1
|
Lana-Elola E, Aoidi R, Llorian M, Gibbins D, Buechsenschuetz C, Bussi C, Flynn H, Gilmore T, Watson-Scales S, Haugsten Hansen M, Hayward D, Song OR, Brault V, Herault Y, Deau E, Meijer L, Snijders AP, Gutierrez MG, Fisher EMC, Tybulewicz VLJ. Increased dosage of DYRK1A leads to congenital heart defects in a mouse model of Down syndrome. Sci Transl Med 2024; 16:eadd6883. [PMID: 38266108 PMCID: PMC7615651 DOI: 10.1126/scitranslmed.add6883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21). DS is a gene dosage disorder that results in multiple phenotypes including congenital heart defects. This clinically important cardiac pathology is the result of a third copy of one or more of the approximately 230 genes on Hsa21, but the identity of the causative dosage-sensitive genes and hence mechanisms underlying this cardiac pathology remain unclear. Here, we show that hearts from human fetuses with DS and embryonic hearts from the Dp1Tyb mouse model of DS show reduced expression of mitochondrial respiration genes and cell proliferation genes. Using systematic genetic mapping, we determined that three copies of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1a) gene, encoding a serine/threonine protein kinase, are associated with congenital heart disease pathology. In embryos from Dp1Tyb mice, reducing Dyrk1a gene copy number from three to two reversed defects in cellular proliferation and mitochondrial respiration in cardiomyocytes and rescued heart septation defects. Increased dosage of DYRK1A protein resulted in impairment of mitochondrial function and congenital heart disease pathology in mice with DS, suggesting that DYRK1A may be a useful therapeutic target for treating this common human condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Véronique Brault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, BP 10142, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Yann Herault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, BP 10142, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Emmanuel Deau
- Perha Pharmaceuticals, Presqu'île de Perharidy, 29680 Roscoff, France
| | - Laurent Meijer
- Perha Pharmaceuticals, Presqu'île de Perharidy, 29680 Roscoff, France
| | | | | | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | | |
Collapse
|
2
|
Raiola M, Sendra M, Torres M. Imaging Approaches and the Quantitative Analysis of Heart Development. J Cardiovasc Dev Dis 2023; 10:145. [PMID: 37103024 PMCID: PMC10144158 DOI: 10.3390/jcdd10040145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Heart morphogenesis is a complex and dynamic process that has captivated researchers for almost a century. This process involves three main stages, during which the heart undergoes growth and folding on itself to form its common chambered shape. However, imaging heart development presents significant challenges due to the rapid and dynamic changes in heart morphology. Researchers have used different model organisms and developed various imaging techniques to obtain high-resolution images of heart development. Advanced imaging techniques have allowed the integration of multiscale live imaging approaches with genetic labeling, enabling the quantitative analysis of cardiac morphogenesis. Here, we discuss the various imaging techniques used to obtain high-resolution images of whole-heart development. We also review the mathematical approaches used to quantify cardiac morphogenesis from 3D and 3D+time images and to model its dynamics at the tissue and cellular levels.
Collapse
Affiliation(s)
- Morena Raiola
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
- Departamento de Ingeniería Biomedica, ETSI de Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Miquel Sendra
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
3
|
Genetics and Molecular Basis of Congenital Heart Defects in Down Syndrome: Role of Extracellular Matrix Regulation. Int J Mol Sci 2023; 24:ijms24032918. [PMID: 36769235 PMCID: PMC9918028 DOI: 10.3390/ijms24032918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Down syndrome (DS), a complex disorder that is caused by the trisomy of chromosome 21 (Hsa21), is a major cause of congenital heart defects (CHD). Interestingly, only about 50% of individuals with Hsa21 trisomy manifest CHD. Here we review the genetic basis of CHD in DS, focusing on genes that regulate extracellular matrix (ECM) organization. The overexpression of Hsa21 genes likely underlies the molecular mechanisms that contribute to CHD, even though the genes responsible for CHD could only be located in a critical region of Hsa21. A role in causing CHD has been attributed not only to protein-coding Hsa21 genes, but also to genes on other chromosomes, as well as miRNAs and lncRNAs. It is likely that the contribution of more than one gene is required, and that the overexpression of Hsa21 genes acts in combination with other genetic events, such as specific mutations or polymorphisms, amplifying their effect. Moreover, a key function in determining alterations in cardiac morphogenesis might be played by ECM. A large number of genes encoding ECM proteins are overexpressed in trisomic human fetal hearts, and many of them appear to be under the control of a Hsa21 gene, the RUNX1 transcription factor.
Collapse
|
4
|
Akoto T, Li JJ, Estes AJ, Karamichos D, Liu Y. The Underlying Relationship between Keratoconus and Down Syndrome. Int J Mol Sci 2022; 23:ijms231810796. [PMID: 36142709 PMCID: PMC9503764 DOI: 10.3390/ijms231810796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Keratoconus (KC) is one of the most significant corneal disorders worldwide, characterized by the progressive thinning and cone-shaped protrusion of the cornea, which can lead to severe visual impairment. The prevalence of KC varies greatly by ethnic groups and geographic regions and has been observed to be higher in recent years. Although studies reveal a possible link between KC and genetics, hormonal disturbances, environmental factors, and specific comorbidities such as Down Syndrome (DS), the exact cause of KC remains unknown. The incidence of KC ranges from 0% to 71% in DS patients, implying that as the worldwide population of DS patients grows, the number of KC patients may continue to rise significantly. As a result, this review aims to shed more light on the underlying relationship between KC and DS by examining the genetics relating to the cornea, central corneal thickness (CCT), and mechanical forces on the cornea, such as vigorous eye rubbing. Furthermore, this review discusses KC diagnostic and treatment strategies that may help detect KC in DS patients, as well as the available DS mouse models that could be used in modeling KC in DS patients. In summary, this review will provide improved clinical knowledge of KC in DS patients and promote additional KC-related research in these patients to enhance their eyesight and provide suitable treatment targets.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Jiemin J. Li
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Amy J. Estes
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-2015
| |
Collapse
|
5
|
Mouse models of aneuploidy to understand chromosome disorders. Mamm Genome 2021; 33:157-168. [PMID: 34719726 PMCID: PMC8913467 DOI: 10.1007/s00335-021-09930-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022]
Abstract
An organism or cell carrying a number of chromosomes that is not a multiple of the haploid count is in a state of aneuploidy. This condition results in significant changes in the level of expression of genes that are gained or lost from the aneuploid chromosome(s) and most cases in humans are not compatible with life. However, a few aneuploidies can lead to live births, typically associated with deleterious phenotypes. We do not understand why phenotypes arise from aneuploid syndromes in humans. Animal models have the potential to provide great insight, but less than a handful of mouse models of aneuploidy have been made, and no ideal system exists in which to study the effects of aneuploidy per se versus those of raised gene dosage. Here, we give an overview of human aneuploid syndromes, the effects on physiology of having an altered number of chromosomes and we present the currently available mouse models of aneuploidy, focusing on models of trisomy 21 (which causes Down syndrome) because this is the most common, and therefore, the most studied autosomal aneuploidy. Finally, we discuss the potential role of carrying an extra chromosome on aneuploid phenotypes, independent of changes in gene dosage, and methods by which this could be investigated further.
Collapse
|
6
|
Ma D, Cardoso MJ, Zuluaga MA, Modat M, Powell NM, Wiseman FK, Cleary JO, Sinclair B, Harrison IF, Siow B, Popuri K, Lee S, Matsubara JA, Sarunic MV, Beg MF, Tybulewicz VLJ, Fisher EMC, Lythgoe MF, Ourselin S. Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellar cortex of the Tc1 mouse model of down syndrome - a comprehensive morphometric analysis with active staining contrast-enhanced MRI. Neuroimage 2020; 223:117271. [PMID: 32835824 PMCID: PMC8417772 DOI: 10.1016/j.neuroimage.2020.117271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Down Syndrome is a chromosomal disorder that affects the development of cerebellar cortical lobules. Impaired neurogenesis in the cerebellum varies among different types of neuronal cells and neuronal layers. In this study, we developed an imaging analysis framework that utilizes gadolinium-enhanced ex vivo mouse brain MRI. We extracted the middle Purkinje layer of the mouse cerebellar cortex, enabling the estimation of the volume, thickness, and surface area of the entire cerebellar cortex, the internal granular layer, and the molecular layer in the Tc1 mouse model of Down Syndrome. The morphometric analysis of our method revealed that a larger proportion of the cerebellar thinning in this model of Down Syndrome resided in the inner granule cell layer, while a larger proportion of the surface area shrinkage was in the molecular layer.
Collapse
Affiliation(s)
- Da Ma
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; Centre for Advanced Biomedical Imaging, University College London, United Kingdom; School of Engineering Science, Simon Fraser University, Burnaby, Canada.
| | - Manuel J Cardoso
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Maria A Zuluaga
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; Data Science Department, EURECOM, France
| | - Marc Modat
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Nick M Powell
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Frances K Wiseman
- UK Dementia Research Institute at University College London, UK London; Down Syndrome Consortium (LonDownS), London, United Kingdom
| | - Jon O Cleary
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom; Department of Radiology, Guy´s and St Thomas' NHS Foundation Trust, United Kingdom; Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, University of Melbourne, Melbourne, Australia
| | - Benjamin Sinclair
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Bernard Siow
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Karteek Popuri
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Sieun Lee
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology & Visual Science, University of British Columbia, Vancouver, Canada
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Victor L J Tybulewicz
- The Francis Crick Institute, London, United Kingdom; Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | | | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Sebastien Ourselin
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| |
Collapse
|
7
|
Dejea H, Bonnin A, Cook AC, Garcia-Canadilla P. Cardiac multi-scale investigation of the right and left ventricle ex vivo: a review. Cardiovasc Diagn Ther 2020; 10:1701-1717. [PMID: 33224784 DOI: 10.21037/cdt-20-269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The heart is a complex multi-scale system composed of components integrated at the subcellular, cellular, tissue and organ levels. The myocytes, the contractile elements of the heart, form a complex three-dimensional (3D) network which enables propagation of the electrical signal that triggers the contraction to efficiently pump blood towards the whole body. Cardiovascular diseases (CVDs), a major cause of mortality in developed countries, often lead to cardiovascular remodeling affecting cardiac structure and function at all scales, from myocytes and their surrounding collagen matrix to the 3D organization of the whole heart. As yet, there is no consensus as to how the myocytes are arranged and packed within their connective tissue matrix, nor how best to image them at multiple scales. Cardiovascular imaging is routinely used to investigate cardiac structure and function as well as for the evaluation of cardiac remodeling in CVDs. For a complete understanding of the relationship between structural remodeling and cardiac dysfunction in CVDs, multi-scale imaging approaches are necessary to achieve a detailed description of ventricular architecture along with cardiac function. In this context, ventricular architecture has been extensively studied using a wide variety of imaging techniques: ultrasound (US), optical coherence tomography (OCT), microscopy (confocal, episcopic, light sheet, polarized light), magnetic resonance imaging (MRI), micro-computed tomography (micro-CT) and, more recently, synchrotron X-ray phase contrast imaging (SR X-PCI). Each of these techniques have their own set of strengths and weaknesses, relating to sample size, preparation, resolution, 2D/3D capabilities, use of contrast agents and possibility of performing together with in vivo studies. Therefore, the combination of different imaging techniques to investigate the same sample, thus taking advantage of the strengths of each method, could help us to extract the maximum information about ventricular architecture and function. In this review, we provide an overview of available and emerging cardiovascular imaging techniques for assessing myocardial architecture ex vivo and discuss their utility in being able to quantify cardiac remodeling, in CVDs, from myocyte to whole organ.
Collapse
Affiliation(s)
- Hector Dejea
- Paul Scherrer Institut, Villigen PSI, Villigen, Switzerland.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen PSI, Villigen, Switzerland
| | - Andrew C Cook
- Institute of Cardiovascular Science, University College London, London, UK
| | - Patricia Garcia-Canadilla
- Institute of Cardiovascular Science, University College London, London, UK.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
8
|
Kazuki Y, Gao FJ, Li Y, Moyer AJ, Devenney B, Hiramatsu K, Miyagawa-Tomita S, Abe S, Kazuki K, Kajitani N, Uno N, Takehara S, Takiguchi M, Yamakawa M, Hasegawa A, Shimizu R, Matsukura S, Noda N, Ogonuki N, Inoue K, Matoba S, Ogura A, Florea LD, Savonenko A, Xiao M, Wu D, Batista DA, Yang J, Qiu Z, Singh N, Richtsmeier JT, Takeuchi T, Oshimura M, Reeves RH. A non-mosaic transchromosomic mouse model of down syndrome carrying the long arm of human chromosome 21. eLife 2020; 9:56223. [PMID: 32597754 PMCID: PMC7358007 DOI: 10.7554/elife.56223] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/28/2020] [Indexed: 01/01/2023] Open
Abstract
Animal models of Down syndrome (DS), trisomic for human chromosome 21 (HSA21) genes or orthologs, provide insights into better understanding and treatment options. The only existing transchromosomic (Tc) mouse DS model, Tc1, carries a HSA21 with over 50 protein coding genes (PCGs) disrupted. Tc1 is mosaic, compromising interpretation of results. Here, we “clone” the 34 MB long arm of HSA21 (HSA21q) as a mouse artificial chromosome (MAC). Through multiple steps of microcell-mediated chromosome transfer, we created a new Tc DS mouse model, Tc(HSA21q;MAC)1Yakaz (“TcMAC21”). TcMAC21 is not mosaic and contains 93% of HSA21q PCGs that are expressed and regulatable. TcMAC21 recapitulates many DS phenotypes including anomalies in heart, craniofacial skeleton and brain, molecular/cellular pathologies, and impairments in learning, memory and synaptic plasticity. TcMAC21 is the most complete genetic mouse model of DS extant and has potential for supporting a wide range of basic and preclinical research.
Collapse
Affiliation(s)
- Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan.,Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Feng J Gao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yicong Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Anna J Moyer
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, United States
| | - Benjamin Devenney
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kei Hiramatsu
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Sachiko Miyagawa-Tomita
- Department of Animal Nursing Science, Yamazaki University of Animal Health Technology, Hachioji, Tokyo, Japan.,Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Naoyo Kajitani
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Narumi Uno
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Shoko Takehara
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Masato Takiguchi
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Miho Yamakawa
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Atsushi Hasegawa
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoko Matsukura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naohiro Noda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Liliana D Florea
- Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, United States
| | - Alena Savonenko
- Departments of Pathology and Neurology, John Hopkins University School of Medicine, Baltimore, United States
| | - Meifang Xiao
- Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, United States
| | - Dan Wu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Denise As Batista
- Department of Pathology, John Hopkins University School of Medicine, Baltimore, United States
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Nandini Singh
- Department of Anthropology, Penn State University, State College, United States
| | - Joan T Richtsmeier
- Division of Biosignaling, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Takashi Takeuchi
- Department of Anthropology, California State University, Sacramento, United States
| | - Mitsuo Oshimura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
9
|
Cannavo C, Tosh J, Fisher EMC, Wiseman FK. Using mouse models to understand Alzheimer's disease mechanisms in the context of trisomy of chromosome 21. PROGRESS IN BRAIN RESEARCH 2019; 251:181-208. [PMID: 32057307 DOI: 10.1016/bs.pbr.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
People who have Down syndrome are at significantly elevated risk of developing early onset Alzheimer's disease that causes dementia (AD-DS). Here we review recent progress in modeling the development of AD-DS in mouse models. These studies provide insight into mechanisms underlying Alzheimer's disease and generate new clinical research questions. In addition, they suggest potential new targets for disease prevention therapies.
Collapse
Affiliation(s)
- Claudia Cannavo
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at University College, London, United Kingdom
| | - Justin Tosh
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom; The London Down Syndrome Consortium (LonDownS), London, United Kingdom
| | - Frances K Wiseman
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom; The London Down Syndrome Consortium (LonDownS), London, United Kingdom; UK Dementia Research Institute at University College, London, United Kingdom.
| |
Collapse
|
10
|
Roper RJ, Hawley L, Goodlett CR. Influence of allelic differences in Down syndrome. PROGRESS IN BRAIN RESEARCH 2019; 251:29-54. [PMID: 32057311 PMCID: PMC7500172 DOI: 10.1016/bs.pbr.2019.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Both trisomic and non-trisomic genes may affect the incidence and severity of phenotypes associated with Down syndrome (DS). The importance of extra (trisomic) genetic material is emphasized in DS, with less emphasis to the allelic composition of candidate trisomic genes in defining the trisomic gene-phenotype relationship in DS. Allelic differences in non-trisomic genes have been shown to be important moderators of cardiac, leukemia, and developmental phenotypes associated with DS. Trisomic mouse models provide an in vivo genetic platform for examining the gene-phenotype relationship, including the influence of allelic variants, on DS-like phenotypes. DS mouse models have differing trisomic genetic makeup, and optimal development, viability and translational value of these mouse models may require a non-inbred genetic background with heterogeneity at many loci. Additionally, understanding the contribution of specific genes or regions to DS phenotypes often requires the utilization of genetically manipulated mice that may be established on a different inbred background than the trisomic mice. The impact of allelic differences of trisomic and background genes in human and model systems may offer insight into the variability in occurrence and severity of trisomic phenotypes.
Collapse
Affiliation(s)
- Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States.
| | - Laura Hawley
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Charles R Goodlett
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
11
|
Muñiz Moreno MDM, Brault V, Birling MC, Pavlovic G, Herault Y. Modeling Down syndrome in animals from the early stage to the 4.0 models and next. PROGRESS IN BRAIN RESEARCH 2019; 251:91-143. [PMID: 32057313 DOI: 10.1016/bs.pbr.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The genotype-phenotype relationship and the physiopathology of Down Syndrome (DS) have been explored in the last 20 years with more and more relevant mouse models. From the early age of transgenesis to the new CRISPR/CAS9-derived chromosomal engineering and the transchromosomic technologies, mouse models have been key to identify homologous genes or entire regions homologous to the human chromosome 21 that are necessary or sufficient to induce DS features, to investigate the complexity of the genetic interactions that are involved in DS and to explore therapeutic strategies. In this review we report the new developments made, how genomic data and new genetic tools have deeply changed our way of making models, extended our panel of animal models, and increased our understanding of the neurobiology of the disease. But even if we have made an incredible progress which promises to make DS a curable condition, we are facing new research challenges to nurture our knowledge of DS pathophysiology as a neurodevelopmental disorder with many comorbidities during ageing.
Collapse
Affiliation(s)
- Maria Del Mar Muñiz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France.
| |
Collapse
|
12
|
High-Resolution Episcopic Microscopy (HREM): Looking Back on 13 Years of Successful Generation of Digital Volume Data of Organic Material for 3D Visualisation and 3D Display. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-resolution episcopic microscopy (HREM) is an imaging technique that permits the simple and rapid generation of three-dimensional (3D) digital volume data of histologically embedded and physically sectioned specimens. The data can be immediately used for high-detail 3D analysis of a broad variety of organic materials with all modern methods of 3D visualisation and display. Since its first description in 2006, HREM has been adopted as a method for exploring organic specimens in many fields of science, and it has recruited a slowly but steadily growing user community. This review aims to briefly introduce the basic principles of HREM data generation and to provide an overview of scientific publications that have been published in the last 13 years involving HREM imaging. The studies to which we refer describe technical details and specimen-specific protocols, and provide examples of the successful use of HREM in biological, biomedical and medical research. Finally, the limitations, potentials and anticipated further improvements are briefly outlined.
Collapse
|
13
|
Baburamani AA, Patkee PA, Arichi T, Rutherford MA. New approaches to studying early brain development in Down syndrome. Dev Med Child Neurol 2019; 61:867-879. [PMID: 31102269 PMCID: PMC6618001 DOI: 10.1111/dmcn.14260] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
Abstract
Down syndrome is the most common genetic developmental disorder in humans and is caused by partial or complete triplication of human chromosome 21 (trisomy 21). It is a complex condition which results in multiple lifelong health problems, including varying degrees of intellectual disability and delays in speech, memory, and learning. As both length and quality of life are improving for individuals with Down syndrome, attention is now being directed to understanding and potentially treating the associated cognitive difficulties and their underlying biological substrates. These have included imaging and postmortem studies which have identified decreased regional brain volumes and histological anomalies that accompany early onset dementia. In addition, advances in genome-wide analysis and Down syndrome mouse models are providing valuable insight into potential targets for intervention that could improve neurogenesis and long-term cognition. As little is known about early brain development in human Down syndrome, we review recent advances in magnetic resonance imaging that allow non-invasive visualization of brain macro- and microstructure, even in utero. It is hoped that together these advances may enable Down syndrome to become one of the first genetic disorders to be targeted by antenatal treatments designed to 'normalize' brain development. WHAT THIS PAPER ADDS: Magnetic resonance imaging can provide non-invasive characterization of early brain development in Down syndrome. Down syndrome mouse models enable study of underlying pathology and potential intervention strategies. Potential therapies could modify brain structure and improve early cognitive levels. Down syndrome may be the first genetic disorder to have targeted therapies which alter antenatal brain development.
Collapse
Affiliation(s)
- Ana A Baburamani
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| | - Prachi A Patkee
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| | - Tomoki Arichi
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK,Department of BioengineeringImperial College LondonLondonUK,Children's NeurosciencesEvelina London Children's HospitalLondonUK
| | - Mary A Rutherford
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| |
Collapse
|
14
|
Zhang H, Liu L, Tian J. Molecular mechanisms of congenital heart disease in down syndrome. Genes Dis 2019; 6:372-377. [PMID: 31832516 PMCID: PMC6889238 DOI: 10.1016/j.gendis.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS), as a typical genomic aneuploidy, is a common cause of various birth defects, among which is congenital heart disease (CHD). 40-60% neonates with DS have some kinds of CHD. However, the molecular pathogenic mechanisms of DS associated CHD are still not fully understood. This review summarizes available studies on DS associated CHD from seven aspects so as to provide a crucial and updated overview of what we known so far in this domain.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Lingjuan Liu
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Jie Tian
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| |
Collapse
|
15
|
Visualising the Cardiovascular System of Embryos of Biomedical Model Organisms with High Resolution Episcopic Microscopy (HREM). J Cardiovasc Dev Dis 2018; 5:jcdd5040058. [PMID: 30558275 PMCID: PMC6306920 DOI: 10.3390/jcdd5040058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
The article will briefly introduce the high-resolution episcopic microscopy (HREM) technique and will focus on its potential for researching cardiovascular development and remodelling in embryos of biomedical model organisms. It will demonstrate the capacity of HREM for analysing the cardiovascular system of normally developed and genetically or experimentally malformed zebrafish, frog, chick and mouse embryos in the context of the whole specimen and will exemplarily show the possibilities HREM offers for comprehensive visualisation of the vasculature of adult human skin. Finally, it will provide examples of the successful application of HREM for identifying cardiovascular malformations in genetically altered mouse embryos produced in the deciphering the mechanisms of developmental disorders (DMDD) program.
Collapse
|
16
|
Zdora MC, Vila-Comamala J, Schulz G, Khimchenko A, Hipp A, Cook AC, Dilg D, David C, Grünzweig C, Rau C, Thibault P, Zanette I. X-ray phase microtomography with a single grating for high-throughput investigations of biological tissue. BIOMEDICAL OPTICS EXPRESS 2017; 8:1257-1270. [PMID: 28271016 PMCID: PMC5330582 DOI: 10.1364/boe.8.001257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 05/23/2023]
Abstract
The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM.
Collapse
Affiliation(s)
- Marie-Christine Zdora
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
- Department of Physics & Astronomy, University College London, London WC1E 6BT,
UK
| | - Joan Vila-Comamala
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,
Switzerland
| | - Georg Schulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil,
Switzerland
| | - Anna Khimchenko
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil,
Switzerland
| | | | - Andrew C. Cook
- University College London Institute of Cardiovascular Science, London WC1E 6BT,
UK
| | - Daniel Dilg
- University College London Institute of Cardiovascular Science, London WC1E 6BT,
UK
| | | | | | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
- School of Materials, University of Manchester, Manchester M1 7HS,
UK
- Department of Otolaryngology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611,
USA
| | - Pierre Thibault
- Department of Physics & Astronomy, University of Southampton, Southampton SO17 1BJ,
UK
| | - Irene Zanette
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
| |
Collapse
|
17
|
Abstract
Down syndrome (also known as trisomy 21) is the model human phenotype for all genomic gain dosage imbalances, including microduplications. The functional genomic exploration of the post-sequencing years of chromosome 21, and the generation of numerous cellular and mouse models, have provided an unprecedented opportunity to decipher the molecular consequences of genome dosage imbalance. Studies of Down syndrome could provide knowledge far beyond the well-known characteristics of intellectual disability and dysmorphic features, as several other important features, including congenital heart defects, early ageing, Alzheimer disease and childhood leukaemia, are also part of the Down syndrome phenotypic spectrum. The elucidation of the molecular mechanisms that cause or modify the risk for different Down syndrome phenotypes could lead to the introduction of previously unimaginable therapeutic options.
Collapse
|
18
|
Stern S, Biron D, Moses E. Transmission of trisomy decreases with maternal age in mouse models of Down syndrome, mirroring a phenomenon in human Down syndrome mothers. BMC Genet 2016; 17:105. [PMID: 27401751 PMCID: PMC4939633 DOI: 10.1186/s12863-016-0412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 07/01/2016] [Indexed: 11/29/2022] Open
Abstract
Background Down syndrome incidence in humans increases dramatically with maternal age. This is mainly the result of increased meiotic errors, but factors such as differences in abortion rate may play a role as well. Since the meiotic error rate increases almost exponentially after a certain age, its contribution to the overall incidence aneuploidy may mask the contribution of other processes. Results To focus on such selection mechanisms we investigated transmission in trisomic females, using data from mouse models and from Down syndrome humans. In trisomic females the a-priori probability for trisomy is independent of meiotic errors and thus approximately constant in the early embryo. Despite this, the rate of transmission of the extra chromosome decreases with age in females of the Ts65Dn and, as we show, for the Tc1 mouse models for Down syndrome. Evaluating progeny of 73 Tc1 births and 112 Ts65Dn births from females aged 130 days to 250 days old showed that both models exhibit a 3-fold reduction of the probability to transmit the trisomy with increased maternal ageing. This is concurrent with a 2-fold reduction of litter size with maternal ageing. Furthermore, analysis of previously reported 30 births in Down syndrome women shows a similar tendency with an almost three fold reduction in the probability to have a Down syndrome child between a 20 and 30 years old Down syndrome woman. Conclusions In the two types of mice models for Down syndrome that were used for this study, and in human Down syndrome, older females have significantly lower probability to transmit the trisomy to the offspring. Our findings, taken together with previous reports of decreased supportive environment of the older uterus, add support to the notion that an older uterus negatively selects the less fit trisomic embryos. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0412-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shani Stern
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - David Biron
- Department of Physics, James Franck Institute and the Institute for Biophysical Dynamics, University of Chicago, 929 E. 57th St GCIS E139F, Chicago, IL, 60637, USA
| | - Elisha Moses
- Department of Physics of Complex Systems, Weizmann Institute of Science, P.O. Box 26, Rehovot, 76100, Israel.
| |
Collapse
|
19
|
Lana-Elola E, Watson-Scales S, Slender A, Gibbins D, Martineau A, Douglas C, Mohun T, Fisher EM, Tybulewicz VL. Genetic dissection of Down syndrome-associated congenital heart defects using a new mouse mapping panel. eLife 2016; 5:11614. [PMID: 26765563 PMCID: PMC4764572 DOI: 10.7554/elife.11614] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/04/2016] [Indexed: 01/24/2023] Open
Abstract
Down syndrome (DS), caused by trisomy of human chromosome 21 (Hsa21), is the most common cause of congenital heart defects (CHD), yet the genetic and mechanistic causes of these defects remain unknown. To identify dosage-sensitive genes that cause DS phenotypes, including CHD, we used chromosome engineering to generate a mapping panel of 7 mouse strains with partial trisomies of regions of mouse chromosome 16 orthologous to Hsa21. Using high-resolution episcopic microscopy and three-dimensional modeling we show that these strains accurately model DS CHD. Systematic analysis of the 7 strains identified a minimal critical region sufficient to cause CHD when present in 3 copies, and showed that it contained at least two dosage-sensitive loci. Furthermore, two of these new strains model a specific subtype of atrio-ventricular septal defects with exclusive ventricular shunting and demonstrate that, contrary to current hypotheses, these CHD are not due to failure in formation of the dorsal mesenchymal protrusion. Down syndrome is a condition caused by having an extra copy of one of the 46 chromosomes found inside human cells. Specifically, instead of two copies, people with Down syndrome are born with three copies of chromosome 21. This results in many different effects, including learning and memory problems, heart defects and Alzheimer’s disease. Each of these different effects is caused by having a third copy of one or more of the approximately 230 genes found on chromosome 21. However, it is not known which of these genes cause any of these effects, and how an extra copy of the genes results in such changes. Now, Lana-Elola et al. have investigated which genes on chromosome 21 cause the heart defects seen in Down syndrome, and how those heart defects come about. This involved engineering a new strain of mouse that has an extra copy of 148 mouse genes that are very similar to 148 genes found on chromosome 21 in humans. Like people with Down syndrome, this mouse strain developed heart defects when it was an embryo. Using a series of six further mouse strains, Lana-Elola et al. then narrowed down the potential genes that, when in three copies, are needed to cause the heart defects, to a list of just 39 genes. Further experiments then showed that at least two genes within these 39 genes were required in three copies to cause the heart defects. The next step will be to identify the specific genes that actually cause the heart defects, and then work out how a third copy of these genes causes the developmental problems.
Collapse
Affiliation(s)
| | | | - Amy Slender
- The Francis Crick Institute, London, United Kingdom
| | | | | | | | | | - Elizabeth Mc Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Victor Lj Tybulewicz
- The Francis Crick Institute, London, United Kingdom.,Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Weninger WJ, Geyer SH, Martineau A, Galli A, Adams DJ, Wilson R, Mohun TJ. Phenotyping structural abnormalities in mouse embryos using high-resolution episcopic microscopy. Dis Model Mech 2015; 7:1143-52. [PMID: 25256713 PMCID: PMC4174525 DOI: 10.1242/dmm.016337] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The arrival of simple and reliable methods for 3D imaging of mouse embryos has opened the possibility of analysing normal and abnormal development in a far more systematic and comprehensive manner than has hitherto been possible. This will not only help to extend our understanding of normal tissue and organ development but, by applying the same approach to embryos from genetically modified mouse lines, such imaging studies could also transform our knowledge of gene function in embryogenesis and the aetiology of developmental disorders. The International Mouse Phenotyping Consortium is coordinating efforts to phenotype single gene knockouts covering the entire mouse genome, including characterising developmental defects for those knockout lines that prove to be embryonic lethal. Here, we present a pilot study of 34 such lines, utilising high-resolution episcopic microscopy (HREM) for comprehensive 2D and 3D imaging of homozygous null embryos and their wild-type littermates. We present a simple phenotyping protocol that has been developed to take advantage of the high-resolution images obtained by HREM and that can be used to score tissue and organ abnormalities in a reliable manner. Using this approach with embryos at embryonic day 14.5, we show the wide range of structural abnormalities that are likely to be detected in such studies and the variability in phenotypes between sibling homozygous null embryos.
Collapse
Affiliation(s)
- Wolfgang J Weninger
- Centre for Anatomy and Cell Biology & MIC, Medical University of Vienna, 1090 Wien, Austria.
| | - Stefan H Geyer
- Centre for Anatomy and Cell Biology & MIC, Medical University of Vienna, 1090 Wien, Austria
| | | | | | - David J Adams
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Robert Wilson
- MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Timothy J Mohun
- MRC National Institute for Medical Research, London NW7 1AA, UK
| |
Collapse
|
21
|
Marechal D, Pereira PL, Duchon A, Herault Y. Dosage of the Abcg1-U2af1 region modifies locomotor and cognitive deficits observed in the Tc1 mouse model of Down syndrome. PLoS One 2015; 10:e0115302. [PMID: 25706610 PMCID: PMC4338106 DOI: 10.1371/journal.pone.0115302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/24/2014] [Indexed: 11/22/2022] Open
Abstract
Down syndrome (DS) results from one extra copy of human chromosome 21 and leads to several alterations including intellectual disabilities and locomotor defects. The transchromosomic Tc1 mouse model carrying an extra freely-segregating copy of human chromosome 21 was developed to better characterize the relation between genotype and phenotype in DS. The Tc1 mouse exhibits several locomotor and cognitive deficits related to DS. In this report we analyzed the contribution of the genetic dosage of 13 conserved mouse genes located between Abcg1 and U2af1, in the telomeric part of Hsa21. We used the Ms2Yah model carrying a deletion of the corresponding interval in the mouse genome to rescue gene dosage in the Tc1/Ms2Yah compound mice to determine how the different behavioral phenotypes are affected. We detected subtle changes with the Tc1/Ms2Yah mice performing better than the Tc1 individuals in the reversal paradigm of the Morris water maze. We also found that Tc1/Ms2Yah compound mutants performed better in the rotarod than the Tc1 mice. This data support the impact of genes from the Abcg1-U2af1 region as modifiers of Tc1-dependent memory and locomotor phenotypes. Our results emphasize the complex interactions between triplicated genes inducing DS features.
Collapse
Affiliation(s)
- Damien Marechal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Patricia Lopes Pereira
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie 45071 Orléans, France
| | - Arnaud Duchon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Institut Clinique de la Souris, ICS, 1 rue Laurent Fries, 67404 Illkirch, France
- * E-mail:
| |
Collapse
|
22
|
High-resolution episcopic microscopy (HREM): A useful technique for research in wound care. Ann Anat 2015; 197:3-10. [DOI: 10.1016/j.aanat.2014.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/24/2014] [Accepted: 10/13/2014] [Indexed: 12/15/2022]
|
23
|
Liu B, Filippi S, Roy A, Roberts I. Stem and progenitor cell dysfunction in human trisomies. EMBO Rep 2014; 16:44-62. [PMID: 25520324 DOI: 10.15252/embr.201439583] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Trisomy 21, the commonest constitutional aneuploidy in humans, causes profound perturbation of stem and progenitor cell growth, which is both cell context dependent and developmental stage specific and mediated by complex genetic mechanisms beyond increased Hsa21 gene dosage. While proliferation of fetal hematopoietic and testicular stem/progenitors is increased and may underlie increased susceptibility to childhood leukemia and testicular cancer, fetal stem/progenitor proliferation in other tissues is markedly impaired leading to the characteristic craniofacial, neurocognitive and cardiac features in individuals with Down syndrome. After birth, trisomy 21-mediated premature aging of stem/progenitor cells may contribute to the progressive multi-system deterioration, including development of Alzheimer's disease.
Collapse
Affiliation(s)
- Binbin Liu
- Department of Paediatrics and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Sarah Filippi
- Department of Statistics, University of Oxford, Oxford, UK
| | - Anindita Roy
- Centre for Haematology, Imperial College London, London, UK
| | - Irene Roberts
- Department of Paediatrics and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| |
Collapse
|
24
|
Geyer SH, Nöhammer MM, Mathä M, Reissig L, Tinhofer IE, Weninger WJ. High-resolution episcopic microscopy (HREM): a tool for visualizing skin biopsies. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1356-64. [PMID: 25198556 DOI: 10.1017/s1431927614013063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We evaluate the usefulness of digital volume data produced with the high-resolution episcopic microscopy (HREM) method for visualizing the three-dimensional (3D) arrangement of components of human skin, and present protocols designed for processing skin biopsies for HREM data generation. A total of 328 biopsies collected from normally appearing skin and from a melanocytic nevus were processed. Cuboidal data volumes with side lengths of ~2×3×6 mm3 and voxel sizes of 1.07×1.07×1.5 µm3 were produced. HREM data fit ideally for visualizing the epidermis at large, and for producing highly detailed volume and surface-rendered 3D representations of the dermal and hypodermal components at a structural level. The architecture of the collagen fiber bundles and the spatial distribution of nevus cells can be easily visualized with volume-rendering algorithms. We conclude that HREM has great potential to serve as a routine tool for researching and diagnosing skin pathologies.
Collapse
Affiliation(s)
- Stefan H Geyer
- 1MRC National Institute for Medical Research,London,NW7 1AA,UK
| | - Maria M Nöhammer
- 2Centre for Anatomy and Cell Biology,Medical University of Vienna,Waehringer Street 13,A-1090 Vienna,Austria
| | - Markus Mathä
- 2Centre for Anatomy and Cell Biology,Medical University of Vienna,Waehringer Street 13,A-1090 Vienna,Austria
| | - Lukas Reissig
- 2Centre for Anatomy and Cell Biology,Medical University of Vienna,Waehringer Street 13,A-1090 Vienna,Austria
| | - Ines E Tinhofer
- 2Centre for Anatomy and Cell Biology,Medical University of Vienna,Waehringer Street 13,A-1090 Vienna,Austria
| | - Wolfgang J Weninger
- 2Centre for Anatomy and Cell Biology,Medical University of Vienna,Waehringer Street 13,A-1090 Vienna,Austria
| |
Collapse
|
25
|
Engineered chromosome-based genetic mapping establishes a 3.7 Mb critical genomic region for Down syndrome-associated heart defects in mice. Hum Genet 2013; 133:743-53. [PMID: 24362460 DOI: 10.1007/s00439-013-1407-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/06/2013] [Indexed: 02/01/2023]
Abstract
Trisomy 21 (Down syndrome, DS) is the most common human genetic anomaly associated with heart defects. Based on evolutionary conservation, DS-associated heart defects have been modeled in mice. By generating and analyzing mouse mutants carrying different genomic rearrangements in human chromosome 21 (Hsa21) syntenic regions, we found the triplication of the Tiam1-Kcnj6 region on mouse chromosome 16 (Mmu16) resulted in DS-related cardiovascular abnormalities. In this study, we developed two tandem duplications spanning the Tiam1-Kcnj6 genomic region on Mmu16 using recombinase-mediated genome engineering, Dp(16)3Yey and Dp(16)4Yey, spanning the 2.1 Mb Tiam1-Il10rb and 3.7 Mb Ifnar1-Kcnj6 regions, respectively. We found that Dp(16)4Yey/+, but not Dp(16)3Yey/+, led to heart defects, suggesting the triplication of the Ifnar1-Kcnj6 region is sufficient to cause DS-associated heart defects. Our transcriptional analysis of Dp(16)4Yey/+ embryos showed that the Hsa21 gene orthologs located within the duplicated interval were expressed at the elevated levels, reflecting the consequences of the gene dosage alterations. Therefore, we have identified a 3.7 Mb genomic region, the smallest critical genomic region, for DS-associated heart defects, and our results should set the stage for the final step to establish the identities of the causal gene(s), whose elevated expression(s) directly underlie this major DS phenotype.
Collapse
|
26
|
Haas MA, Bell D, Slender A, Lana-Elola E, Watson-Scales S, Fisher EMC, Tybulewicz VLJ, Guillemot F. Alterations to dendritic spine morphology, but not dendrite patterning, of cortical projection neurons in Tc1 and Ts1Rhr mouse models of Down syndrome. PLoS One 2013; 8:e78561. [PMID: 24205261 PMCID: PMC3813676 DOI: 10.1371/journal.pone.0078561] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 09/18/2013] [Indexed: 12/19/2022] Open
Abstract
Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines - the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.
Collapse
Affiliation(s)
- Matilda A. Haas
- Division of Molecular Neurobiology, Medical Research Council National Institute for Medical Research, London, United Kingdom
- * E-mail:
| | - Donald Bell
- Confocal Image Analysis Laboratory, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Amy Slender
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Eva Lana-Elola
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Sheona Watson-Scales
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | | | - Victor L. J. Tybulewicz
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - François Guillemot
- Division of Molecular Neurobiology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
27
|
Sailani MR, Makrythanasis P, Valsesia A, Santoni FA, Deutsch S, Popadin K, Borel C, Migliavacca E, Sharp AJ, Duriaux Sail G, Falconnet E, Rabionet K, Serra-Juhé C, Vicari S, Laux D, Grattau Y, Dembour G, Megarbane A, Touraine R, Stora S, Kitsiou S, Fryssira H, Chatzisevastou-Loukidou C, Kanavakis E, Merla G, Bonnet D, Pérez-Jurado LA, Estivill X, Delabar JM, Antonarakis SE. The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome. Genome Res 2013; 23:1410-21. [PMID: 23783273 PMCID: PMC3759718 DOI: 10.1101/gr.147991.112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Congenital heart defect (CHD) occurs in 40% of Down syndrome (DS) cases. While carrying three copies of chromosome 21 increases the risk for CHD, trisomy 21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or environmental factors could contribute to the CHD risk. Here we report genomic variations that in concert with trisomy 21, determine the risk for CHD in DS. This case-control GWAS includes 187 DS with CHD (AVSD = 69, ASD = 53, VSD = 65) as cases, and 151 DS without CHD as controls. Chromosome 21–specific association studies revealed rs2832616 and rs1943950 as CHD risk alleles (adjusted genotypic P-values <0.05). These signals were confirmed in a replication cohort of 92 DS-CHD cases and 80 DS-without CHD (nominal P-value 0.0022). Furthermore, CNV analyses using a customized chromosome 21 aCGH of 135K probes in 55 DS-AVSD and 53 DS-without CHD revealed three CNV regions associated with AVSD risk (FDR ≤ 0.05). Two of these regions that are located within the previously identified CHD region on chromosome 21 were further confirmed in a replication study of 49 DS-AVSD and 45 DS- without CHD (FDR ≤ 0.05). One of these CNVs maps near the RIPK4 gene, and the second includes the ZBTB21 (previously ZNF295) gene, highlighting the potential role of these genes in the pathogenesis of CHD in DS. We propose that the genetic architecture of the CHD risk of DS is complex and includes trisomy 21, and SNP and CNV variations in chromosome 21. In addition, a yet-unidentified genetic variation in the rest of the genome may contribute to this complex genetic architecture.
Collapse
Affiliation(s)
- M Reza Sailani
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the Tc1 model of Down syndrome. PLoS One 2013; 8:e60482. [PMID: 23596509 PMCID: PMC3626651 DOI: 10.1371/journal.pone.0060482] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 02/27/2013] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439.
Collapse
|
29
|
Ackerman C, Locke A, Feingold E, Reshey B, Espana K, Thusberg J, Mooney S, Bean L, Dooley K, Cua C, Reeves R, Sherman S, Maslen C. An excess of deleterious variants in VEGF-A pathway genes in Down-syndrome-associated atrioventricular septal defects. Am J Hum Genet 2012; 91:646-59. [PMID: 23040494 PMCID: PMC3484504 DOI: 10.1016/j.ajhg.2012.08.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/12/2012] [Accepted: 08/17/2012] [Indexed: 12/20/2022] Open
Abstract
About half of people with trisomy 21 have a congenital heart defect (CHD), whereas the remainder have a structurally normal heart, demonstrating that trisomy 21 is a significant risk factor but is not causal for abnormal heart development. Atrioventricular septal defects (AVSD) are the most commonly occurring heart defects in Down syndrome (DS), and ∼65% of all AVSD is associated with DS. We used a candidate-gene approach among individuals with DS and complete AVSD (cases = 141) and DS with no CHD (controls = 141) to determine whether rare genetic variants in genes involved in atrioventricular valvuloseptal morphogenesis contribute to AVSD in this sensitized population. We found a significant excess (p < 0.0001) of variants predicted to be deleterious in cases compared to controls. At the most stringent level of filtering, we found potentially damaging variants in nearly 20% of cases but fewer than 3% of controls. The variants with the highest probability of being damaging in cases only were found in six genes: COL6A1, COL6A2, CRELD1, FBLN2, FRZB, and GATA5. Several of the case-specific variants were recurrent in unrelated individuals, occurring in 10% of cases studied. No variants with an equal probability of being damaging were found in controls, demonstrating a highly specific association with AVSD. Of note, all of these genes are in the VEGF-A pathway, even though the candidate genes analyzed in this study represented numerous biochemical and developmental pathways, suggesting that rare variants in the VEGF-A pathway might contribute to the genetic underpinnings of AVSD in humans.
Collapse
Affiliation(s)
- Christine Ackerman
- Division of Cardiovascular Medicine and the Heart Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Adam E. Locke
- Department of Human Genetics, Emory University, Atlanta, GA 30033, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Benjamin Reshey
- Division of Cardiovascular Medicine and the Heart Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Karina Espana
- Division of Cardiovascular Medicine and the Heart Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Sean Mooney
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Lora J.H. Bean
- Department of Human Genetics, Emory University, Atlanta, GA 30033, USA
| | - Kenneth J. Dooley
- Sibley Heart Center Cardiology and Division of Pediatric Cardiology, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30033, USA
| | - Clifford L. Cua
- Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Roger H. Reeves
- Department of Physiology and the Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Cheryl L. Maslen
- Division of Cardiovascular Medicine and the Heart Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
30
|
Ripoll C, Rivals I, Ait Yahya-Graison E, Dauphinot L, Paly E, Mircher C, Ravel A, Grattau Y, Bléhaut H, Mégarbane A, Dembour G, de Fréminville B, Touraine R, Créau N, Potier MC, Delabar JM. Molecular signatures of cardiac defects in Down syndrome lymphoblastoid cell lines suggest altered ciliome and Hedgehog pathways. PLoS One 2012; 7:e41616. [PMID: 22912673 PMCID: PMC3415405 DOI: 10.1371/journal.pone.0041616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/22/2012] [Indexed: 12/15/2022] Open
Abstract
Forty percent of people with Down syndrome exhibit heart defects, most often an atrioventricular septal defect (AVSD) and less frequently a ventricular septal defect (VSD) or atrial septal defect (ASD). Lymphoblastoid cell lines (LCLs) were established from lymphocytes of individuals with trisomy 21, the chromosomal abnormality causing Down syndrome. Gene expression profiles generated from DNA microarrays of LCLs from individuals without heart defects (CHD−; n = 22) were compared with those of LCLs from patients with cardiac malformations (CHD+; n = 21). After quantile normalization, principal component analysis revealed that AVSD carriers could be distinguished from a combined group of ASD or VSD (ASD+VSD) carriers. From 9,758 expressed genes, we identified 889 and 1,016 genes differentially expressed between CHD− and AVSD and CHD− and ASD+VSD, respectively, with only 119 genes in common. A specific chromosomal enrichment was found in each group of affected genes. Among the differentially expressed genes, more than 65% are expressed in human or mouse fetal heart tissues (GEO dataset). Additional LCLs from new groups of AVSD and ASD+VSD patients were analyzed by quantitative PCR; observed expression ratios were similar to microarray results. Analysis of GO categories revealed enrichment of genes from pathways regulating clathrin-mediated endocytosis in patients with AVSD and of genes involved in semaphorin-plexin-driven cardiogenesis and the formation of cytoplasmic microtubules in patients with ASD-VSD. A pathway-oriented search revealed enrichment in the ciliome for both groups and a specific enrichment in Hedgehog and Jak-stat pathways among ASD+VSD patients. These genes or related pathways are therefore potentially involved in normal cardiogenesis as well as in cardiac malformations observed in individuals with trisomy 21.
Collapse
Affiliation(s)
- Clémentine Ripoll
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI ParisTech, Paris, France
| | - Emilie Ait Yahya-Graison
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Luce Dauphinot
- CRICM, CNRS UMR7225, INSERM UMR975, UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Evelyne Paly
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Clothilde Mircher
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - Aimé Ravel
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - Yann Grattau
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - Henri Bléhaut
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - André Mégarbane
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
- Unité de Génétique Médicale, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
| | - Guy Dembour
- Cardiologie pédiatrique, Cliniques Universitaires St Luc, Bruxelles, Belgique
| | | | - Renaud Touraine
- Service de Génétique, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Marie Claude Potier
- CRICM, CNRS UMR7225, INSERM UMR975, UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jean Maurice Delabar
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
- * E-mail:
| |
Collapse
|
31
|
From abnormal hippocampal synaptic plasticity in down syndrome mouse models to cognitive disability in down syndrome. Neural Plast 2012; 2012:101542. [PMID: 22848844 PMCID: PMC3403629 DOI: 10.1155/2012/101542] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS) is caused by the overexpression of genes on triplicated regions of human chromosome 21 (Hsa21). While the resulting physiological and behavioral phenotypes vary in their penetrance and severity, all individuals with DS have variable but significant levels of cognitive disability. At the core of cognitive processes is the phenomenon of synaptic plasticity, a functional change in the strength at points of communication between neurons. A wide variety of evidence from studies on DS individuals and mouse models of DS indicates that synaptic plasticity is adversely affected in human trisomy 21 and mouse segmental trisomy 16, respectively, an outcome that almost certainly extensively contributes to the cognitive impairments associated with DS. In this review, we will highlight some of the neurophysiological changes that we believe reduce the ability of trisomic neurons to undergo neuroplasticity-related adaptations. We will focus primarily on hippocampal networks which appear to be particularly impacted in DS and where consequently the majority of cellular and neuronal network research has been performed using DS animal models, in particular the Ts65Dn mouse. Finally, we will postulate on how altered plasticity may contribute to the DS cognitive disability.
Collapse
|
32
|
|
33
|
Patel SS, Mahoney LT, Burns TL. Is a shorter atrioventricular septal length an intermediate phenotype in the spectrum of nonsyndromic atrioventricular septal defects? J Am Soc Echocardiogr 2012; 25:782-9. [PMID: 22542274 DOI: 10.1016/j.echo.2012.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Indexed: 10/28/2022]
Abstract
BACKGROUND Atrioventricular septal defects (AVSDs) account for 7% of all congenital cardiovascular malformations. The atrioventricular septum (AVS) is the portion of the septal tissue that separates the right atrium from the left ventricle; deficiency of the AVS contributes to the AVSD phenotype. A study of case and control families was performed to identify whether an intermediate phenotype consisting of a shortened AVS existed in relatives of children with AVSDs. METHODS AVS length (AVSL) was measured on the echocardiograms of clinically unaffected parents and siblings from families that were identified through children with nonsyndromic AVSDs and in families with no histories of congenital heart disease. RESULTS No significant differences were seen between case and control family members in terms of gender, age, weight, and height. AVSLs were significantly shorter in case parents compared with control parents. Similar findings were noted within the sibling groups. There was significant evidence for two-component distributions in the case parent, case sibling, and control sibling groups after standardizing AVSL for age and body surface area. Heritability of AVSL standardized for age and body surface area was 0.82 and 0.71 in nonsyndromic case and control families, respectively. CONCLUSIONS Evidence for two-component distributions from the analysis of AVSL standardized for age and body surface area for case parents and case siblings suggests the presence of an intermediate phenotype for nonsyndromic AVSD. The high heritability in the control families suggests that there may be polygenic involvement in the determination of AVSL. Broadening the definition of AVSD to include those with shortened AVSL may increase the power of genetic association and mapping studies to identify susceptibility genes for AVSD.
Collapse
Affiliation(s)
- Sonali S Patel
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | | | |
Collapse
|
34
|
Sheppard O, Plattner F, Rubin A, Slender A, Linehan JM, Brandner S, Tybulewicz VL, Fisher EM, Wiseman FK. Altered regulation of tau phosphorylation in a mouse model of down syndrome aging. Neurobiol Aging 2012; 33:828.e31-44. [PMID: 21843906 PMCID: PMC3314962 DOI: 10.1016/j.neurobiolaging.2011.06.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/05/2011] [Accepted: 06/23/2011] [Indexed: 12/20/2022]
Abstract
Down syndrome (DS) results from trisomy of human chromosome 21 (Hsa21) and is associated with an increased risk of Alzheimer's disease (AD). Here, using the unique transchromosomic Tc1 mouse model of DS we investigate the influence of trisomy of Hsa21 on the protein tau, which is hyperphosphorylated in Alzheimer's disease. We show that in old, but not young, Tc1 mice increased phosphorylation of tau occurs at a site suggested to be targeted by the Hsa21 encoded kinase, dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A). We show that DYRK1A is upregulated in young and old Tc1 mice, but that young trisomic mice may be protected from accumulating aberrantly phosphorylated tau. We observe that the key tau kinase, glycogen synthase kinase3-β (GSK-3β) is aberrantly phosphorylated at an inhibitory site in the aged Tc1 brain which may reduce total glycogen synthase kinase3-β activity. It is possible that a similar mechanism may also occur in people with DS.
Collapse
Affiliation(s)
- Olivia Sheppard
- University College London Institute of Neurology, London, UK
| | | | - Anna Rubin
- University College London Institute of Neurology, London, UK
| | - Amy Slender
- MRC National Institute for Medical Research, London, UK
| | | | | | | | | | | |
Collapse
|
35
|
Kuhn S, Ingham N, Pearson S, Gribble SM, Clayton S, Steel KP, Marcotti W. Auditory function in the Tc1 mouse model of down syndrome suggests a limited region of human chromosome 21 involved in otitis media. PLoS One 2012; 7:e31433. [PMID: 22348087 PMCID: PMC3279367 DOI: 10.1371/journal.pone.0031433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/08/2012] [Indexed: 11/19/2022] Open
Abstract
Down syndrome is one of the most common congenital disorders leading to a wide range of health problems in humans, including frequent otitis media. The Tc1 mouse carries a significant part of human chromosome 21 (Hsa21) in addition to the full set of mouse chromosomes and shares many phenotypes observed in humans affected by Down syndrome with trisomy of chromosome 21. However, it is unknown whether Tc1 mice exhibit a hearing phenotype and might thus represent a good model for understanding the hearing loss that is common in Down syndrome. In this study we carried out a structural and functional assessment of hearing in Tc1 mice. Auditory brainstem response (ABR) measurements in Tc1 mice showed normal thresholds compared to littermate controls and ABR waveform latencies and amplitudes were equivalent to controls. The gross anatomy of the middle and inner ears was also similar between Tc1 and control mice. The physiological properties of cochlear sensory receptors (inner and outer hair cells: IHCs and OHCs) were investigated using single-cell patch clamp recordings from the acutely dissected cochleae. Adult Tc1 IHCs exhibited normal resting membrane potentials and expressed all K(+) currents characteristic of control hair cells. However, the size of the large conductance (BK) Ca(2+) activated K(+) current (I(K,f)), which enables rapid voltage responses essential for accurate sound encoding, was increased in Tc1 IHCs. All physiological properties investigated in OHCs were indistinguishable between the two genotypes. The normal functional hearing and the gross structural anatomy of the middle and inner ears in the Tc1 mouse contrast to that observed in the Ts65Dn model of Down syndrome which shows otitis media. Genes that are trisomic in Ts65Dn but disomic in Tc1 may predispose to otitis media when an additional copy is active.
Collapse
Affiliation(s)
- Stephanie Kuhn
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Neil Ingham
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Selina Pearson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Susan M. Gribble
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen Clayton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Karen P. Steel
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail: (KPS); (WM)
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (KPS); (WM)
| |
Collapse
|
36
|
Sheppard O, Wiseman FK, Ruparelia A, Tybulewicz VLJ, Fisher EMC. Mouse models of aneuploidy. ScientificWorldJournal 2012; 2012:214078. [PMID: 22262951 PMCID: PMC3259538 DOI: 10.1100/2012/214078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 11/16/2011] [Indexed: 02/07/2023] Open
Abstract
Abnormalities of chromosome copy number are called aneuploidies and make up a large health load on the human population. Many aneuploidies are lethal because the resulting abnormal gene dosage is highly deleterious. Nevertheless, some whole chromosome aneuploidies can lead to live births. Alterations in the copy number of sections of chromosomes, which are also known as segmental aneuploidies, are also associated with deleterious effects. Here we examine how aneuploidy of whole chromosomes and segmental aneuploidy of chromosomal regions are modeled in the mouse. These models provide a whole animal system in which we aim to investigate the complex phenotype-genotype interactions that arise from alteration in the copy number of genes. Although our understanding of this subject is still in its infancy, already research in mouse models is highlighting possible therapies that might help alleviate the cognitive effects associated with changes in gene number. Thus, creating and studying mouse models of aneuploidy and copy number variation is important for understanding what it is to be human, in both the normal and genomically altered states.
Collapse
Affiliation(s)
- Olivia Sheppard
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Frances K. Wiseman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Aarti Ruparelia
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Victor L. J. Tybulewicz
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Elizabeth M. C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
37
|
Zhang L, Fu D, Belichenko PV, Liu C, Kleschevnikov AM, Pao A, Liang P, Clapcote SJ, Mobley WC, Yu YE. Genetic analysis of Down syndrome facilitated by mouse chromosome engineering. Bioeng Bugs 2012; 3:8-12. [PMID: 22126738 DOI: 10.4161/bbug.3.1.17696] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human trisomy 21 is the most frequent live-born human aneuploidy and causes a constellation of disease phenotypes classified as Down syndrome, which include heart defects, myeloproliferative disorder, cognitive disabilities and Alzheimer-type neurodegeneration. Because these phenotypes are associated with an extra copy of a human chromosome, the genetic analysis of Down syndrome has been a major challenge. To complement human genetic approaches, mouse models have been generated and analyzed based on evolutionary conservation between the human and mouse genomes. These efforts have been greatly facilitated by Cre/loxP-mediated mouse chromosome engineering, which may result in the establishment of minimal critical genomic regions and eventually new dosage-sensitive genes associated with Down syndrome phenotypes. The success in genetic analysis of Down syndrome will further enhance our understanding of this disorder and lead to better strategies in developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Li Zhang
- Children's Guild Foundation Down Syndrome Research Program, Buffalo, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lana-Elola E, Watson-Scales SD, Fisher EMC, Tybulewicz VLJ. Down syndrome: searching for the genetic culprits. Dis Model Mech 2011; 4:586-95. [PMID: 21878459 PMCID: PMC3180222 DOI: 10.1242/dmm.008078] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21) and results in a large number of phenotypes, including learning difficulties, cardiac defects, distinguishing facial features and leukaemia. These are likely to result from an increased dosage of one or more of the ∼310 genes present on Hsa21. The identification of these dosage-sensitive genes has become a major focus in DS research because it is essential for a full understanding of the molecular mechanisms underlying pathology, and might eventually lead to more effective therapy. The search for these dosage-sensitive genes is being carried out using both human and mouse genetics. Studies of humans with partial trisomy of Hsa21 have identified regions of this chromosome that contribute to different phenotypes. In addition, novel engineered mouse models are being used to map the location of dosage-sensitive genes, which, in a few cases, has led to the identification of individual genes that are causative for certain phenotypes. These studies have revealed a complex genetic interplay, showing that the diverse DS phenotypes are likely to be caused by increased copies of many genes, with individual genes contributing in different proportions to the variance in different aspects of the pathology.
Collapse
Affiliation(s)
- Eva Lana-Elola
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | |
Collapse
|
39
|
Powell KA, Wilson D. 3-dimensional imaging modalities for phenotyping genetically engineered mice. Vet Pathol 2011; 49:106-15. [PMID: 22146851 DOI: 10.1177/0300985811429814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A variety of 3-dimensional (3D) digital imaging modalities are available for whole-body assessment of genetically engineered mice: magnetic resonance microscopy (MRM), X-ray microcomputed tomography (microCT), optical projection tomography (OPT), episcopic and cryoimaging, and ultrasound biomicroscopy (UBM). Embryo and adult mouse phenotyping can be accomplished at microscopy or near microscopy spatial resolutions using these modalities. MRM and microCT are particularly well-suited for evaluating structural information at the organ level, whereas episcopic and OPT imaging provide structural and functional information from molecular fluorescence imaging at the cellular level. UBM can be used to monitor embryonic development longitudinally in utero. Specimens are not significantly altered during preparation, and structures can be viewed in their native orientations. Technologies for rapid automated data acquisition and high-throughput phenotyping have been developed and continually improve as this exciting field evolves.
Collapse
Affiliation(s)
- K A Powell
- Small Animal Imaging Shared Resource, The James Comprehensive Cancer Center Department of Biomedical Informatics, Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
40
|
Grossman TR, Gamliel A, Wessells RJ, Taghli-Lamallem O, Jepsen K, Ocorr K, Korenberg JR, Peterson KL, Rosenfeld MG, Bodmer R, Bier E. Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet 2011; 7:e1002344. [PMID: 22072978 PMCID: PMC3207880 DOI: 10.1371/journal.pgen.1002344] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/29/2011] [Indexed: 11/19/2022] Open
Abstract
A significant current challenge in human genetics is the identification of interacting genetic loci mediating complex polygenic disorders. One of the best characterized polygenic diseases is Down syndrome (DS), which results from an extra copy of part or all of chromosome 21. A short interval near the distal tip of chromosome 21 contributes to congenital heart defects (CHD), and a variety of indirect genetic evidence suggests that multiple candidate genes in this region may contribute to this phenotype. We devised a tiered genetic approach to identify interacting CHD candidate genes. We first used the well vetted Drosophila heart as an assay to identify interacting CHD candidate genes by expressing them alone and in all possible pairwise combinations and testing for effects on rhythmicity or heart failure following stress. This comprehensive analysis identified DSCAM and COL6A2 as the most strongly interacting pair of genes. We then over-expressed these two genes alone or in combination in the mouse heart. While over-expression of either gene alone did not affect viability and had little or no effect on heart physiology or morphology, co-expression of the two genes resulted in ≈50% mortality and severe physiological and morphological defects, including atrial septal defects and cardiac hypertrophy. Cooperative interactions between DSCAM and COL6A2 were also observed in the H9C2 cardiac cell line and transcriptional analysis of this interaction points to genes involved in adhesion and cardiac hypertrophy. Our success in defining a cooperative interaction between DSCAM and COL6A2 suggests that the multi-tiered genetic approach we have taken involving human mapping data, comprehensive combinatorial screening in Drosophila, and validation in vivo in mice and in mammalian cells lines should be applicable to identifying specific loci mediating a broad variety of other polygenic disorders.
Collapse
Affiliation(s)
- Tamar R. Grossman
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Amir Gamliel
- Howard Hughes Medical Institute, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | | | - Ouarda Taghli-Lamallem
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Kristen Jepsen
- Howard Hughes Medical Institute, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Karen Ocorr
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Julie R. Korenberg
- The Brain Institute, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Kirk L. Peterson
- School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Michael G. Rosenfeld
- Howard Hughes Medical Institute, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Rolf Bodmer
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
41
|
Two ways to use imaging: focusing directly on mechanism, or indirectly via behaviour? Curr Opin Genet Dev 2011; 21:523-9. [DOI: 10.1016/j.gde.2011.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 01/26/2023]
|
42
|
Trisomic and allelic differences influence phenotypic variability during development of Down syndrome mice. Genetics 2011; 189:1487-95. [PMID: 21926299 DOI: 10.1534/genetics.111.131391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Individuals with full or partial Trisomy 21 (Ts21) present with clinical features collectively referred to as Down syndrome (DS), although DS phenotypes vary in incidence and severity between individuals. Differing genetic and phenotypic content in individuals with DS as well as mouse models of DS facilitate the understanding of the correlation between specific genes and phenotypes associated with Ts21. The Ts1Rhr mouse model is trisomic for 33 genes (the "Down syndrome critical region" or DSCR) hypothesized to be responsible for many clinical DS features, including craniofacial dysmorphology with a small mandible. Experiments with Ts1Rhr mice showed that the DSCR was not sufficient to cause all DS phenotypes by identifying uncharacteristic craniofacial abnormalities not found in individuals with DS or other DS mouse models. We hypothesized that the origins of the larger, dysmorphic mandible observed in adult Ts1Rhr mice develop from larger embryonic craniofacial precursors. Because of phenotypic variability seen in subsequent studies with Ts1Rhr mice, we also hypothesized that genetic background differences would alter Ts1Rhr developmental phenotypes. Using Ts1Rhr offspring from two genetic backgrounds, we found differences in mandibular precursor volume as well as total embryonic volume and postnatal body size of Ts1Rhr and nontrisomic littermates. Additionally, we observed increased relative expression of Dyrk1a and differential expression of Ets2 on the basis of the genetic background in the Ts1Rhr mandibular precursor. Our results suggest that trisomic gene content and allelic differences in trisomic or nontrisomic genes influence variability in gene expression and developmental phenotypes associated with DS.
Collapse
|
43
|
Imaging heart development using high-resolution episcopic microscopy. Curr Opin Genet Dev 2011; 21:573-8. [PMID: 21893408 PMCID: PMC3368266 DOI: 10.1016/j.gde.2011.07.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 07/11/2011] [Accepted: 07/14/2011] [Indexed: 11/21/2022]
Abstract
Development of the heart in vertebrate embryos is a complex process in which the organ is continually remodelled as chambers are formed, valves sculpted and connections established to the developing vascular system. Investigating the genetic programmes driving these changes and the environmental factors that may influence them is critical for our understanding of congenital heart disease. A recurrent challenge in this work is how to integrate studies as diverse as those of cardiac gene function and regulation with an appreciation of the localised interactions between cardiac tissues not to mention the manner in which both may be affected by cardiac function itself. Meeting this challenge requires an accurate way to analyse the changes in 3D morphology of the developing heart, which can be swift or protracted and both dramatic or subtle in consequence. Here we review the use of high-resolution episcopic microscopy as a simple and effective means to examine organ structure and one that allows modern computing methods pioneered by clinical imaging to be applied to the embryonic heart.
Collapse
|
44
|
Genetic analysis of Down syndrome-associated heart defects in mice. Hum Genet 2011; 130:623-32. [PMID: 21442329 DOI: 10.1007/s00439-011-0980-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/07/2011] [Indexed: 01/22/2023]
Abstract
Human trisomy 21, the chromosomal basis of Down syndrome (DS), is the most common genetic cause of heart defects. Regions on human chromosome 21 (Hsa21) are syntenically conserved with three regions located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. In this study, we have analyzed the impact of duplications of each syntenic region on cardiovascular development in mice and have found that only the duplication on Mmu16, i.e., Dp(16)1Yey, is associated with heart defects. Furthermore, we generated two novel mouse models carrying a 5.43-Mb duplication and a reciprocal deletion between Tiam1 and Kcnj6 using chromosome engineering, Dp(16Tiam1-Kcnj6)Yey/+ and Df(16Tiam1-Kcnj6)Yey/+, respectively, within the 22.9-Mb syntenic region on Mmu16. We found that Dp(16Tiam1-Kcnj6)Yey/+, but not Dp(16)1Yey/Df(16Tiam1-Kcnj6)Yey, resulted in heart defects, indicating that triplication of the Tiam1-Knj6 region is necessary and sufficient to cause DS-associated heart defects. Our transcriptional analysis of Dp(16Tiam1-Kcnj6)Yey/+ embryos confirmed elevated expression levels for the genes located in the Tiam-Kcnj6 region. Therefore, we established the smallest critical genomic region for DS-associated heart defects to lay the foundation for identifying the causative gene(s) for this phenotype.
Collapse
|
45
|
Duchon A, Pothion S, Brault V, Sharp AJ, Tybulewicz VL, Fisher EM, Herault Y. The telomeric part of the human chromosome 21 from Cstb to Prmt2 is not necessary for the locomotor and short-term memory deficits observed in the Tc1 mouse model of Down syndrome. Behav Brain Res 2011; 217:271-81. [PMID: 21047530 PMCID: PMC3590452 DOI: 10.1016/j.bbr.2010.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 10/06/2010] [Accepted: 10/17/2010] [Indexed: 11/19/2022]
Abstract
Trisomy 21 or Down syndrome (DS) is the most common form of human aneuploid disorder. Increase in the copy number of human chromosome 21 genes leads to several alterations including mental retardation, heart and skeletal dysmorphologies with additional physiological defects. To better understand the genotype and phenotype relationships, several mouse models have been developed, including the transchromosomic Tc1 mouse, which carries an almost complete human chromosome 21, that displays several locomotor and cognitive alterations related to DS. In this report we explore the contribution of the genetic dosage of 47 mouse genes located in the most telomeric part of Hsa21, using a novel model, named Ms4Yah, carrying a deletion of the 2.2Mb Ctsb-Prmt2 genetic interval. We combine this deletion with the Tc1 Hsa21 in a rescue experiment. We could recapitulate most of the Tc1 phenotypes but we found no phenotypes induced by the Ms4Yah and no contribution to the Tc1-induced phenotypes even if we described new alteration in social preference but not in olfaction. Thus we conclude that the genes conserved between mouse and human, found in the most telomeric part of Hsa21, and trisomic in Tc1, are not contributing to the major Tc1 phenotypes, suggesting that the Cstb-Prmt2 region is not playing a major role in locomotor and cognitive deficits found in DS.
Collapse
Affiliation(s)
- Arnaud Duchon
- Institut de Génétique Biologie Moléculaire et Cellulaire, Translational Medicine and Neuroscience Program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Stéphanie Pothion
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie 45071 Orléans, France
| | - Véronique Brault
- Institut de Génétique Biologie Moléculaire et Cellulaire, Translational Medicine and Neuroscience Program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Andrew J. Sharp
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 14-75B, Box 1498, New York, NY 10029, USA
| | | | | | - Yann Herault
- Institut de Génétique Biologie Moléculaire et Cellulaire, Translational Medicine and Neuroscience Program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie 45071 Orléans, France
- Institut Clinique de la Souris, ICS, 1 rue Laurent Fries, 67404 Illkirch, France
| |
Collapse
|
46
|
MESH Headings
- Abnormalities, Multiple
- Animals
- Chromosomes, Human, Pair 21
- Disease Models, Animal
- Down Syndrome/embryology
- Down Syndrome/genetics
- Embryo, Mammalian/abnormalities
- Endocardial Cushion Defects/embryology
- Endocardial Cushion Defects/genetics
- Fetal Heart/abnormalities
- Genotype
- Gestational Age
- Heart Septal Defects, Atrial/embryology
- Heart Septal Defects, Atrial/genetics
- Heart Septal Defects, Ventricular/embryology
- Heart Septal Defects, Ventricular/genetics
- Humans
- Imaging, Three-Dimensional
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Microscopy/methods
- Morphogenesis
- Phenotype
Collapse
|