMCID: PMC10819502 DOI: 10.3390/ph17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid that can be extracted from herbs such as Coptis, Phellodendron, and Berberis. BBR has been widely used as a folk medicine to treat various disorders. It is a multi-target drug with multiple mechanisms. Studies have shown that it has antioxidant and anti-inflammatory properties and can also adjust intestinal microbial flora. This review focused on the promising antidiabetic effects of BBR in several cellular, animal, and clinical studies. Based on previous research, BBR significantly reduced levels of fasting blood glucose, hemoglobin A1C, inflammatory cytokines, and oxidative stress markers. Furthermore, BBR stimulated insulin secretion and improved insulin resistance through different pathways, including up-regulation of protein expression of proliferator-activated receptor (PPAR)-γ, glucose transporter (GLUT) 4, PI3K/AKT, and AMP-activated protein kinase (AMPK) activation. Interestingly, it was demonstrated that BBR has protective effects against diabetes complications, such as diabetic-induced hepatic damage, cardiovascular disorders, nephropathy, and neuropathy. Furthermore, multiple clinical trial studies have emphasized the ameliorative effects of BBR in type 2 diabetic patients.
Collapse
Affiliation(s)
- Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Kimia Khosravi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
5
|
Rahemi M, Mohtadi S, Rajabi Vardanjani H, Khodayar MJ. The role of l -arginine/NO/cGMP/K ATP channel pathway in the local antinociceptive effect of berberine in the rat formalin test. Behav Pharmacol 2023; 34:449-456. [PMID: 36939560 DOI: 10.1097/fbp.0000000000000721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Berberine is an isoquinoline alkaloid naturally produced by several types of plants. Berberine has extensive pharmacological effects, such as anti-diabetic, anti-inflammatory, and antioxidant effects. In the current study, we assess the antinociceptive effects of berberine and its association with the l -arginine ( l -Arg)/NO/cGMP/K ATP channel pathway via intraplantar administration in rats. To examine the antinociceptive properties of berberine, the formalin test was conducted. The number of rat paw flinches was counted for an h. l -Arg (precursor of nitric oxide, 3-30 μ g/paw), l -NAME (NO synthase inhibitor, 10 and 100 μ g/paw), methylene blue (guanylyl cyclase inhibitor, 100 and 200 μ g/paw), and glibenclamide (ATP-sensitive potassium channel blocker, 10 and 30 μ g/paw) were locally injected, respectively, into the right hind paws of rats as a pre-treatment before berberine injection to understand how the l -Arg/NO/cGMP/K ATP pathway plays a role in the antinociceptive effect of berberine. The ipsilateral injection of berberine into the right paw (0.1-10 0 μ g/paw) showed a dose-dependent antinociceptive effect in both the first and second phases of the formalin test, almost similar to morphine (25 μ g/paw). Intraplantar injection of l -Arg (30 µg/paw) increased the antinociceptive effect of berberine in the second phase. In addition, injection of l -NAME, methylene blue, and glibenclamide caused a reduction in the antinociceptive effect of berberine throughout the second phase in a dose-dependent manner. However, the antinociceptive effects of berberine in the first phase of the rat formalin test were not affected by this pathway. As a novel local antinociceptive agent, berberine can exert a peripheral antinociceptive effect via the l -Arg/NO/cGMP/K ATP channel pathway.
Collapse
Affiliation(s)
| | | | | | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
7
|
Islam MR, Dhar PS, Akash S, Syed SH, Gupta JK, Gandla K, Akter M, Rauf A, Hemeg HA, Anwar Y, Aljohny BO, Wilairatana P. Bioactive molecules from terrestrial and seafood resources in hypertension treatment: focus on molecular mechanisms and targeted therapies. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:45. [PMID: 37902881 PMCID: PMC10616036 DOI: 10.1007/s13659-023-00411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Hypertension (HTN), a complex cardiovascular disease (CVD), significantly impacts global health, prompting a growing interest in complementary and alternative therapeutic approaches. This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN, with an emphasis on the molecular mechanisms of action found in substances found in plants, herbs, and seafood. Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies. Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure (BP)-regulating effects of these natural substances better. Polyphenols, flavonoids, alkaloids, and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone, reducing oxidative stress (OS), reducing inflammation, and improving endothelial function. The article explains the vasodilatory, diuretic, and renin-angiotensin-aldosterone system (RAAS) modifying properties of vital plants such as garlic and olive leaf. Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs, providing diverse strategies to combat HTN due to their biological actions. The review also discusses the functions of calcium channel blockers originating from natural sources, angiotensin-converting enzyme (ACE) inhibitors, and nitric oxide (NO) donors. Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN. Omega-3 fatty acids, peptides, and minerals obtained from seafood sources have anti-inflammatory, vasodilatory, and antioxidant properties that improve vascular health and control BP. Overall, we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Sabeena Hussain Syed
- School of Pharmacy, Vishwakarma University, Survey No 2, 3,4, Kondhwa Main Rd, Laxmi Nagar, Betal Nagar, Kondhwa, Pune, Maharashtra, 411048, India
| | | | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to Be University), Himayath Nagar, Hyderabad, Telangana, 500075, India
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan.
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Bassam Oudh Aljohny
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
8
|
Zhu Y, Li J, Zhang P, Peng B, Li C, Ming Y, Liu H. Berberine protects hepatocyte from hypoxia/reoxygenation-induced injury through inhibiting circDNTTIP2. PeerJ 2023; 11:e16080. [PMID: 37780378 PMCID: PMC10538280 DOI: 10.7717/peerj.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background During hepatic ischemia-reperfusion injury, the excessive release of inflammatory cytokines can activate the intracellular signal transduction cascade to induce hepatocyte injury. Apoptosis is an important way of cell death after I/R injury. Berberine, a common quaternary ammonium alkaloid, has anti-inflammatory, anti-oxidative stress, and anti-apoptotic effects. An increasing number of studies have revealed the importance of non-coding RNAs, including microRNA, long non-coding RNAs and circular RNAs (circRNAs), as regulators of the effects of berberine. Purpose In this study, we investigated the mechanism of berberine against liver ischemia-reperfusion injury in vitro. Study Design and Methods In this study, hypoxia-reoxygenation (H/R)-treated L02 cells were pretreated with berberine to study the role and mechanism of berberine in resisting hepatic ischemia-reperfusion injury. Results The results show that berberine pre-treatment increased the cell viability of H/R-challenged cells, reduced H/R-induced apoptosis and ROS production, reversed H/R-increased on IL-6, IL-1β, TNF-α, and H/R-decreased IL-10 expression. Mechanically, berberine protect hepatocyte from H/R injury, at least partially, through circDNTTIP2. In addition, circDNTTIP2 can bind to the TATA box of caspase3 promoter, thereby promoting caspase 3-related cell apoptosis and the release of inflammatory cytokines. Conclusion This study found that berberine has a protective effect on H/R-induced hepatocyte damage by inhibiting a novel circRNA, circDNTTIP2. This study provides potential treatment strategies and treatment targets for liver ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yi Zhu
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Junhui Li
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Pengpeng Zhang
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Bo Peng
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Cai Li
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yingzi Ming
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Hong Liu
- The Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| |
Collapse
|
9
|
Kang L, Yi J, Lau CW, He L, Chen Q, Xu S, Li J, Xia Y, Zhang Y, Huang Y, Wang L. AMPK-Dependent YAP Inhibition Mediates the Protective Effect of Metformin against Obesity-Associated Endothelial Dysfunction and Inflammation. Antioxidants (Basel) 2023; 12:1681. [PMID: 37759984 PMCID: PMC10525300 DOI: 10.3390/antiox12091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperglycemia is a crucial risk factor for cardiovascular diseases. Chronic inflammation is a central characteristic of obesity, leading to many of its complications. Recent studies have shown that high glucose activates Yes-associated protein 1 (YAP) by suppressing AMPK activity in breast cancer cells. Metformin is a commonly prescribed anti-diabetic drug best known for its AMPK-activating effect. However, the role of YAP in the vasoprotective effect of metformin in diabetic endothelial cell dysfunction is still unknown. The present study aimed to investigate whether YAP activation plays a role in obesity-associated endothelial dysfunction and inflammation and examine whether the vasoprotective effect of metformin is related to YAP inhibition. Reanalysis of the clinical sequencing data revealed YAP signaling, and the YAP target genes CTGF and CYR61 were upregulated in aortic endothelial cells and retinal fibrovascular membranes from diabetic patients. YAP overexpression impaired endothelium-dependent relaxations (EDRs) in isolated mouse aortas and increased the expression of YAP target genes and inflammatory markers in human umbilical vein endothelial cells (HUVECs). High glucose-activated YAP in HUVECs and aortas was accompanied by increased production of oxygen-reactive species. AMPK inhibition was found to induce YAP activation, resulting in increased JNK activity. Metformin activated AMPK and promoted YAP phosphorylation, ultimately improving EDRs and suppressing the JNK activity. Targeting the AMPK-YAP-JNK axis could become a therapeutic strategy for alleviating vascular dysfunction in obesity and diabetes.
Collapse
Affiliation(s)
- Lijing Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (C.-W.L.); (Y.X.)
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong 999077, China
| | - Juanjuan Yi
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong 999077, China; (J.Y.); (J.L.)
| | - Chi-Wai Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (C.-W.L.); (Y.X.)
| | - Lei He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230027, China;
| | - Jun Li
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong 999077, China; (J.Y.); (J.L.)
| | - Yin Xia
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (C.-W.L.); (Y.X.)
| | - Yuanting Zhang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong 999077, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
| |
Collapse
|
10
|
Bellavite P, Fazio S, Affuso F. A Descriptive Review of the Action Mechanisms of Berberine, Quercetin and Silymarin on Insulin Resistance/Hyperinsulinemia and Cardiovascular Prevention. Molecules 2023; 28:4491. [PMID: 37298967 PMCID: PMC10254920 DOI: 10.3390/molecules28114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Insulin resistance (IR) and the associated hyperinsulinemia are early pathophysiological changes which, if not well treated, can lead to type 2 diabetes, endothelial dysfunction and cardiovascular disease. While diabetes care is fairly well standardized, the prevention and treatment of IR lacks a single pharmaceutical approach and many lifestyle and dietary interventions have been proposed, including a wide range of food supplements. Among the most interesting and well-known natural remedies, alkaloid berberine and the flavonol quercetin have particular relevance in the literature, while silymarin-the active principle of the Silybum marianum thistle-was traditionally used for lipid metabolism disorders and to sustain liver function. This review describes the major defects of insulin signaling leading to IR and the main properties of the three mentioned natural substances, their molecular targets and synergistic action mechanisms. The actions of berberine, quercetin and silymarin are partially superimposable as remedies against reactive oxygen intermediates generated by a high-lipid diet and by NADPH oxidase, which is triggered by phagocyte activation. Furthermore, these compounds inhibit the secretion of a battery of pro-inflammatory cytokines, modulate intestinal microbiota and are especially able to control the various disorders of the insulin receptor and post-receptor signaling systems. Although most of the evidence on the effects of berberine, quercetin and silymarin in modulating insulin resistance and preventing cardiovascular disease derive from experimental studies on animals, the amount of pre-clinical knowledge strongly suggests the need to investigate the therapeutic potential of these substances in human pathology.
Collapse
Affiliation(s)
- Paolo Bellavite
- Pathophysiology Chair, Homeopathic Medical School of Verona, 37121 Verona, Italy
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, 80138 Naples, Italy;
| | | |
Collapse
|
11
|
Wang M, Geng X, Li K, Wang Y, Duan X, Hou C, Zhao L, Zhou H, Zhao D. Berberine ameliorates mesenteric vascular dysfunction by modulating perivascular adipose tissue in diet-induced obese in rats. BMC Complement Med Ther 2022; 22:198. [PMID: 35879716 PMCID: PMC9310483 DOI: 10.1186/s12906-022-03667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Berberine (BBR) has been found to have antiobesity effects, and obesity can lead to adipose tissue degeneration. As a special adipose tissue, perivascular adipose tissue (PVAT) is closely related to vascular function and affects vasoconstriction and relaxation. What happens to PVAT in the early stages of diet-induced obesity and how BBR affects vascular function is the focus of our experimental study.
Methods
Sprague–Dawley rats were fed a high-fat diet (fat 34% kcal) for 4 weeks to simulate early obesity. Obese rats were treated with BBR (200 mg/kg) or metformin (MET, 100 mg/kg) by gavage for 2 weeks. The mesenteric arterioles were studied by atomic force microscopy (AFM). The force vs. time curves were observed and analysed to indicate vascular function. Nitric oxide (NO) and noradrenaline (NA) release was quantified using an organ bath with fluorescence assays and ELISA, respectively. Network pharmacology was used to analyse the overlapping targets related to BBR and obesity-related diseases, and the expression of NOS in mesenteric PVAT was further analysed with immunohistochemistry and real-time PCR. The serum inflammatory factor levels were tested.
Results
BBR significantly reduced the levels of blood glucose, blood lipids and inflammatory factors in serum. It also effectively improved abnormal mesenteric vasoconstriction and relaxation in obese rats. There was no significant change in mesenteric vascular structure, but NO production and eNOS expression were significantly increased in mesenteric PVAT (P < 0.01), and NA was decreased (P < 0.05) in obese rats. All these changes in the mesenteric arterioles and PVAT of obese rats were reversed by treatment with BBR and MET.
Conclusions
In diet-induced obesity in rats, the function of vasoconstriction and relaxation in mesenteric arterioles is altered, NO is increased, and NA is decreased in mesenteric PVAT. All these changes were reversed by BBR, suggesting a novel effect of BBR in ameliorating mesenteric vascular dysfunction by regulating PVAT.
Collapse
|
12
|
Abdul Khaliq H, Alhouayek M, Quetin-Leclercq J, Muccioli GG. 5'AMP-activated protein kinase: an emerging target of phytochemicals to treat chronic inflammatory diseases. Crit Rev Food Sci Nutr 2022; 64:4763-4788. [PMID: 36450301 DOI: 10.1080/10408398.2022.2145264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Inflammation is a defensive response of the organism to traumatic, infectious, toxic, ischemic, and autoimmune injury. Inflammatory mediators are released to effectively eliminate the inflammatory trigger and restore homeostasis. However, failure of these processes can lead to chronic inflammatory conditions and diseases such as inflammatory bowel diseases, rheumatoid arthritis, inflammatory lung diseases, atherosclerosis, and neurodegenerative diseases. The cure of chronic inflammatory diseases remains challenging as current therapies have various limitations, such as pronounced side effects, progressive loss of efficacy, and high cost especially for biologics. In this context, phytochemicals (such as alkaloids, flavonoids, lignans, phenolic acids, saponins, terpenoids, and other classes) are considered as an interesting alternative approach. Among the numerous targets of phytochemicals, AMP-activated protein kinase (AMPK) can be considered as an interesting target in the context of inflammation. AMPK regulates inflammatory response by inhibiting inflammatory pathways (NF-κB, JAK/STAT, and MAPK) and regulating several other processes of the inflammatory response (oxidative stress, autophagy, and apoptosis). In this review, we summarize and discuss the studies focusing on phytochemicals that showed beneficial effects by blocking different inflammatory pathways implicating AMPK activation in chronic inflammatory disease models. We also highlight elements to consider when investigating AMPK in the context of phytochemicals.
Collapse
Affiliation(s)
- Hafiz Abdul Khaliq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
13
|
Diao J, Chen X, Mou P, Ma X, Wei R. Potential Therapeutic Activity of Berberine in Thyroid-Associated Ophthalmopathy: Inhibitory Effects on Tissue Remodeling in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 36094643 PMCID: PMC9482321 DOI: 10.1167/iovs.63.10.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Berberine (BBR), an alkaloid produced by a traditional Chinese plant, was recently attributed multiple effects on lipometabolism, inflammation, and fibrosis. Thyroid-associated ophthalmopathy (TAO) is highly associated with these pathologic changes. Thus, we aimed to examine the potential therapeutic effect of BBR in an in vitro model of TAO. Methods Orbital fibroblasts (OFs) obtained from control donors (n = 6) or patients with TAO (n = 6) were cultured. The CCK-8 assay was conducted for assessing the optimal concentration range. Oil Red O staining, Western blotting, and quantitative RT-PCR (qRT-PCR) were conducted to assess adipogenesis in OFs. RNA sequencing (RNA-seq) was used to screen the key pathways of the antiadipogenic effect mediated by BBR. Along with incremental concentrations of BBR, IL-1β–induced expression of proinflammatory molecules was determined by ELISA and qRT-PCR. In addition, TGF-β–induced hyaluronan (HA) production and fibrosis were evaluated by ELISA, qRT-PCR, and Western blotting. Results TAO-OFs, but not control fibroblasts (CON-OFs), were readily differentiated into adipocytes with the commercial medium. Intracellular lipid accumulation was dose-dependently decreased by BBR, and adipogenic markers were also downregulated. Moreover, the PPARγ and AMPK pathways were screened out by RNA-seq and their downstream effectors were suppressed by BBR. Besides, BBR attenuated IL-1β–induced expression of proinflammatory molecules in both TAO-OFs and CON-OFs by blocking nuclear factor–κB signaling. BBR's inhibitory effect on TGF-β–mediated tissue remodeling was also confirmed in OFs. Conclusions These findings demonstrate BBR has outstanding capabilities of controlling adipogenesis, inflammation, HA production, and fibrosis in OFs, highlighting its potential therapeutic role in TAO management.
Collapse
Affiliation(s)
- Jiale Diao
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| | - Xinxin Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| | - Pei Mou
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| | - Xiaoye Ma
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| | - Ruili Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| |
Collapse
|
14
|
Wang M, Zou J, Wang J, Liu M, Liu K, Wang N, Wang K. Aberrant HSF1 signaling activation underlies metformin amelioration of myocardial infarction in mice. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:312-328. [PMID: 35950214 PMCID: PMC9352811 DOI: 10.1016/j.omtn.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
Myocardial infarction (MI) is a cardiovascular disease with high morbidity and mortality. Clinically, rehabilitation after massive MI often has a poor prognosis. Therefore, it is necessary to explore the therapeutic methods of myocardial protection after MI. As a first-line treatment for type 2 diabetes, metformin has been found to have a certain protective effect on myocardial tissue. However, its pharmacological mechanism remains unclear. In this study, we investigated key factors that reduced MI with metformin. Through in vivo, in vitro, and in silico analyses, we identified HSF1 as a key target for metformin. HSF1 could up-regulate the transcriptional level of AMPKα2 through transcriptional activation and stimulate the activity of the downstream AMPK/mTOR signaling pathway. Metformin stimulated cardiomyocytes to form stress granules (SGs), and knockdown of HSF1 reversed this process. Furthermore, HSF1 exhibited better in vitro affinity for metformin than AMPK, suggesting that HSF1 may be a more sensitive target for metformin.
Collapse
|
15
|
Tian W, Hao H, Chu M, Gong J, Li W, Fang Y, Zhang J, Zhang C, Huang Y, Pei F, Duan L. Berberine Suppresses Lung Metastasis of Cancer via Inhibiting Endothelial Transforming Growth Factor Beta Receptor 1. Front Pharmacol 2022; 13:917827. [PMID: 35784732 PMCID: PMC9243563 DOI: 10.3389/fphar.2022.917827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effects of berberine (BBR) on pancreatic cancer (PC) lung metastasis and explored the underlying mechanisms, using a BALB/C-nu/nu nude mouse model injected with PC cells (AsPC-1). Intragastric administration of BBR dose-dependently improves survival of mice intravenously injected with AsPC-1 cells, and reduces lung metastasis. Especially, BBR significantly reduces lung infiltration of circulating tumor cells (CTCs) 24 h after AsPC-1 cells injection. In vitro, tumor cells (TCs) trigger endothelial barrier disruption and promote trans-endothelial migration of CFSE-labeled TCs. BBR treatment effectively ameliorates TC-induced endothelial disruption, an effect that is diminished by inhibiting transforming growth factor-β receptor 1 (TGFBR1). Blocking TGFBR1 blunts the anti-metastatic effect of BBR in vivo. Mechanistically, BBR binds to the intercellular portion of TGFBR1, suppresses its enzyme activities, and protects endothelial barrier disruption by TCs which express higher levels of TGF-β1. Hence, BBR might be a promising drug for reducing PC lung metastasis in clinical practice.
Collapse
Affiliation(s)
- Wenjia Tian
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Department of Gastroenterology, Peking University International Hospital, Beijing, China
| | - Huifeng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuan Fang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Cunzheng Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yonghui Huang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Fei Pei
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- *Correspondence: Liping Duan,
| |
Collapse
|
16
|
Zhang H, Wu X, Tao Y, Lu G. Berberine attenuates sepsis‑induced cardiac dysfunction by upregulating the Akt/eNOS pathway in mice. Exp Ther Med 2022; 23:371. [PMID: 35495613 PMCID: PMC9019719 DOI: 10.3892/etm.2022.11298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to investigate the cardioprotective role of berberine in sepsis-induced cardiac dysfunction and consider the underlying mechanisms. C57BL/6J mice were randomized into four groups, namely, Control, lipopolysaccharide (LPS), LPS + berberine and LPS + Nω-nitro-L-arginine methyl ester (L-NAME) + berberine. A single dose (10 mg/kg body weight) of LPS was intraperitoneally administered to mice to induce cardiac dysfunction, whereas the Control group was administered with an equivalent volume of saline. In the LPS + berberine and LPS + L-NAME + berberine group, berberine (10 mg/kg body weight) dissolved in hot water was intraperitoneally administered 30 min after the LPS treatment. In the LPS + L-NAME + berberine group, L-NAME (100 mg/kg body weight) dissolved in saline was intraperitoneally administered 30 min before the LPS treatment. Then, ~6 h after the LPS treatment, a significant decrease was observed in the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS). Meanwhile, the plasma myocardial injury markers, inflammatory factors and oxidative stress levels were significantly increased in the LPS group compared with the Control group. The administration of berberine improved the ventricular function and decreased the plasma myocardial injury markers, inflammatory factors and oxidative stress levels. In addition, it increased the heart total nitric oxide synthase (NOS) activity and upregulated the protein expressions of p-Akt and phosphorylated endothelial (e)NOS, which indicated that the Akt/eNOS pathway was activated by berberine. However, the cardioprotective effects of berberine were counteracted by L-NAME, an NOS inhibitor, which inhibited the eNOS activity. In conclusion, berberine attenuated sepsis-induced cardiac dysfunction by upregulating the Akt/eNOS pathway in mice.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Emergency, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiaofei Wu
- Department of Emergency, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yanyan Tao
- Department of Emergency, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Guoyu Lu
- Department of Emergency, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
17
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Troiano JA, Potje SR, Graton ME, Gonçalves ET, Tostes RC, Antoniali C. Caveolin-1/Endothelial Nitric Oxide Synthase Interaction Is Reduced in Arteries From Pregnant Spontaneously Hypertensive Rats. Front Physiol 2021; 12:760237. [PMID: 34858211 PMCID: PMC8631196 DOI: 10.3389/fphys.2021.760237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
We have investigated the role caveolae/caveolin-1 (Cav-1) plays in endothelial nitric oxide synthase (eNOS) activation and how it impacts pregnancy-induced decreased vascular reactivity in normotensive (Wistar rats) and spontaneously hypertensive rats (SHR). Wistar rats and SHR were divided into non-pregnant (NP) and pregnant (P). Nitrite levels were assessed by the Griess method in the aorta and mesenteric vascular bed. In functional studies, arteries were incubated with methyl-β-cyclodextrin (dextrin, 10mmol/L), which disrupts caveolae by depleting cholesterol, and concentration-response curves to phenylephrine (PE) and acetylcholine (ACh) were constructed. Electronic microscopy was used to determine endothelial caveolae density in the aorta and resistance mesenteric artery in the presence of vehicle or dextrin (10mmol/L). Western blot was performed to evaluate Cav-1, p-Cav-1, calmodulin (CaM), and heat shock protein 90 (Hsp90) expression. Cav-1/eNOS interaction in the aorta and mesenteric vascular bed was assessed by co-immunoprecipitation. Nitric oxide (NO) generation was greater in arteries from P groups compared to NP groups. Dextrin did not change vascular responses in the aorta from P groups or the number of caveolae in P groups compared to NP groups. Compared to NP Wistar rats, NP SHR showed smaller number of caveolae and reduced Cav-1 expression. Pregnancy did not alter Cav-1, CaM, or Hsp90 expression in the aorta or mesenteric vascular bed from Wistar rats or SHR. These results suggest that pregnancy does not alter expression of the main eNOS regulatory proteins, but it decreases Cav-1/eNOS interaction. Reduced Cav-1/eNOS interaction in the aorta and mesenteric vascular bed seems to be an important mechanism to increase eNOS activity and nitric oxide production in pregnant normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Jéssica A Troiano
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Simone R Potje
- Department of Physics and Chemistry, Ribeirão Preto, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil.,Department of Biological Sciences, Minas Gerais State University (UEMG), Passos, Brazil
| | - Murilo E Graton
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Emily T Gonçalves
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Cristina Antoniali
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
19
|
Ma CY, Shi XY, Wu YR, Zhang Y, Yao YH, Qu HL, Zhang W, Guo YL, Xu RX, Li JJ. Berberine attenuates atherosclerotic lesions and hepatic steatosis in ApoE -/- mice by down-regulating PCSK9 via ERK1/2 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1517. [PMID: 34790723 PMCID: PMC8576642 DOI: 10.21037/atm-20-8106] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/28/2021] [Indexed: 01/07/2023]
Abstract
Background It has been demonstrated that berberine (BBR), a kind of alkaloid derived from Chinese herbal medicine, has multiple pharmacological effects on human’s diseases including anti-atherosclerosis action. However, although the previous studies showed that the beneficial impact of BBR on atherosclerosis might be associated with proprotein convertase subtilisin/kexin type 9 (PCSK9), the exact underlying mechanism are not fully determined. The present study aimed to investigate potential mechanisms of anti-atherosclerosis by BBR using ApoE-/- mice. Methods The eight-week mice were divided into five groups: group 1 (wild type C57BL/6J mice with normal diet), group 2 (ApoE-/- mice with normal diet), group 3 [ApoE-/- mice with high-fat diet (HFD)], group 4 (ApoE-/- mice with HFD, and treatment with low dose BBR of 50 mg/kg/d), and group 5 (ApoE-/- mice with HFD, and treatment with high dose BBR of 100 mg/kg/d). After a 16-week treatment, the blood sample, aorta and liver were collected for lipid analysis, hematoxylin-eosin (HE) or oil red O staining, and Western blotting respectively. Besides, HepG2 Cells were cultured and treated with different concentrations of BBR (0, 5, 25 and 50 µg/mL) for 24 hours. Subsequently, cells were collected for real-time PCR or western blotting assays. Finally, the expression levels of PCSK9, LDL receptor (LDLR), ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor class B type I (SR-BI) were examined. Results Fifty mg/kg/d and 100 mg/kg/d of BBR decreased total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) cholesterol (LDL-C), and increased high-density lipoprotein cholesterol (HDL-C) level. Moreover, BBR reduced aorta atherosclerotic plaque, and ameliorated lipid deposition in ApoE-/- mice fed with HFD. Finally, in vitro study showed that BBR promoted intracellular cholesterol efflux, up-regulated LDLR and down-regulated PCSK9 expression via the ERK1/2 pathway in cultured HepG2 cells. Conclusions Data indicated that BBR significantly attenuated lipid disorder, reduced aortic plaque formation, and alleviated hepatic lipid accumulation in ApoE-/- mice fed with HFD, which was associated with down-regulation of PCSK9 through ERK1/2 pathway.
Collapse
Affiliation(s)
- Chun-Yan Ma
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Yun Shi
- Division of Endocrinology, Beijing Chaoyang Integrative Medicine Emergency Medical Center, Beijing, China
| | - Ya-Ru Wu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Zhang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Hong Yao
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Lin Qu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Lin Guo
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Xia Xu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Xing L, Zhou X, Li AH, Li HJ, He CX, Qin W, Zhao D, Li PQ, Zhu L, Cao HL. Atheroprotective Effects and Molecular Mechanism of Berberine. Front Mol Biosci 2021; 8:762673. [PMID: 34869592 PMCID: PMC8636941 DOI: 10.3389/fmolb.2021.762673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Atherosclerosis is the main pathological basis of cardiovascular diseases and it is closely associated with hyperlipidemia, endothelial injury, macrophage-derived foam cells formation, proliferation and migration of vascular smooth muscle cells (VSMCs), platelet aggregation, and altered gut microbiota. Various symptomatic treatments, that are currently used to inhibit atherosclerosis, need to be administered in long term and their adverse effects cannot be ignored. Berberine (BBR) has beneficial effects on atherosclerosis through regulating multiple aspects of its progression. This review highlights the recent advances in understanding the anti-atherosclerosis mechanism of BBR. BBR alleviated atherosclerosis by attenuation of dyslipidemia, correction of endothelial dysfunction, inhibition of macrophage inflammation and foam cell formation, activation of macrophage autophagy, regulation of the proliferation and migration of VSMCs, attenuation of platelet aggregation, and modulation of gut microbiota. This review would provide a modern scientific perspective to further understanding the molecular mechanism of BBR attenuating atherosclerosis and supply new ideas for atherosclerosis management.
Collapse
Affiliation(s)
- Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xin Zhou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ai-Hong Li
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., Ltd., Xi’an, China
| | - Hui-Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Chun-Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Peng-Quan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Li Zhu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., Ltd., Xi’an, China
| |
Collapse
|
21
|
Liao K, Lv DY, Yu HL, Chen H, Luo SX. iNOS regulates activation of the NLRP3 inflammasome through the sGC/cGMP/PKG/TACE/TNF-α axis in response to cigarette smoke resulting in aortic endothelial pyroptosis and vascular dysfunction. Int Immunopharmacol 2021; 101:108334. [PMID: 34768128 DOI: 10.1016/j.intimp.2021.108334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cigarette smoke (CS) is associated with vascular injury and dysfunction, which may be mediated by iNOS and NLRP3. However, the exact mechanism is unknown. METHODS iNOS-knockout and NLRP3-knockout C57BL/6 mice were exposed to air or CS. The vascular structure was examined by hematoxylin-eosin staining. The vascular tension was measured by a vascular reactivity assay. The expression of iNOS, NLRP3, caspase-1p20, IL-1β and eNOS were measured by western blotting. Human aortic endothelial cells (HAECs) were exposed to L-NIL (iNOS inhibitor), MCC950 (NLRP3 inhibitor), ODQ (sGC inhibitor), KT5823 (PKG inhibitor) or TAPI-1 (TACE/ADAM17 inhibitor) for 1 h prior to cigarette smoke extract (CSE) treatment. The cell viability and lactate dehydrogenase activity were assessed and pyroptosis was determined by scanning electron microscopy. The mRNA expression of TNF-α, and protein expression of iNOS, active-TACE, NLRP3, caspase-1p20, IL-1β, and eNOS were measured. RESULTS CS resulted in shrinkage of endothelial cells, impaired aorta relaxation, reduced eNOS expression, and induced expression of iNOS, NLRP3, caspase-1p20 and IL-1β, which could be prevented by knockdown of iNOS and NLRP3. CSE reduced cell viability, induced LDH release and pyroptosis, and promoted iNOS, NLRP3, caspase-1p20, and IL-1β expression and reduced eNOS reduction, which could be reversed by inhibition of iNOS or NLRP3 in HAECs. Altogether, activation of the NLRP3 inflammasome by iNOS in CS-exposed HAECs may be mediated by the sGC/cGMP/PKG/TACE/TNF- α pathway. CONCLUSION These results link iNOS to NLRP3 in CSE-stimulated HAECs through the sGC/cGMP/PKG/TACE/TNF-α pathway. The findings identify a mechanism through which iNOS and NLRP3 contribute to the pathogenesis of CS-induced pyroptosis and impaired aorta relaxation in HAECs.
Collapse
Affiliation(s)
- Ke Liao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Ding-Yi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Hui-Lin Yu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Hong Chen
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China.
| | - Su-Xin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
22
|
Long P, Li Y, Wen Q, Huang M, Li S, Lin Y, Huang X, Chen M, Ouyang J, Ao Y, Qi Q, Zhang H, Ye W, Cheng G, Zhang X, Zhang D. 3'-Oxo-tabernaelegantine A (OTNA) selectively relaxes pulmonary arteries by inhibiting AhR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153751. [PMID: 34563984 DOI: 10.1016/j.phymed.2021.153751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/04/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH), characterized by pulmonary artery constriction and vascular remodeling, has a high mortality rate. New drugs for the treatment of PAH urgently need to be developed. PURPOSE This study was designed to investigate the vasorelaxant activity of OTNA in isolated pulmonary arteries, and explore its molecular mechanism. METHODS Pulmonary arteries and thoracic aortas were isolated from mice, and vascular tone was tested with a Wire Myograph System. Nitric oxide levels were determined with DAF-FM DA and DAX-J2™ Red. Cellular thermal shift assays, microscale thermophoresis, and molecular docking were used to identify the interaction between OTNA and aryl hydrocarbon receptor (AhR). The levels of PI3K, p-PI3K, Akt, p-Akt, eNOS, p-eNOS, and AhR were analyzed by Western blotting. RESULTS OTNA selectively relaxed the isolated pulmonary artery rings in an endothelium-dependent manner. Mechanistic study showed that OTNA induced NO production through activation of the PI3K/Akt/eNOS pathway in endothelial cells. Furthermore, we also found that OTNA directly bound to AhR and activated the PI3K/Akt/eNOS pathway to dilate pulmonary arteries by inhibiting AhR. CONCLUSIONS OTNA relaxes pulmonary arteries by antagonizing AhR. This study provides a new natural antagonist of AhR as a promising lead compound for PAH treatment.
Collapse
Affiliation(s)
- Pei Long
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China; School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Qing Wen
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Songtao Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yuning Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Xiaojun Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Jie Ouyang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yunlin Ao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Qi Qi
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Guohua Cheng
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Xiaoqi Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
23
|
Sharma A, Mah M, Ritchie RH, De Blasio MJ. The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther 2021; 232:108008. [PMID: 34610378 DOI: 10.1016/j.pharmthera.2021.108008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with an increased risk of heart failure (HF). This is commonly termed diabetic cardiomyopathy and is often characterised by increased cardiac fibrosis, pathological hypertrophy, increased oxidative and endoplasmic reticulum stress as well as diastolic dysfunction. Adiponectin is a cardioprotective adipokine that is downregulated in settings of type 2 diabetes (T2D) and obesity. Furthermore, both adiponectin receptors (AdipoR1 and R2) are also downregulated in these settings which further results in impaired cardiac adiponectin signalling and reduced cardioprotection. In many cardiac pathologies, adiponectin signalling has been shown to protect against cardiac remodelling and lipotoxicity, however its cardioprotective actions in T2D-induced cardiomyopathy remain unresolved. Diabetic cardiomyopathy has historically lacked effective treatment options. In this review, we summarise the current evidence for links between the suppressed adiponectin signalling pathway and cardiac dysfunction, in diabetes. We describe adiponectin receptor-mediated signalling pathways that are normally associated with cardioprotection, as well as current and potential future therapeutic approaches that could target this pathway as possible interventions for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Mah
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
24
|
Diabetes Mellitus and Cardiovascular Diseases: Nutraceutical Interventions Related to Caloric Restriction. Int J Mol Sci 2021; 22:ijms22157772. [PMID: 34360538 PMCID: PMC8345941 DOI: 10.3390/ijms22157772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2DM) and cardiovascular disease (CVD) are closely associated and represent a key public health problem worldwide. An excess of adipose tissue, NAFLD, and gut dysbiosis establish a vicious circle that leads to chronic inflammation and oxidative stress. Caloric restriction (CR) is the most promising nutritional approach capable of improving cardiometabolic health. However, adherence to CR represents a barrier to patients and is the primary cause of therapeutic failure. To overcome this problem, many different nutraceutical strategies have been designed. Based on several data that have shown that CR action is mediated by AMPK/SIRT1 activation, several nutraceutical compounds capable of activating AMPK/SIRT1 signaling have been identified. In this review, we summarize recent data on the possible role of berberine, resveratrol, quercetin, and L-carnitine as CR-related nutrients. Additionally, we discuss the limitations related to the use of these nutrients in the management of T2DM and CVD.
Collapse
|
25
|
Verma T, Sinha M, Bansal N, Yadav SR, Shah K, Chauhan NS. Plants Used as Antihypertensive. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:155-184. [PMID: 33174095 PMCID: PMC7981375 DOI: 10.1007/s13659-020-00281-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/31/2020] [Indexed: 05/03/2023]
Abstract
Hypertension is a critical health problem and worse other cardiovascular diseases. It is mainly of two types: Primary or essential hypertension and Secondary hypertension. Hypertension is the primary possibility feature for coronary heart disease, stroke and renal vascular disease. Herbal medicines have been used for millions of years for the management and treatment of hypertension with minimum side effects. Over aim to write this review is to collect information on the anti-hypertensive effects of natural herbs in animal studies and human involvement as well as to recapitulate the underlying mechanisms, from the bottom of cell culture and ex-vivo tissue data. According to WHO, natural herbs/shrubs are widely used in increasing order to treat almost all the ailments of the human body. Plants are the regular industrial units for the invention of chemical constituents, they used as immunity booster to enhance the natural capacity of the body to fight against different health problems as well as herbal medicines and food products also. Eighty percent population of the world (around 5.6 billion people) consume medicines from natural plants for major health concerns. This review provides a bird's eye analysis primarily on the traditional utilization, phytochemical constituents and pharmacological values of medicinal herbs used to normalize hypertension i.e. Hibiscus sabdariffa, Allium sativum, Andrographis paniculata, Apium graveolens, Bidenspilosa, Camellia sinensis, Coptis chinensis, Coriandrum sativum, Crataegus spp., Crocus sativus, Cymbopogon citrates, Nigella sativa, Panax ginseng,Salviaemiltiorrhizae, Zingiber officinale, Tribulus terrestris, Rauwolfiaserpentina, Terminalia arjuna etc.
Collapse
Affiliation(s)
- Tarawanti Verma
- I.K. Gujral Punjab Technical University (IKGPTU), Jalandhar, Punjab India
| | - Manish Sinha
- Laureate Institute of Pharmacy, Kathog, Jwalamukhi, Kangra, Himachal Pradesh India
| | - Nitin Bansal
- Department of Pharmacology, ASBASJSM College of Pharmacy, BELA, Ropar, Punjab India
| | - Shyam Raj Yadav
- Department of Chemistry, S.P. Jain College (Veer Kunwar Singh University, Ara), Sasaram, Bihar India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, NH#2, Mathura, Uttar Pradesh 281406 India
| | - Nagendra Singh Chauhan
- Drugs Testing Laboratory Avam Anusandhan Kendra, 1st Floor Govt. Ayurvedic Hospital Building, Govt. Ayurvedic College Campus G.E. Road, Raipur, Chhattisgarh 492010 India
| |
Collapse
|
26
|
Secondary Metabolites of Plants as Modulators of Endothelium Functions. Int J Mol Sci 2021; 22:ijms22052533. [PMID: 33802468 PMCID: PMC7959468 DOI: 10.3390/ijms22052533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
According to the World Health Organization, cardiovascular diseases are the main cause of death worldwide. They may be caused by various factors or combinations of factors. Frequently, endothelial dysfunction is involved in either development of the disorder or results from it. On the other hand, the endothelium may be disordered for other reasons, e.g., due to infection, such as COVID-19. The understanding of the role and significance of the endothelium in the body has changed significantly over time—from a simple physical barrier to a complex system encompassing local and systemic regulation of numerous processes in the body. Endothelium disorders may arise from impairment of one or more signaling pathways affecting dilator or constrictor activity, including nitric oxide–cyclic guanosine monophosphate activation, prostacyclin–cyclic adenosine monophosphate activation, phosphodiesterase inhibition, and potassium channel activation or intracellular calcium level inhibition. In this review, plants are summarized as sources of biologically active substances affecting the endothelium. This paper compares individual substances and mechanisms that are known to affect the endothelium, and which subsequently may cause the development of cardiovascular disorders.
Collapse
|
27
|
Tan N, Zhang Y, Zhang Y, Li L, Zong Y, Han W, Liu L. Berberine ameliorates vascular dysfunction by a global modulation of lncRNA and mRNA expression profiles in hypertensive mouse aortae. PLoS One 2021; 16:e0247621. [PMID: 33621262 PMCID: PMC7901729 DOI: 10.1371/journal.pone.0247621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Objective The current study investigated the mechanism underlying the therapeutic effects of berberine in the vasculature in hypertension. Methods Angiotensin II (Ang II)-loaded osmotic pumps were implanted in C57BL/6J mice with or without berberine administration. Mouse aortae were suspended in myograph for force measurement. Microarray technology were performed to analyze expression profiles of lncRNAs and mRNAs in the aortae. These dysregulated expressions were then validated by qRT-PCR. LncRNA-mRNA co-expression network was constructed to reveal the specific relationships. Results Ang Ⅱ resulted in a significant increase in the blood pressure of mice, which was suppressed by berberine. The impaired endothelium-dependent aortic relaxation was restored in hypertensive mice. Microarray data revealed that 578 lncRNAs and 554 mRNAs were up-regulated, while 320 lncRNAs and 377 mRNAs were down-regulated in the aortae by Ang Ⅱ; both were reversed by berberine treatment. qRT-PCR validation results of differentially expressed genes (14 lncRNAs and 6 mRNAs) were completely consistent with the microarray data. GO analysis showed that these verified differentially expressed genes were significantly enriched in terms of “cellular process”, “biological regulation” and “regulation of biological process”, whilst KEGG analysis identified vascular function-related pathways including cAMP signaling pathway, cGMP-PKG signaling pathway, and calcium signaling pathway etc. Importantly, we observed that lncRNA ENSMUST00000144849, ENSMUST00000155383, and AK041185 were majorly expressed in endothelial cells. Conclusion The present results suggest that the five lncRNAs ENSMUST00000144849, NR_028422, ENSMUST00000155383, AK041185, and uc.335+ might serve critical regulatory roles in hypertensive vasculature by targeting pivotal mRNAs and subsequently affecting vascular function-related pathways. Moreover, these lncRNAs were modulated by berberine, therefore providing the novel potential therapeutic targets of berberine in hypertension. Furthermore, lncRNA ENSMUST00000144849, ENSMUST00000155383, and AK041185 might be involved in the preservation of vascular endothelial cell function.
Collapse
Affiliation(s)
- Na Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Zong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenwen Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- * E-mail:
| |
Collapse
|
28
|
Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020; 8:biomedicines8120550. [PMID: 33260304 PMCID: PMC7760527 DOI: 10.3390/biomedicines8120550] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
- Graduate Institute of Medicine, College of Medicine and Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Vineet Kumar Mishra
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Ye-Hsu Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: ; Tel.: +886-73121101 (ext. 2297); Fax: +886-73111996
| |
Collapse
|
29
|
Calvani M, Subbiani A, Bruno G, Favre C. Beta-Blockers and Berberine: A Possible Dual Approach to Contrast Neuroblastoma Growth and Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7534693. [PMID: 32855766 PMCID: PMC7443044 DOI: 10.1155/2020/7534693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
The use of nutraceuticals during cancer treatment is a long-lasting debate. Berberine (BBR) is an isoquinoline quaternary alkaloid extracted from a variety of medicinal plants. BBR has been shown to have therapeutic effects in different pathologies, particularly in cancer, where it affects pathways involved in tumor progression. In neuroblastoma, the most common extracranial childhood solid tumor, BBR, reduces tumor growth by regulating both stemness and differentiation features and by inducing apoptosis. At the same time, the inhibition of β-adrenergic signaling leads to a reduction in growth and increase of differentiation of neuroblastoma. In this review, we summarize the possible beneficial effects of BBR in counteracting tumor growth and progression in various types of cancer and, in particular, in neuroblastoma. However, BBR administration, besides its numerous beneficial effects, presents a few side effects due to inhibition of MAO A enzyme in neuroblastoma cells. Therefore, herein, we proposed a novel therapeutic strategy to overcome side effects of BBR administration consisting of concomitant administration of BBR together with β-blockers in neuroblastoma.
Collapse
Affiliation(s)
- Maura Calvani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| | - Angela Subbiani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Gennaro Bruno
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
30
|
Wang L, Deng L, Lin N, Shi Y, Chen J, Zhou Y, Chen D, Liu S, Li C. Berberine inhibits proliferation and apoptosis of vascular smooth muscle cells induced by mechanical stretch via the PDI/ERS and MAPK pathways. Life Sci 2020; 259:118253. [PMID: 32795536 DOI: 10.1016/j.lfs.2020.118253] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
AIMS We recently demonstrated that mechanical stretch increases the proliferation and apoptosis of vascular smooth muscle cells (VSMCs) by activating the protein disulfide isomerase (PDI) redox system, thus accelerating atherosclerotic lesion formation in the transplanted vein. At present, there are no efficient intervention measures to prevent this phenomenon. Berberine inhibits pathological vascular remodeling caused by hypertension, but the underlying mechanism is controversial. Herein, we investigate the role of berberine and the underlying mechanism of its effects on mechanical stretch-induced VSMC proliferation and apoptosis. MAIN METHODS Mouse VSMCs cultivated on flexible membranes were pretreated for 1 h with one of the following substances: berberine, PDI inhibitor bacitracin, MAPK inhibitors, or ERS inhibitor 4-PBA. VSMCs were then subjected to mechanical stretch. Immunofluorescence and western blot were used to detect proliferation and apoptosis, as well as to analyze signaling pathways in VSMCs. KEY FINDINGS Our results showed that berberine inhibits the PDI-endoplasmic reticulum stress system, thereby attenuating the simultaneous increase of VSMC proliferation and apoptosis in response to mechanical stretch. Interestingly, MAPK inhibitors PD98059, SP600125, and SB202190 significantly reduced the activation of ERS signaling cascades, and their combination with berberine had additive effects. The ERS inhibitor 4-PBA reduced PDI activation and ERS signaling, but not MAPK phosphorylation. Moreover, caspase-3 and caspase-12 were downregulated by berberine. SIGNIFICANCE These results illustrate a novel mechanism of action of berberine that has practical implications. Our data provide important insights for the prevention and treatment of vascular remodeling and diseases caused by mechanical stretching during hypertension.
Collapse
Affiliation(s)
- Linli Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Lie Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Ning Lin
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yi Shi
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Dadi Chen
- Experimental Center for Basic Medical Teaching, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
31
|
AMPK, Mitochondrial Function, and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21144987. [PMID: 32679729 PMCID: PMC7404275 DOI: 10.3390/ijms21144987] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is in charge of numerous catabolic and anabolic signaling pathways to sustain appropriate intracellular adenosine triphosphate levels in response to energetic and/or cellular stress. In addition to its conventional roles as an intracellular energy switch or fuel gauge, emerging research has shown that AMPK is also a redox sensor and modulator, playing pivotal roles in maintaining cardiovascular processes and inhibiting disease progression. Pharmacological reagents, including statins, metformin, berberine, polyphenol, and resveratrol, all of which are widely used therapeutics for cardiovascular disorders, appear to deliver their protective/therapeutic effects partially via AMPK signaling modulation. The functions of AMPK during health and disease are far from clear. Accumulating studies have demonstrated crosstalk between AMPK and mitochondria, such as AMPK regulation of mitochondrial homeostasis and mitochondrial dysfunction causing abnormal AMPK activity. In this review, we begin with the description of AMPK structure and regulation, and then focus on the recent advances toward understanding how mitochondrial dysfunction controls AMPK and how AMPK, as a central mediator of the cellular response to energetic stress, maintains mitochondrial homeostasis. Finally, we systemically review how dysfunctional AMPK contributes to the initiation and progression of cardiovascular diseases via the impact on mitochondrial function.
Collapse
|
32
|
Sánchez-Gloria JL, Osorio-Alonso H, Arellano-Buendía AS, Carbó R, Hernández-Díazcouder A, Guzmán-Martín CA, Rubio-Gayosso I, Sánchez-Muñoz F. Nutraceuticals in the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:E4827. [PMID: 32650586 PMCID: PMC7402298 DOI: 10.3390/ijms21144827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by the loss and obstructive remodeling of the pulmonary arterial wall, causing a rise in pulmonary arterial pressure and pulmonary vascular resistance, which is responsible for right heart failure, functional decline, and death. Although many drugs are available for the treatment of this condition, it continues to be life-threatening, and its long-term treatment is expensive. On the other hand, many natural compounds present in food have beneficial effects on several cardiovascular conditions. Several studies have explored many of the potential beneficial effects of natural plant products on PAH. However, the mechanisms by which natural products, such as nutraceuticals, exert protective and therapeutic effects on PAH are not fully understood. In this review, we analyze the current knowledge on nutraceuticals and their potential use in the protection and treatment of PAH, as well as whether nutraceuticals could enhance the effects of drugs used in PAH through similar mechanisms.
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Abraham S. Arellano-Buendía
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Carlos A. Guzmán-Martín
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ivan Rubio-Gayosso
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| |
Collapse
|
33
|
Oduro PK, Fang J, Niu L, Li Y, Li L, Zhao X, Wang Q. Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and western medicine compared based on biomarkers and biochemical parameters. Pharmacol Res 2020; 158:104893. [PMID: 32434053 DOI: 10.1016/j.phrs.2020.104893] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Diabetes, a worldwide health concern while burdening significant populace of countries with time due to a hefty increase in both incidence and prevalence rates. Hyperglycemia has been buttressed both in clinical and experimental studies to modulate widespread molecular actions that effect macro and microvascular dysfunctions. Endothelial dysfunction, activation, inflammation, and endothelial barrier leakage are key factors contributing to vascular complications in diabetes, plus the development of diabetes-induced cardiovascular diseases. The recent increase in molecular, transcriptional, and clinical studies has brought a new scope to the understanding of molecular mechanisms and the therapeutic targets for endothelial dysfunction in diabetes. In this review, an attempt made to discuss up to date critical and emerging molecular signaling pathways involved in the pathophysiology of endothelial dysfunction and viable pharmacological management targets. Importantly, we exploit some Traditional Chinese Medicines (TCM)/TCM isolated bioactive compounds modulating effects on endothelial dysfunction in diabetes. Finally, clinical studies data on biomarkers and biochemical parameters involved in the assessment of the efficacy of treatment in vascular endothelial dysfunction in diabetes was compared between clinically used western hypoglycemic drugs and TCM formulas.
Collapse
Affiliation(s)
- Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
34
|
Zhu N, Cao X, Hao P, Zhang Y, Chen Y, Zhang J, Li J, Gao C, Li L. Berberine attenuates mitochondrial dysfunction by inducing autophagic flux in myocardial hypoxia/reoxygenation injury. Cell Stress Chaperones 2020; 25:417-426. [PMID: 32088907 PMCID: PMC7193011 DOI: 10.1007/s12192-020-01081-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Berberine (BBR) is routinely prescribed in many Asian countries to treat diarrhea. Evidence from both animal and clinical investigations suggests that BBR exerts diverse pharmacological activities, including antidiabetic, antineoplastic, antihypertensive, and antiatherosclerotic effects. This study aimed to explore the cardioprotective mechanisms of BBR and to elucidate the modulations between autophagy and mitochondrial function during hypoxia/reoxygenation (H/R) in H9c2 cells. The degree of autophagic flux was assessed by pretreating H9c2 cells with BBR prior to H/R exposure and measuring the expression levels of Beclin-1 and green fluorescent protein (GFP)-labeled LC3B fusion proteins as well as the LC3II/LC3I ratio. The mitochondrial membrane potential (△Ψm) in H9c2 cells was evaluated by detecting rhodamine-123 fluorescence using flow cytometry. The results revealed that pretreatment with BBR upregulated autophagic flux and protected against the loss of the △Ψm in H9c2 cells subjected to H/R. We conclude that BBR attenuates mitochondrial dysfunction by inducing autophagic flux.
Collapse
Affiliation(s)
- Na Zhu
- Department of Health Management, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, People's Republic of China
| | - Xueming Cao
- Department of Cardiology, Henan Provincial Key Lab For Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University Central China Fuwai Hospital, Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Peiyuan Hao
- Department of Cardiology, Henan Provincial Key Lab For Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University Central China Fuwai Hospital, Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Yuwei Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou university people's hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Yan Chen
- Department of Cardiology, Henan Provincial Key Lab For Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University Central China Fuwai Hospital, Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Jing Zhang
- Department of Cardiology, Henan Provincial Key Lab For Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University Central China Fuwai Hospital, Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Jiang Li
- Henan Provincial Research Center of Natural Medicine Extraction and Medical Technology Application Engineering, Zhengzhou Railway Vocational Technical College, Zhengzhou, 451460, China
| | - Chuanyu Gao
- Department of Cardiology, Henan Provincial Key Lab For Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University Central China Fuwai Hospital, Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China.
| | - Li Li
- Department of Scientific Research and Discipline Construction, Henan Provincial People's Hospital, Zhengzhou university people's hospital, Henan University People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
35
|
Song D, Hao J, Fan D. Biological properties and clinical applications of berberine. Front Med 2020; 14:564-582. [DOI: 10.1007/s11684-019-0724-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
|
36
|
Dexmedetomidine reduces the inflammation and apoptosis of doxorubicin-induced myocardial cells. Exp Mol Pathol 2020; 113:104371. [PMID: 31917290 DOI: 10.1016/j.yexmp.2020.104371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/11/2019] [Accepted: 01/04/2020] [Indexed: 10/25/2022]
Abstract
As the number of elderly patients increases, some patients with heart problems may also need surgery. The purpose of this study was to investigate whether dexmedetomidine (DEX), a common used anesthetic, was beneficial to the patients with heart problems. Myocardial cells induced by doxorubicin (DOX) was to simulate the myocardium injury in vitro. H9c2 cells were treated with DOX, DEX/DOX, Compound C and Compound C/DEX/DOX, respectively. The expression of p-AMPK, AMPK, p-GSK3β, GSK3β, Bcl2, Bax, Cleaved caspase3, Caspase3, TXNIP, NLRP3, ASC, Cleaved caspase-1 and Caspase-1 were analyzed by Western blot. CCK-8 assay and flow cytometry analysis were used to detect the cell viability and cell apoptosis. The levels of TNF-α, IL-1β and IL-18 were detected by ELISA assay and the levels of NO, ROS, LDH, SOD, MDA and taurine were detected by corresponding assay kits. As a result, DEX promoted the cell viability and inhibited the inflammation, oxidative stress and apoptosis. In addition, DEX suppressed the expression of taurine, TXNIP, NLRP3, ASC and cleaved caspase-1 and activated the expression of p-AMPK and p-GSK3β. However, those above changes could be reversed by Compound C. In conclusion, this study indicated that DEX could reduce the inflammation and apoptosis of DOX-induced myocardial cells through activating the AMPK-GSK3β signaling pathway. Because of the above effects of DEX, it may be beneficial for surgical patients with heart problems.
Collapse
|
37
|
Fatahian A, Haftcheshmeh SM, Azhdari S, Farshchi HK, Nikfar B, Momtazi-Borojeni AA. Promising Anti-atherosclerotic Effect of Berberine: Evidence from In Vitro, In Vivo, and Clinical Studies. Rev Physiol Biochem Pharmacol 2020; 178:83-110. [PMID: 32789786 DOI: 10.1007/112_2020_42] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Elevated levels of plasma cholesterol, impaired vascular wall, and presence of inflammatory macrophages are important atherogenic risk factors contributing to atherosclerotic plaque formation and progression. The interventions modulating these risk factors have been found to protect against atherosclerosis development and to decrease atherosclerosis-related cardiovascular disorders. Nutritional approaches involving supplements followed by improving dietary habits and lifestyle have become growingly attractive and acceptable methods used to control atherosclerosis risk factors, mainly high levels of plasma cholesterol. There are a large number of studies that show berberine, a plant bioactive compound, could ameliorate atherosclerosis-related risk factors. In the present literature review, we put together this studies and provide integrated evidence that exhibits berberine has the potential atheroprotective effect through reducing increased levels of plasma cholesterol, particularly low-density lipoprotein (LDL) cholesterol (LDL-C) via LDL receptor (LDLR)-dependent and LDL receptor-independent mechanisms, inhibiting migration and inflammatory activity of macrophages, improving the functionality of endothelial cells via anti-oxidant activities, and suppressing proliferation of vascular smooth muscle cells. In conclusion, berberine can exert inhibitory effects on the atherosclerotic plaque development mainly through LDL-lowering activity and suppressing atherogenic functions of mentioned cells. As the second achievement of this review, among the signaling pathways through which berberine regulates intracellular processes, AMP-activated protein kinase (AMPK) has a central and critical role, showing that enhancing activity of AMPK pathway can be considered as a promising therapeutic approach for atherosclerosis treatment.
Collapse
Affiliation(s)
- Alireza Fatahian
- Department of Cardiology, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Helaleh Kaboli Farshchi
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Xiong W, Fei M, Wu C, Wang W, Luo R, Shen L, Zhang Z. Atorvastatin inhibits endoplasmic reticulum stress through AMPK signaling pathway in atherosclerosis in mice. Exp Ther Med 2019; 19:2266-2272. [PMID: 32104293 PMCID: PMC7027330 DOI: 10.3892/etm.2019.8379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 01/22/2023] Open
Abstract
Effect of atorvastatin inhibition of endoplasmic reticulum stress and amelioration of atherosclerosis through AMPK pathway were studied. Eight-week-old male apolipoprotein E-deficient (ApoE-/-) mice were fed with high-fat diet for 2 weeks and randomly divided into two groups: Atorvastatin treatment group was given atorvastatin (5 mg/kg/day) injection for a total of 6 weeks; control group was given the same dose of PBS through intraperitoneal injection for a total of 6 weeks. H&E staining was used to detect plaque size; immunohistochemical staining was used to detect T cells, macrophages and phospho-protein kinase-like ER kinase (phospho-PERK) in localized plaques. Proteins were extracted from mouse thoracic and abdominal aortic tissues. Western blot analysis was used to detect the protein expression levels of endoplasmic reticulum stress-related molecules phospho-eukaryotic initiation factor-2α (p-eIF2α), eukaryotic initiation factor (eIF2a), and sliced x-box binding protein 1 (sXBP-1). Cultured human umbilical vein endothelial cells (HUVECs), induced endoplasmic reticulum stress with human oxidized low density lipoprotein (ox-LDL), were treated with atorvastatin, AMPK agonist 5-amino-4-imidazolecarboxamide riboside-I-β-D-ribofuranoside (AICAR) and AMPK-DN that expressed a dominant-negative mutant of AMPK. Western blot analysis was used to test the expression levels of endoplasmic reticulum stress-related molecules p-elF2a and sXBP-1. The area of aortic plaques in atorvastatin group was obviously decreased, and the infiltrations of CD3+ T cells and macrophages in the localized plaques were reduced. The endoplasmic reticulum stress-related proteins sXBP-1 and p-eIF2a were significantly reduced. The results of immunohistochemistry also showed a significant decrease in the level of phospho-PERK (p-PERK) in atorvastatin group. The results in ox-LDL-induced HUVECs showed that atorvastatin inhibited ox-LDL-induced endoplasmic reticulum stress, and the AMPK agonist AICAR also had the same effect, which was offset by DN-AMPK treatment. Atorvastatin inhibits ER stress both in vitro and in vivo and this protective effect is mediated by AMPK activation.
Collapse
Affiliation(s)
- Wangqiong Xiong
- ECG Room, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, P.R. China
| | - Minzhong Fei
- Cardiovascular Department, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, P.R. China
| | - Chuntao Wu
- Cardiovascular Department, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, P.R. China
| | - Wei Wang
- Cardiovascular Department, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, P.R. China
| | - Rong Luo
- Cardiovascular Department, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, P.R. China
| | - Liping Shen
- ECG Room, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, P.R. China
| | - Zheng Zhang
- Cardiovascular Department, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, P.R. China
| |
Collapse
|
39
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
40
|
Madhavi Y, Gaikwad N, Yerra VG, Kalvala AK, Nanduri S, Kumar A. Targeting AMPK in Diabetes and Diabetic Complications: Energy Homeostasis, Autophagy and Mitochondrial Health. Curr Med Chem 2019; 26:5207-5229. [DOI: 10.2174/0929867325666180406120051] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Adenosine 5′-monophosphate activated protein kinase (AMPK) is a key enzymatic protein involved
in linking the energy sensing to the metabolic manipulation. It is a serine/threonine kinase activated
by several upstream kinases. AMPK is a heterotrimeric protein complex regulated by AMP, ADP, and
ATP allosterically. AMPK is ubiquitously expressed in various tissues of the living system such as heart,
kidney, liver, brain and skeletal muscles. Thus malfunctioning of AMPK is expected to harbor several
human pathologies especially diseases associated with metabolic and mitochondrial dysfunction. AMPK
activators including synthetic derivatives and several natural products that have been found to show therapeutic
relief in several animal models of disease. AMP, 5-Aminoimidazole-4-carboxamide riboside (AICA
riboside) and A769662 are important activators of AMPK which have potential therapeutic importance
in diabetes and diabetic complications. AMPK modulation has shown beneficial effects against
diabetes, cardiovascular complications and diabetic neuropathy. The major impact of AMPK modulation
ensures healthy functioning of mitochondria and energy homeostasis in addition to maintaining a strict
check on inflammatory processes, autophagy and apoptosis. Structural studies on AMP and AICAR suggest
that the free amino group is imperative for AMPK stimulation. A769662, a non-nucleoside
thienopyridone compound which resulted from the lead optimization studies on A-592107 and several
other related compound is reported to exhibit a promising effect on diabetes and its complications through
activation of AMPK. Subsequent to the discovery of A769662, several thienopyridones,
hydroxybiphenyls pyrrolopyridones have been reported as AMPK modulators. The review will explore
the structure-function relationships of these analogues and the prospect of targeting AMPK in diabetes
and diabetic complications.
Collapse
Affiliation(s)
- Y.V. Madhavi
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Nikhil Gaikwad
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Veera Ganesh Yerra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Anil Kumar Kalvala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Srinivas Nanduri
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| |
Collapse
|
41
|
Titmarsh DM, Nurcombe V, Cheung C, Cool SM. Vascular Cells and Tissue Constructs Derived from Human Pluripotent Stem Cells for Toxicological Screening. Stem Cells Dev 2019; 28:1347-1364. [PMID: 31397206 DOI: 10.1089/scd.2018.0246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability of human stem cells to generate somatic cell lineages makes them ideal candidates for use in toxicological testing and eventually, preclinical drug development. Such resources would support an evolution away from human primary cells or research animal models, which suffer from variability and poor predictability, toward off-the-shelf assays of chemical toxicity and drug efficacy using human cells and tissues. To this end, we generated vascular cell populations (smooth muscle cells and endothelial cells) from human pluripotent stem cells (hPSCs), arranged them into 3D co-cultures within supportive gel matrices, and directed their propensity for self-organization resembling microvasculature. The resulting vascular cell populations and co-cultured constructs were then arrayed in high throughput and used for screening a library of environmental and clinical chemical agents for immunological and toxicological responses. The screen effectively stratified the chemicals into various levels of toxicity, with both cell type-specific and co-culture-dependent responses observed. Thus, hPSC-derived vascular cells and constructs could be progressed further toward use in toxicant and drug screening.
Collapse
Affiliation(s)
- Drew M Titmarsh
- Institute of Medical Biology and Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Victor Nurcombe
- Institute of Medical Biology and Agency for Science Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Simon M Cool
- Institute of Medical Biology and Agency for Science Technology and Research (A*STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Vanadium compounds induced damage of human umbilical vein endothelial cells and the protective effect of berberine. Biometals 2019; 32:785-794. [DOI: 10.1007/s10534-019-00211-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
|
43
|
Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW. Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Front Pharmacol 2019; 10:805. [PMID: 31396083 PMCID: PMC6661542 DOI: 10.3389/fphar.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, especially type 2 diabetes mellitus (T2DM), has become a significant public health burden. Rhizoma coptidis (RC), known as Huang Lian, is widely used for treating diabetes in China. The bioactive compounds of RC, especially alkaloids, have the potential to suppress T2DM-induced lesions, including diabetic vascular dysfunction, diabetic heart disease, diabetic hyperlipidemia, diabetic nephropathy, diabetic encephalopathy, diabetic osteopathy, diabetic enteropathy, and diabetic retinopathy. This review summarizes the effects of RC and its bioactive compounds on T2DM and T2DM complications. Less research has been conducted on non-alkaloid fractions of RC, which may exert synergistic action with alkaloids. Moreover, we summarized the pharmacokinetic properties and structure-activity relationships of RC on T2DM with reference to extant literature and showed clearly that RC has potential therapeutic effect on T2DM.
Collapse
Affiliation(s)
- Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-bo Yang
- Ya’an Xun Kang Pharmaceutical Co., Ltd, Ya’an, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
44
|
Zhang G, Lin X, Shao Y, Su C, Tao J, Liu X. Berberine reduces endothelial injury and arterial stiffness in spontaneously hypertensive rats. Clin Exp Hypertens 2019; 42:257-265. [PMID: 31220947 DOI: 10.1080/10641963.2019.1632339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Changes in circulating endothelial microparticles (EMPs) and endothelial progenitor cells (EPCs) are considered as a new perspective reflection of the endothelial injury and repair status. Our previous studies have demonstrated that berberine improved endothelial function and arterial stiffness in healthy subjects. In this study, we further investigated the effects of berberine on regulating the circulating EMPs and EPCs, and preventing endothelial dysfunction and arterial stiffness in spontaneously hypertensive rats (SHRs). Methods: Twenty male SHRs were randomly divided into two groups: Berberine-treated SHR group and vehicle-treated SHR group. The SHR rats were intragastrically treated with physiologic saline, berberine 50 mg/kg.d or vehicle for 4 weeks, respectively. Ten male Wistar-Kyoto (WKY) rats treated with vehicle served as normotensive controls. Tail systolic blood pressure was monitored every 2 weeks. At the end of the study, aortic pulse wave velocity (aPWV) was measured in vivo, and aorta were collected for measurement of endothelium-dependent vasodilation and immunohistological staining of elastic fiber. Peripheral blood was collected for circulating EMP detection and EPC culture. Results: Compared to normotensive rats, hypertensive rats displayed significantly higher circulating CD31+/CD42- MPs, lower number and colony-forming units (CFUs) of EPCs, worse endothelium-dependent vasodilation, and faster aPWV. Berberine treatment in SHRs partly reduced the blood pressure and circulating EMPs, and augmented EPC numbers and CFUs. In addition, berberine preserved arterial elasticity by lowering aPWV and increasing the content of arterial media elastin fiber, and improved endothelial function by maintaining better endothelium-dependent vasodilation. Robust relationship was observed among circulating CD31+/CD42- MPs, EPC numbers and aPWV. Conclusions: Abnormal changes of circulating EMPs and EPCs in SHRs are associated with endothelial dysfunction and arterial stiffness. Berberine may be a novel therapeutic option for the hypertension-related vascular injury in SHRs.
Collapse
Affiliation(s)
- Gaoxing Zhang
- Department of Cardiology, The Jiangmen Central Hospital, Jiangmen, China
| | - Xiufang Lin
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yijia Shao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chen Su
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xing Liu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
45
|
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan ST, Šmejkal K, Malaník M, Sychrová A, Barreca D, Ziberna L, Mahomoodally MF, Zengin G, Xu S, Nabavi SM, Shen AZ. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019; 9:1923-1951. [PMID: 31037148 PMCID: PMC6485276 DOI: 10.7150/thno.30787] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMD) are the leading causes of death worldwide, underscoring the urgent necessity to develop new pharmacotherapies. Berberine (BBR) is an eminent component of traditional Chinese and Ayurvedic medicine for more than 2000 years. Recently, BBR has attracted much interest for its pharmacological actions in treating and/or managing CVMD. Recent discoveries of basic, translational and clinical studies have identified many novel molecular targets of BBR (such as AMPK, SIRT1, LDLR, PCSK9, and PTP1B) and provided novel evidences supporting the promising therapeutic potential of BBR to combat CVMD. Thus, this review provides a timely overview of the pharmacological properties and therapeutic application of BBR in CVMD, and underlines recent pharmacological advances which validate BBR as a promising lead drug against CVMD.
Collapse
|
46
|
A Review of Antiplatelet Activity of Traditional Medicinal Herbs on Integrative Medicine Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7125162. [PMID: 30719065 PMCID: PMC6335729 DOI: 10.1155/2019/7125162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Thrombotic events mainly occurred by platelet activation and aggregation. The vascular occlusion causes serious disease states such as unstable angina, ischemic stroke, and heart attack. Due to the pervading of thrombotic diseases, new antiplatelet drugs are necessary for preventing and treating arterial thrombosis without adverse side effects. Traditional medicinal herbs have been used for the treatment of human ailments for a long time. The clinically useful and safe products from traditional medicinal herbs were identified and developed in numerous pharmacological approaches. A complementary system of traditional medicinal herbs is a good candidate for pharmacotherapy. However, it still has a limitation in its function and efficacy. Thus, it is necessary to study the mode of action of traditional medicinal herbs as alternative therapeutic agents. In this review, we focused on our current understanding of the regulatory mechanisms of traditional medicinal herbs in antiplatelet activity and antithrombotic effect of traditional medicinal herbs on platelet function.
Collapse
|
47
|
Berberine-Promoted CXCR4 Expression Accelerates Endothelial Repair Capacity of Early Endothelial Progenitor Cells in Persons with Prehypertension. Chin J Integr Med 2018; 24:897-904. [PMID: 30341486 DOI: 10.1007/s11655-018-2568-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate whether the berberine treatment can improve endothelial repair capacity of early endothelial progenitor cells (EPCs) from prehypertensive subjects through increasing CXC chemokine receptor 4 (CXCR4) signaling. METHODS EPCs were isolated from prehypertensive and healthy subjects and cultured. In vivo reendothelialization capacity of EPCs from prehypertensive patients with or without in vitro berberine treatment was examined in a nude mouse model of carotid artery injury. The protein expressions of CXCR4/Janus kinase-2 (JAK-2) signaling of in vitro EPCs were detected by Western blot analysis. RESULTS CXCR4 signaling and alteration in migration and adhesion functions of EPCs were evaluated. Basal CXCR4 expression was significantly reduced in EPCs from prehypertensive patients compared with normal subjects (P<0.01). Also, the phosphorylation of JAK-2 of EPCs, a CXCR4 downstream signaling, was significantly decreased (P<0.01). Berberine promoted CXCR4/JAK-2 signaling expression of in vitro EPCs (P<0.01). Transplantation of EPCs pretreated with berberine markedly accelerated in vivo reendothelialization (P<0.01). The increased in vitro function and in vivo reendothelialization capacity of EPCs were inhibited by CXCR4 neutralizing antibody or pretreatment with JAK-2 inhibitor AG490, respectively (P<0.01). CONCLUSION Berberinemodified EPCs via up-regulation of CXCR4 signaling contributes to enhanced endothelial repair capacity in prehypertension, indicating that berberine may be used as a novel potential primary prevention means against prehypertension-related atherosclerotic cardiovascular disease.
Collapse
|
48
|
Wang J, Ran Q, Zeng HR, Wang L, Hu CJ, Huang QW. Cellular stress response mechanisms of Rhizoma coptidis: a systematic review. Chin Med 2018; 13:27. [PMID: 29930696 PMCID: PMC5992750 DOI: 10.1186/s13020-018-0184-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/27/2018] [Indexed: 12/29/2022] Open
Abstract
Rhizoma coptidis has been used in China for thousands of years with the functions of heating dampness and purging fire detoxification. But the underlying molecular mechanisms of Rhizoma coptidis are still far from being fully elucidated. Alkaloids, especially berberine, coptisine and palmatine, are responsible for multiple pharmacological effects of Rhizoma coptidis. In this review, we studied on the effects and molecular mechanisms of Rhizoma coptidis on NF-κB/MAPK/PI3K–Akt/AMPK/ERS and oxidative stress pathways. Then we summarized the mechanisms of these alkaloid components of Rhizoma coptidis on cardiovascular and cerebrovascular diseases, diabetes and diabetic complications. Evidence presented in this review implicated that Rhizoma coptidis exerted beneficial effects on various diseases by regulation of NF-κB/MAPK/PI3K–Akt/AMPK/ERS and oxidative stress pathways, which support the clinical application of Rhizoma coptidis and offer references for future researches.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Chang-Jiang Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| |
Collapse
|
49
|
Nellaiappan K, Yerra VG, Kumar A. Role of AMPK in Diabetic Cardiovascular Complications: An Overview. Cardiovasc Hematol Disord Drug Targets 2018; 19:5-13. [PMID: 29737267 DOI: 10.2174/1871529x18666180508104929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/22/2017] [Accepted: 03/28/2018] [Indexed: 12/25/2022]
Abstract
Macrovascular complications of diabetes like cardiovascular diseases appear to be one of the leading causes of mortality. Current therapies aimed at counteracting the adverse effects of diabetes on cardiovascular system are found to be inadequate. Hence, there is a growing need in search of novel targets. Adenosine Monophosphate Activated Protein Kinase (AMPK) is one such promising target, as a plethora of evidences pointing to its cardioprotective role in pathological milieu like cardiac hypertrophy, atherosclerosis and heart failure. AMPK is a serine-threonine kinase, which gets activated in response to a cellular depriving energy status. It orchestrates cellular metabolic response to energy demand and is, therefore, often referred to as "metabolic master switch" of the cell. In this review, we provide an overview of patho-mechanisms of diabetic cardiovascular disease; highlighting the role of AMPK in the regulation of this condition, followed by a description of extrinsic modulators of AMPK as potential therapeutic tools.
Collapse
Affiliation(s)
- Karthika Nellaiappan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Bala Nagar, Hyderabad, TS, India
| | - Veera Ganesh Yerra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Bala Nagar, Hyderabad, TS, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Bala Nagar, Hyderabad, TS, India
| |
Collapse
|
50
|
Combined analytical approaches to define biodistribution and biological activity of semi-synthetic berberrubine, the active metabolite of natural berberine. Anal Bioanal Chem 2018; 410:3533-3545. [DOI: 10.1007/s00216-018-0884-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/20/2017] [Accepted: 01/15/2018] [Indexed: 12/24/2022]
|