1
|
Dias P, Meng X, Selimi Z, Struckman H, Veeraraghavan R, Radwański PB. Lamotrigine promotes reentrant ventricular tachycardia in murine hearts. Epilepsia 2025. [PMID: 39887338 DOI: 10.1111/epi.18295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVE In 2021, the US Food and Drug Administration issued a safety warning concerning lamotrigine use in patients with underlying cardiac disorders. This warning was based on in vitro data that predicted class Ib antiarrhythmic activity for lamotrigine. Therefore, we investigated the proarrhythmic potential of lamotrigine in the murine heart and compared its effect with flecainide. METHODS Murine hearts were perfused with clinically relevant concentrations of lamotrigine 3.8 μg/mL (15 μmol·L-1) or flecainide .4 μg/mL (1 μmol·L-1). RESULTS Ex vivo electrocardiography revealed a high prevalence of ventricular tachycardia (VT) in lamotrigine-perfused hearts (7/9 hearts), whereas only two hearts exposed to flecainide evidenced VT. Optical voltage mapping showed that lamotrigine preferentially decreased ventricular conduction velocity (CV) in the longitudinal direction at all pacing frequencies tested (-22% ± 8.6%, -30% ± 15.4%, and -33% ± 13.3% for pacing frequency of 200-ms, 180-ms, and 150-ms cycle length, respectively, p ≤ .05) compared to the transverse direction, which only slowed CV at the fastest pacing frequency (-15% ± 16% for pacing frequency of 150-ms cycle length, p ≤ .01). Notably, the preferential CV slowing in the longitudinal direction altered the anisotropic ratio, giving rise to a functional substrate for reentrant VT. In contrast, flecainide slowed CV uniformly in both longitudinal and transverse directions (-30% ± 8.5% vs. -27% ± 5.3%, -32% ± 9.4% vs. -29% ± 6.9%, and - 29% ± 8.3% vs. -27% ± 10% for pacing frequency of 200-ms, 180-ms, and 150-ms cycle length, respectively, p ≤ .05). SIGNIFICANCE Our findings provide mechanistic insight into the proarrhythmic impact of lamotrigine.
Collapse
Affiliation(s)
- Patrícia Dias
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Xiaolei Meng
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Zoja Selimi
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Heather Struckman
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, College of Engineering, Ohio State University, Columbus, Ohio, USA
| | - Rengasayee Veeraraghavan
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, College of Engineering, Ohio State University, Columbus, Ohio, USA
| | - Przemysław B Radwański
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Munger MA, Olğar Y, Koleske ML, Struckman HL, Mandrioli J, Lou Q, Bonila I, Kim K, Ramos Mondragon R, Priori SG, Volpe P, Valdivia HH, Biskupiak J, Carnes CA, Veeraraghavan R, Györke S, Radwański PB. Tetrodotoxin-Sensitive Neuronal-Type Na + Channels: A Novel and Druggable Target for Prevention of Atrial Fibrillation. J Am Heart Assoc 2020; 9:e015119. [PMID: 32468902 PMCID: PMC7429002 DOI: 10.1161/jaha.119.015119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Atrial fibrillation (AF) is a comorbidity associated with heart failure and catecholaminergic polymorphic ventricular tachycardia. Despite the Ca2+‐dependent nature of both of these pathologies, AF often responds to Na+ channel blockers. We investigated how targeting interdependent Na+/Ca2+ dysregulation might prevent focal activity and control AF. Methods and Results We studied AF in 2 models of Ca2+‐dependent disorders, a murine model of catecholaminergic polymorphic ventricular tachycardia and a canine model of chronic tachypacing‐induced heart failure. Imaging studies revealed close association of neuronal‐type Na+ channels (nNav) with ryanodine receptors and Na+/Ca2+ exchanger. Catecholamine stimulation induced cellular and in vivo atrial arrhythmias in wild‐type mice only during pharmacological augmentation of nNav activity. In contrast, catecholamine stimulation alone was sufficient to elicit atrial arrhythmias in catecholaminergic polymorphic ventricular tachycardia mice and failing canine atria. Importantly, these were abolished by acute nNav inhibition (tetrodotoxin or riluzole) implicating Na+/Ca2+ dysregulation in AF. These findings were then tested in 2 nonrandomized retrospective cohorts: an amyotrophic lateral sclerosis clinic and an academic medical center. Riluzole‐treated patients adjusted for baseline characteristics evidenced significantly lower incidence of arrhythmias including new‐onset AF, supporting the preclinical results. Conclusions These data suggest that nNaVs mediate Na+‐Ca2+ crosstalk within nanodomains containing Ca2+ release machinery and, thereby, contribute to AF triggers. Disruption of this mechanism by nNav inhibition can effectively prevent AF arising from diverse causes.
Collapse
Affiliation(s)
- Mark A Munger
- Departments of Pharmacotherapy and Internal Medicine University of Utah Health Sciences Center Salt Lake City UT
| | - Yusuf Olğar
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Division of Pharmacy Practice and Sciences College of Pharmacy The Ohio State University Columbus OH
| | - Megan L Koleske
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Division of Pharmacy Practice and Sciences College of Pharmacy The Ohio State University Columbus OH
| | - Heather L Struckman
- Department of Biomedical Engineering College of Engineering The Ohio State University Columbus OH
| | - Jessica Mandrioli
- Department of Neuroscience St. Agostino Estense Hospital Azienda Ospedaliero Universitaria di Modena Italy
| | - Qing Lou
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Department of Physiology and Cell Biology College of Medicine The Ohio State University Columbus OH
| | - Ingrid Bonila
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Department of Physiology and Cell Biology College of Medicine The Ohio State University Columbus OH
| | - Kibum Kim
- Department of Pharmacotherapy University of Utah Health Sciences Center Salt Lake City UT
| | - Roberto Ramos Mondragon
- Department of Internal Medicine and of Molecular & Integrative Physiology University of Michigan Ann Arbor MI
| | - Silvia G Priori
- Molecular Cardiology Istituti Clinici Scientifici Maugeri IRCCS University of Pavia Italy.,Department of Molecular Medicine University of Pavia Italy
| | - Pompeo Volpe
- Department of Biomedical Sciences University of Padova Italy
| | - Héctor H Valdivia
- Department of Internal Medicine and of Molecular & Integrative Physiology University of Michigan Ann Arbor MI
| | - Joseph Biskupiak
- Department of Pharmacotherapy University of Utah Health Sciences Center Salt Lake City UT
| | - Cynthia A Carnes
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Division of Pharmacy Practice and Sciences College of Pharmacy The Ohio State University Columbus OH
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering College of Engineering The Ohio State University Columbus OH.,Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH
| | - Sándor Györke
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Department of Physiology and Cell Biology College of Medicine The Ohio State University Columbus OH
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Division of Pharmacy Practice and Sciences College of Pharmacy The Ohio State University Columbus OH.,Department of Physiology and Cell Biology College of Medicine The Ohio State University Columbus OH
| |
Collapse
|
3
|
Struckman HL, Baine S, Thomas J, Mezache L, Mykytyn K, Györke S, Radwański PB, Veeraraghavan R. Super-Resolution Imaging Using a Novel High-Fidelity Antibody Reveals Close Association of the Neuronal Sodium Channel Na V1.6 with Ryanodine Receptors in Cardiac Muscle. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:157-165. [PMID: 31931893 PMCID: PMC7061261 DOI: 10.1017/s1431927619015289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The voltage-gated sodium channel [pore-forming subunit of the neuronal voltage-gated sodium channel (NaV1.6)] has recently been found in cardiac myocytes. Emerging studies indicate a role for NaV1.6 in ionic homeostasis as well as arrhythmogenesis. Little is known about the spatial organization of these channels in cardiac muscle, mainly due to the lack of high-fidelity antibodies. Therefore, we developed and rigorously validated a novel rabbit polyclonal NaV1.6 antibody and undertook super-resolution microscopy studies of NaV1.6 localization in cardiac muscle. We developed and validated a novel rabbit polyclonal antibody against a C-terminal epitope on the neuronal sodium channel 1.6 (NaV1.6). Raw sera showed high affinity in immuno-fluorescence studies, which was improved with affinity purification. The antibody was rigorously validated for specificity via multiple approaches. Lastly, we used this antibody in proximity ligation assay (PLA) and super-resolution STochastic Optical Reconstruction Microscopy (STORM) studies, which revealed enrichment of NaV1.6 in close proximity to ryanodine receptor (RyR2), a key calcium (Ca2+) cycling protein, in cardiac myocytes. In summary, our novel NaV1.6 antibody demonstrates high degrees of specificity and fidelity in multiple preparations. It enabled multimodal microscopic studies and revealed that over half of the NaV1.6 channels in cardiac myocytes are located within 100 nm of ryanodine receptor Ca2+ release channels.
Collapse
Affiliation(s)
- Heather L. Struckman
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, US
| | - Stephen Baine
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, US
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, US
| | - Justin Thomas
- Division of Pharmacy Practice and Sciences, College of Pharmacy, The Ohio State University, Columbus, OH, US
| | - Louisa Mezache
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, US
| | - Kirk Mykytyn
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, US
| | - Sándor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, US
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, US
| | - Przemysław B. Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, US
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, US
- Division of Pharmacy Practice and Sciences, College of Pharmacy, The Ohio State University, Columbus, OH, US
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, US
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, US
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, US
| |
Collapse
|
4
|
Radwański PB, Johnson CN, Györke S, Veeraraghavan R. Cardiac Arrhythmias as Manifestations of Nanopathies: An Emerging View. Front Physiol 2018; 9:1228. [PMID: 30233404 PMCID: PMC6131669 DOI: 10.3389/fphys.2018.01228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
A nanodomain is a collection of proteins localized within a specialized, nanoscale structural environment, which can serve as the functional unit of macroscopic physiologic processes. We are beginning to recognize the key roles of cardiomyocyte nanodomains in essential processes of cardiac physiology such as electrical impulse propagation and excitation–contraction coupling (ECC). There is growing appreciation of nanodomain dysfunction, i.e., nanopathy, as a mechanistic driver of life-threatening arrhythmias in a variety of pathologies. Here, we offer an overview of current research on the role of nanodomains in cardiac physiology with particular emphasis on: (1) sodium channel-rich nanodomains within the intercalated disk that participate in cell-to-cell electrical coupling and (2) dyadic nanodomains located along transverse tubules that participate in ECC. The beat to beat function of cardiomyocytes involves three phases: the action potential, the calcium transient, and mechanical contraction/relaxation. In all these phases, cell-wide function results from the aggregation of the stochastic function of individual proteins. While it has long been known that proteins that exist in close proximity influence each other’s function, it is increasingly appreciated that there exist nanoscale structures that act as functional units of cardiac biophysical phenomena. Termed nanodomains, these structures are collections of proteins, localized within specialized nanoscale structural environments. The nano-environments enable the generation of localized electrical and/or chemical gradients, thereby conferring unique functional properties to these units. Thus, the function of a nanodomain is determined by its protein constituents as well as their local structural environment, adding an additional layer of complexity to cardiac biology and biophysics. However, with the emergence of experimental techniques that allow direct investigation of structure and function at the nanoscale, our understanding of cardiac physiology and pathophysiology at these scales is rapidly advancing. Here, we will discuss the structure and functions of multiple cardiomyocyte nanodomains, and novel strategies that target them for the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Przemysław B Radwański
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Christopher N Johnson
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Vanderbilt Center for Arrhythmia Research and Therapeutics, Nashville, TN, United States
| | - Sándor Györke
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Rengasayee Veeraraghavan
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Koleske M, Bonilla I, Thomas J, Zaman N, Baine S, Knollmann BC, Veeraraghavan R, Györke S, Radwański PB. Tetrodotoxin-sensitive Na vs contribute to early and delayed afterdepolarizations in long QT arrhythmia models. J Gen Physiol 2018; 150:991-1002. [PMID: 29793933 PMCID: PMC6028491 DOI: 10.1085/jgp.201711909] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023] Open
Abstract
Neuronal Na+ channels contribute to catecholaminergic polymorphic ventricular tachycardia in the heart, but their role in other types of arrhythmias is unknown. Koleske et al. show that they contribute to early and delayed afterdepolarizations common to long QT, catecholaminergic polymorphic ventricular tachycardia, and overlap phenotypes. Recent evidence suggests that neuronal Na+ channels (nNavs) contribute to catecholamine-promoted delayed afterdepolarizations (DADs) and catecholaminergic polymorphic ventricular tachycardia (CPVT). The newly identified overlap between CPVT and long QT (LQT) phenotypes has stoked interest in the cross-talk between aberrant Na+ and Ca2+ handling and its contribution to early afterdepolarizations (EADs) and DADs. Here, we used Ca2+ imaging and electrophysiology to investigate the role of Na+ and Ca2+ handling in DADs and EADs in wild-type and cardiac calsequestrin (CASQ2)-null mice. In experiments, repolarization was impaired using 4-aminopyridine (4AP), whereas the L-type Ca2+ and late Na+ currents were augmented using Bay K 8644 (BayK) and anemone toxin II (ATX-II), respectively. The combination of 4AP and isoproterenol prolonged action potential duration (APD) and promoted aberrant Ca2+ release, EADs, and DADs in wild-type cardiomyocytes. Similarly, BayK in the absence of isoproterenol induced the same effects in CASQ2-null cardiomyocytes. In vivo, it prolonged the QT interval and, upon catecholamine challenge, precipitated wide QRS polymorphic ventricular tachycardia that resembled human torsades de pointes. Treatment with ATX-II produced similar effects at both the cellular level and in vivo. Importantly, nNav inhibition with riluzole or 4,9-anhydro-tetrodotoxin reduced the incidence of ATX-II–, BayK-, or 4AP-induced EADs, DADs, aberrant Ca2+ release, and VT despite only modestly mitigating APD prolongation. These data reveal the contribution of nNaVs to triggered arrhythmias in murine models of LQT and CPVT-LQT overlap phenotypes. We also demonstrate the antiarrhythmic impact of nNaV inhibition, independent of action potential and QT interval duration, and provide a basis for a mechanistically driven antiarrhythmic strategy.
Collapse
Affiliation(s)
- Megan Koleske
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Ingrid Bonilla
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH
| | - Justin Thomas
- Division of Pharmacy Practice and Sciences, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Naveed Zaman
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Stephen Baine
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University Medical School, Nashville, TN
| | - Rengasayee Veeraraghavan
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Sándor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH .,Division of Pharmacy Practice and Sciences, College of Pharmacy, The Ohio State University, Columbus, OH.,Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| |
Collapse
|
6
|
Campana C, Akar FG. Commentary: Atrial Fibrillation Dynamics and Ionic Block Effects in Six Heterogeneous Human 3D Virtual Atria with Distinct Repolarization Dynamics. Front Bioeng Biotechnol 2017; 5:59. [PMID: 29057224 PMCID: PMC5635327 DOI: 10.3389/fbioe.2017.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/20/2017] [Indexed: 11/26/2022] Open
Affiliation(s)
- Chiara Campana
- Icahn School of Medicine at Mount Sinai, The Cardiovascular Institute, New York, NY, United States
| | - Fadi G. Akar
- Icahn School of Medicine at Mount Sinai, The Cardiovascular Institute, New York, NY, United States
| |
Collapse
|
7
|
Klein MG, Shou M, Stohlman J, Solhjoo S, Haigney M, Tidwell RR, Goldstein RE, Flagg TP, Haigney MC. Role of suppression of the inward rectifier current in terminal action potential repolarization in the failing heart. Heart Rhythm 2017; 14:1217-1223. [PMID: 28396172 DOI: 10.1016/j.hrthm.2017.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The failing heart exhibits an increased arrhythmia susceptibility that is often attributed to action potential (AP) prolongation due to significant ion channel remodeling. The inwardly rectifying K+ current (IK1) has been reported to be reduced, but its contribution to shaping the AP waveform and cell excitability in the failing heart remains unclear. OBJECTIVE The purpose of this study was to define the effect of IK1 suppression on the cardiac AP and excitability in the normal and failing hearts. METHODS We used electrophysiological and pharmacological approaches to investigate IK1 function in a swine tachy-pacing model of heart failure (HF). RESULTS Terminal repolarization of the AP (TRAP; the time constant of the exponential fit to terminal repolarization) was markedly prolonged in both myocytes and arterially perfused wedges from animals with HF. TRAP was increased by 54.1% in HF myocytes (P < .001) and 26.2% in HF wedges (P = .014). The increase in TRAP was recapitulated by the potent and specific IK1 inhibitor, PA-6 (pentamidine analog 6), indicating that IK1 is the primary determinant of the final phase of repolarization. Moreover, we find that IK1 suppression reduced the ratio of effective refractory period to AP duration at 90% of repolarization, permitting re-excitation before full repolarization, reduction of AP upstroke velocity, and likely promotion of slow conduction. CONCLUSION Using an objective measure of terminal repolarization, we conclude that IK1 is the major determinant of the terminal repolarization time course. Moreover, suppression of IK1 prolongs repolarization and reduces postrepolarization refractoriness without marked effects on the overall AP duration. Collectively, these findings demonstrate how IK1 suppression may contribute to arrhythmogenesis in the failing heart.
Collapse
Affiliation(s)
- Michael G Klein
- Division of Cardiology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| | - Matie Shou
- Division of Cardiology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jayna Stohlman
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Soroosh Solhjoo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Myles Haigney
- Division of Cardiology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Richard R Tidwell
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina, Chapel Hill, North Carolina
| | - Robert E Goldstein
- Division of Cardiology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Thomas P Flagg
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mark C Haigney
- Division of Cardiology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
8
|
Veeraraghavan R, Györke S, Radwański PB. Neuronal sodium channels: emerging components of the nano-machinery of cardiac calcium cycling. J Physiol 2017; 595:3823-3834. [PMID: 28195313 DOI: 10.1113/jp273058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/05/2016] [Indexed: 01/07/2023] Open
Abstract
Excitation-contraction coupling is the bridge between cardiac electrical activation and mechanical contraction. It is driven by the influx of Ca2+ across the sarcolemma triggering Ca2+ release from the sarcoplasmic reticulum (SR) - a process termed Ca2+ -induced Ca2+ release (CICR) - followed by re-sequestration of Ca2+ into the SR. The Na+ /Ca2+ exchanger inextricably couples the cycling of Ca2+ and Na+ in cardiac myocytes. Thus, influx of Na+ via voltage-gated Na+ channels (NaV ) has emerged as an important regulator of CICR both in health and in disease. Recent insights into the subcellular distribution of cardiac and neuronal NaV isoforms and their ultrastructural milieu have important implications for the roles of these channels in mediating Ca2+ -driven arrhythmias. This review will discuss functional insights into the role of neuronal NaV isoforms vis-à-vis cardiac NaV s in triggering such arrhythmias and their potential as therapeutic targets in the context of the aforementioned structural observations.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, USA
| | - Sándor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, 473 West 12th Avenue, Room 510, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, 473 West 12th Avenue, Room 510, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Science, College of Pharmacy, Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Kuroda Y, Yuasa S, Watanabe Y, Ito S, Egashira T, Seki T, Hattori T, Ohno S, Kodaira M, Suzuki T, Hashimoto H, Okata S, Tanaka A, Aizawa Y, Murata M, Aiba T, Makita N, Furukawa T, Shimizu W, Kodama I, Ogawa S, Kokubun N, Horigome H, Horie M, Kamiya K, Fukuda K. Flecainide ameliorates arrhythmogenicity through NCX flux in Andersen-Tawil syndrome-iPS cell-derived cardiomyocytes. Biochem Biophys Rep 2017; 9:245-256. [PMID: 28956012 PMCID: PMC5614591 DOI: 10.1016/j.bbrep.2017.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/09/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
Andersen-Tawil syndrome (ATS) is a rare inherited channelopathy. The cardiac phenotype in ATS is typified by a prominent U wave and ventricular arrhythmia. An effective treatment for this disease remains to be established. We reprogrammed somatic cells from three ATS patients to generate induced pluripotent stem cells (iPSCs). Multi-electrode arrays (MEAs) were used to record extracellular electrograms of iPSC-derived cardiomyocytes, revealing strong arrhythmic events in the ATS-iPSC-derived cardiomyocytes. Ca2+ imaging of cells loaded with the Ca2+ indicator Fluo-4 enabled us to examine intracellular Ca2+ handling properties, and we found a significantly higher incidence of irregular Ca2+ release in the ATS-iPSC-derived cardiomyocytes than in control-iPSC-derived cardiomyocytes. Drug testing using ATS-iPSC-derived cardiomyocytes further revealed that antiarrhythmic agent, flecainide, but not the sodium channel blocker, pilsicainide, significantly suppressed these irregular Ca2+ release and arrhythmic events, suggesting that flecainide's effect in these cardiac cells was not via sodium channels blocking. A reverse-mode Na+/Ca2+exchanger (NCX) inhibitor, KB-R7943, was also found to suppress the irregular Ca2+ release, and whole-cell voltage clamping of isolated guinea-pig cardiac ventricular myocytes confirmed that flecainide could directly affect the NCX current (INCX). ATS-iPSC-derived cardiomyocytes recapitulate abnormal electrophysiological phenotypes and flecainide suppresses the arrhythmic events through the modulation of INCX. iPS cells are generated from three patients with ATS. ATS-iPS cell-derived cardiomyocytes show abnormal electrophysiological phenotypes. Flecainide suppresses abnormal electrophysiological phenotypes in ATS-iPS cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Yusuke Kuroda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.,Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan.,Department of Cardiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yasuhide Watanabe
- Division of Pharmacological Science, Department of Health Science, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shogo Ito
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Toru Egashira
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Seki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuhisa Hattori
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Seiko Ohno
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Shiga, Japan.,Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Shiga, Japan
| | - Masaki Kodaira
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyuki Suzuki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.,Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan.,Department of Cardiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Hisayuki Hashimoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Okata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Tanaka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiyasu Aizawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Mitsushige Murata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.,Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Aiba
- Division of Arrhythmia and Electrophysiology, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Naomasa Makita
- Department of Molecular Pathophysiology-1, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Itsuo Kodama
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Satoshi Ogawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Norito Kokubun
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Hitoshi Horigome
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Kaichiro Kamiya
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Effects of zacopride, a moderate I K1 channel agonist, on triggered arrhythmia and contractility in human ventricular myocardium. Pharmacol Res 2016; 115:309-318. [PMID: 27914945 DOI: 10.1016/j.phrs.2016.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/13/2016] [Accepted: 11/20/2016] [Indexed: 11/23/2022]
Abstract
Ventricular tachycardia is the leading cause of sudden arrhythmic death in the U.S. Recently, the moderate IK1 channel activator, zacopride, was shown to suppress triggered ventricular tachycardia in rats. Nonetheless, concerns were raised about the possibility of pro-arrhythmic activity after IK1 channel stimulation based on the promising anti-arrhythmic strategy of IK1 blockade in other animal models. Therefore, the goal of the current study was to investigate the ex-vivo effects of zacopride on triggered arrhythmia and contractility in ventricular human myocardium in order to validate data that was solely obtained from animal models. Application of 100nmol/L isoproterenol and 0.5mmol/L caffeine led to triggered arrhythmia in isolated cardiac muscles from non-failing and end-stage failing hearts. However, the occurrence of arrhythmia in muscles of non-failing hearts was markedly higher than those of end-stage failing hearts. Interestingly, zacopride eliminated the ex-vivo triggered arrhythmia in these muscles of non-failing and failing hearts in a concentration-dependent manner, with an effective IC50 in the range of 28-40μmol/L. Conversely, in the absence of isoproterenol/caffeine, zacopride led to a negative inotropic effect in a concentration-dependent manner. Reduced cardiac contraction was clearly observed at high zacopride concentration of 200μmol/L, along with the occurrence of contractile alternans in muscles of non-failing and failing hearts. Zacopride shows promising antiarrhythmic effects against triggered arrhythmia in human ventricular myocardium. However, in the absence of Ca2+ overload/arrhythmia, zacopride, albeit at high concentrations, decreases the force of contraction and increases the likelihood of occurrence of contractile alternans, which may predispose the heart to contractile dysfunction and/or arrhythmia. Overall, our results represent a key step in translating this drug from the benchtop to the bedside in the research area.
Collapse
|
11
|
Acsai K, Ördög B, Varró A, Nánási PP. Role of the dysfunctional ryanodine receptor - Na(+)-Ca(2+)exchanger axis in progression of cardiovascular diseases: What we can learn from pharmacological studies? Eur J Pharmacol 2016; 779:91-101. [PMID: 26970182 DOI: 10.1016/j.ejphar.2016.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Abnormal Ca(2+)homeostasis is often associated with chronic cardiovascular diseases, such as hypertension, heart failure or cardiac arrhythmias, and typically contributes to the basic ethiology of the disease. Pharmacological targeting of cardiac Ca(2+)handling has great therapeutic potential offering invaluable options for the prevention, slowing down the progression or suppression of the harmful outcomes like life threatening cardiac arrhythmias. In this review we outline the existing knowledge on the involvement of malfunction of the ryanodine receptor and the Na(+)-Ca(2+)exchanger in disturbances of Ca(2+)homeostasis and discuss important proof of concept pharmacological studies targeting these mechanisms in context of hypertension, heart failure, atrial fibrillation and ventricular arrhythmias. We emphasize the promising results of preclinical studies underpinning the potential benefits of the therapeutic strategies based on ryanodine receptor or Na(+)-Ca(2+)exchanger inhibition.
Collapse
Affiliation(s)
- Károly Acsai
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - András Varró
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Péter P Nánási
- Department of Physiology, University of Debrecen, Debrecen, Hungary; Department of Dentistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
12
|
Miyamoto K, Aiba T, Kimura H, Hayashi H, Ohno S, Yasuoka C, Tanioka Y, Tsuchiya T, Yoshida Y, Hayashi H, Tsuboi I, Nakajima I, Ishibashi K, Okamura H, Noda T, Ishihara M, Anzai T, Yasuda S, Miyamoto Y, Kamakura S, Kusano K, Ogawa H, Horie M, Shimizu W. Efficacy and safety of flecainide for ventricular arrhythmias in patients with Andersen-Tawil syndrome with KCNJ2 mutations. Heart Rhythm 2015; 12:596-603. [DOI: 10.1016/j.hrthm.2014.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Indexed: 11/24/2022]
|
13
|
Combined inhibition of Na+ and Ca2+ channels: A novel paradigm for the treatment of incessant ventricular arrhythmias in Andersen-Tawil syndrome. Heart Rhythm 2014; 11:318-20. [DOI: 10.1016/j.hrthm.2013.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Indexed: 12/23/2022]
|
14
|
|
15
|
Decreased RyR2 refractoriness determines myocardial synchronization of aberrant Ca2+ release in a genetic model of arrhythmia. Proc Natl Acad Sci U S A 2013; 110:10312-7. [PMID: 23733959 DOI: 10.1073/pnas.1300052110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dysregulated intracellular Ca(2+) signaling is implicated in a variety of cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia. Spontaneous diastolic Ca(2+) release (DCR) can induce arrhythmogenic plasma membrane depolarizations, although the mechanism responsible for DCR synchronization among adjacent myocytes required for ectopic activity remains unclear. We investigated the synchronization mechanism(s) of DCR underlying untimely action potentials and diastolic contractions (DCs) in a catecholaminergic polymorphic ventricular tachycardia mouse model with a mutation in cardiac calsequestrin. We used a combination of different approaches including single ryanodine receptor channel recording, optical imaging (Ca(2+) and membrane potential), and contractile force measurements in ventricular myocytes and intact cardiac muscles. We demonstrate that DCR occurs in a temporally and spatially uniform manner in both myocytes and intact myocardial tissue isolated from cardiac calsequestrin mutation mice. Such synchronized DCR events give rise to triggered electrical activity that results in synchronous DCs in the myocardium. Importantly, we establish that synchronization of DCR is a result of a combination of abbreviated ryanodine receptor channel refractoriness and the preceding synchronous stimulated Ca(2+) release/reuptake dynamics. Our study reveals how aberrant DCR events can become synchronized in the intact myocardium, leading to triggered activity and the resultant DCs in the settings of a cardiac rhythm disorder.
Collapse
|
16
|
Store-dependent deactivation: cooling the chain-reaction of myocardial calcium signaling. J Mol Cell Cardiol 2012; 58:77-83. [PMID: 23108187 DOI: 10.1016/j.yjmcc.2012.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/11/2012] [Accepted: 10/21/2012] [Indexed: 01/08/2023]
Abstract
In heart cells, Ca(2+) released from the internal storage unit, the sarcoplasmic reticulum (SR) through ryanodine receptor (RyR2) channels is the predominant determinant of cardiac contractility. Evidence obtained in recent years suggests that SR Ca(2+) release is tightly regulated not only by cytosolic Ca(2+) but also by intra-store Ca(2+) concentration. Specifically, Ca(2+)-induced Ca(2+) release (CICR) that relies on auto-catalytic action of Ca(2+) at the cytosolic side of RyR2s is precisely balanced and counteracted by RyR2 deactivation dependent on a reciprocal decrease of Ca(2+) at the luminal side of RyR2s. Dysregulation of this inherently unstable Ca(2+) signaling is considered to be an underlying cause of triggered arrhythmias, and is associated with genetic and acquired forms of sudden cardiac death. In this article, we present an overview of recent advances in our understanding of the regulatory role luminal Ca(2+) plays in Ca(2+) handling, with a particular emphasis on the role of Ca(2+)release refractoriness in aberrant Ca(2+) release.
Collapse
|
17
|
Radwański PB, Greer-Short A, Poelzing S. Inhibition of Na+ channels ameliorates arrhythmias in a drug-induced model of Andersen-Tawil syndrome. Heart Rhythm 2012; 10:255-63. [PMID: 23041575 DOI: 10.1016/j.hrthm.2012.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Andersen-Tawil syndrome (ATS1)-associated ventricular tachycardias (VTs) are initiated by frequent, hypokalemia-exacerbated, premature ventricular activity (PVA). We previously demonstrated that a guinea pig model of drug-induced ATS1 (DI-ATS1) evidenced increased arrhythmias from regions with high Na(+)/Ca(2+)-exchange expression. OBJECTIVE Therefore, we hypothesize that reduced cytosolic Na(+) entry through either cardiac isoform of or tetrodotoxin (TTX)-sensitive Na(+) channels during DI-ATS1 can ameliorate arrhythmia burden. METHODS DI-ATS1 was induced with 10 μM BaCl(2) and 2 mM extracellular K(+). Ca(2+) transients and conduction velocity (CV) were optically mapped with indo-1 and di-4-ANEPPS, respectively, from Langendorff-perfused guinea pig ventricles. RESULTS Nonselective Na(+) channel blockade with 1 μM flecainide reduced amplitude (Ca(A)), slowed left ventricular CV, reduced tissue excitability, and abolished the incidence of VT while decreasing the incidence of PVA relative to DI-ATS1. Selective, TTX-sensitive Na(+) channel blockade with TTX (100 nM) during DI-ATS1 decreased Ca(A) and decreased the inducibility of VTs and PVA relative to DI-ATS1 without slowing CV. Ranolazine altered Ca(A), left ventricular CV, tissue excitability, and reduced inducibility of VT and PVA in a concentration-dependent manner. None of the aforementioned interventions altered diastolic Ca(2+) levels or Ca(2+) transient decay time constant. CONCLUSIONS These data suggest that cytosolic Na(+) entry and its modulation of Ca(2+) handling are necessary for arrhythmogenesis. During the loss of inward-rectifier K(+) current function, not only Na(+)/Ca(2+)-exchange dominance but Na(+) flux may determine arrhythmia burden. Therefore, selective inhibition of TTX-sensitive Na(+) channels may offer a potential therapeutic target to alleviate arrhythmias during states of Ca(2+) overload secondary to loss of inward-rectifier K(+) current function without compromising the excitability reserve.
Collapse
Affiliation(s)
- Przemysław B Radwański
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112-5000, USA
| | | | | |
Collapse
|
18
|
Acute arrhythmogenesis after myocardial infarction in normotensive rats: Influence of high salt intake. Food Chem Toxicol 2012; 50:473-7. [DOI: 10.1016/j.fct.2011.11.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 12/22/2022]
|