1
|
Gao T, Gu R, Wang H, Li L, Zhang B, Hu J, Tian Q, Chang R, Zhang R, Zheng G, Dong H. The Protective Role of Intermedin in Contrast-Induced Acute Kidney Injury: Enhancing Peritubular Capillary Endothelial Cell Adhesion and Integrity Through the cAMP/Rac1 Pathway. Int J Mol Sci 2024; 25:11110. [PMID: 39456892 PMCID: PMC11508126 DOI: 10.3390/ijms252011110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Contrast-induced acute kidney injury (CIAKI) is a common complication with limited treatments. Intermedin (IMD), a peptide belonging to the calcitonin gene-related peptide family, promotes vasodilation and endothelial stability, but its role in mitigating CIAKI remains unexplored. This study investigates the protective effects of IMD in CIAKI, focusing on its mechanisms, particularly the cAMP/Rac1 signaling pathway. Human umbilical vein endothelial cells (HUVECs) were treated with iohexol to simulate kidney injury in vitro. The protective effects of IMD were assessed using CCK8 assay, flow cytometry, ELISA, and Western blotting. A CIAKI rat model was utilized to evaluate renal peritubular capillary endothelial cell injury and renal function through histopathology, immunohistochemistry, immunofluorescence, Western blotting, and transmission electron microscopy. In vitro, IMD significantly enhanced HUVEC viability and mitigated iohexol-induced toxicity by preserving intercellular adhesion junctions and activating the cAMP/Rac1 pathway, with Rac1 inhibition attenuating these protective effects. In vivo, CIAKI caused severe damage to peritubular capillary endothelial cell junctions, impairing renal function. IMD treatment markedly improved renal function, an effect negated by Rac1 inhibition. IMD protects against renal injury in CIAKI by activating the cAMP/Rac1 pathway, preserving peritubular capillary endothelial integrity and alleviating acute renal injury from contrast media. These findings suggest that IMD has therapeutic potential in CIAKI and highlight the cAMP/Rac1 pathway as a promising target for preventing contrast-induced acute kidney injury in at-risk patients, ultimately improving clinical outcomes.
Collapse
Affiliation(s)
- Tingting Gao
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Ruiyuan Gu
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Heng Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 201101, Australia
| | - Lizheng Li
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Bojin Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China;
| | - Jie Hu
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Qinqin Tian
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Runze Chang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Ruijing Zhang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Guoping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 201101, Australia
| | - Honglin Dong
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| |
Collapse
|
2
|
Zhang Z, Li X, He J, Wang S, Wang J, Liu J, Wang Y. Molecular mechanisms of endothelial dysfunction in coronary microcirculation dysfunction. J Thromb Thrombolysis 2023; 56:388-397. [PMID: 37466848 DOI: 10.1007/s11239-023-02862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Coronary microvascular endothelial cells (CMECs) react to changes in coronary blood flow and myocardial metabolites and regulate coronary blood flow by balancing vasoconstrictors-such as endothelin-1-and the vessel dilators prostaglandin, nitric oxide, and endothelium-dependent hyperpolarizing factor. Coronary microvascular endothelial cell dysfunction is caused by several cardiovascular risk factors and chronic rheumatic diseases that impact CMEC blood flow regulation, resulting in coronary microcirculation dysfunction (CMD). The mechanisms of CMEC dysfunction are not fully understood. However, the following could be important mechanisms: the overexpression and activation of nicotinamide adenine dinucleotide phosphate oxidase (Nox), and mineralocorticoid receptors; the involvement of reactive oxygen species (ROS) caused by a decreased expression of sirtuins (SIRT3/SIRT1); forkhead box O3; and a decreased SKCA/IKCA expression in the endothelium-dependent hyperpolarizing factor electrical signal pathway. In addition, p66Shc is an adapter protein that promotes oxidative stress; although there are no studies on its involvement with cardiac microvessels, it is possible it plays an important role in CMD.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Xiangjun Li
- Department of Experimental Pharmacology and Toxicology, College of Pharmacy, Jilin University, Changchun, 130000, China
| | - Jiahuan He
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Shipeng Wang
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Jingyue Wang
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Junqian Liu
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Yushi Wang
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China.
| |
Collapse
|
3
|
Yadunandanan Nair N, Samuel V, Ramesh L, Marib A, David DT, Sundararaman A. Actin cytoskeleton in angiogenesis. Biol Open 2022; 11:bio058899. [PMID: 36444960 PMCID: PMC9729668 DOI: 10.1242/bio.058899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Actin, one of the most abundant intracellular proteins in mammalian cells, is a critical regulator of cell shape and polarity, migration, cell division, and transcriptional response. Angiogenesis, or the formation of new blood vessels in the body is a well-coordinated multi-step process. Endothelial cells lining the blood vessels acquire several new properties such as front-rear polarity, invasiveness, rapid proliferation and motility during angiogenesis. This is achieved by changes in the regulation of the actin cytoskeleton. Actin remodelling underlies the switch between the quiescent and angiogenic state of the endothelium. Actin forms endothelium-specific structures that support uniquely endothelial functions. Actin regulators at endothelial cell-cell junctions maintain the integrity of the blood-tissue barrier while permitting trans-endothelial leukocyte migration. This review focuses on endothelial actin structures and less-recognised actin-mediated endothelial functions. Readers are referred to other recent reviews for the well-recognised roles of actin in endothelial motility, barrier functions and leukocyte transmigration. Actin generates forces that are transmitted to the extracellular matrix resulting in vascular matrix remodelling. In this review, we attempt to synthesize our current understanding of the roles of actin in vascular morphogenesis. We speculate on the vascular bed specific differences in endothelial actin regulation and its role in the vast heterogeneity in endothelial morphology and function across the various tissues of our body.
Collapse
Affiliation(s)
- Nidhi Yadunandanan Nair
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Victor Samuel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Lariza Ramesh
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Areeba Marib
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Deena T. David
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Ananthalakshmy Sundararaman
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| |
Collapse
|
4
|
Zheng C, Xuan W, Chen Z, Zhang R, Huang X, Zhu Y, Ma S, Chen K, Chen L, He M, Lin H, Liao W, Bin J, Liao Y. CX3CL1 Worsens Cardiorenal Dysfunction and Serves as a Therapeutic Target of Canagliflozin for Cardiorenal Syndrome. Front Pharmacol 2022; 13:848310. [PMID: 35370759 PMCID: PMC8971671 DOI: 10.3389/fphar.2022.848310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
The prognosis of cardiorenal dysfunction induced by diabetes mellitus (DM), which belongs to cardiorenal syndrome type 5, is poor and its pathogenesis remains elusive. We have reported that CX3CL1 exacerbated heart failure and direct inhibition of CX3CL1 improved cardiac function. Emerging evidence supports that CX3CL1 is involved in renal impairment. Here we attempt to clarify whether CX3CL1 might be a therapeutic target for cardiorenal dysfunction in diabetes. We found that cardiac and renal CX3CL1 protein levels were significantly increased in both streptozotocin-induced diabetic mice and in non-obese diabetic mice, and that hyperglycemia led to persistent CX3CL1 expression in the heart and kidneys even after it was controlled by insulin. In cultured cardiac and renal cells, soluble CX3CL1 accelerated mitochondrial-dependent apoptosis via activation of the RhoA/ROCK1-Bax signaling pathway and promoted fibrosis through cellular phenotypic trans-differentiation mediated by the TGF-β/Smad pathway. In the two diabetic mouse models, knockout of CX3CL1 receptor CX3CR1 or treatment with an CX3CL1 neutralizing antibody significantly improved cardiorenal dysfunction by inhibiting apoptosis, mitochondrial dysfunction, and fibrosis. Moreover, sodium glucose cotransporter 2 inhibitor canagliflozin significantly downregulated cardiac and renal CX3CL1 expression and improved cardiorenal dysfunction. These findings indicate that CX3CL1 could be a new therapeutic target for diabetes-induced cardiorenal dysfunction.
Collapse
Affiliation(s)
- Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanling Xuan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wanling Xuan, ; Yulin Liao,
| | - Zhenhuan Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, China
| | - Rui Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxia Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingyuan He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wanling Xuan, ; Yulin Liao,
| |
Collapse
|
5
|
Somatostatin Primes Endothelial Cells for Agonist-Induced Hyperpermeability and Angiogenesis In Vitro. Int J Mol Sci 2022; 23:ijms23063098. [PMID: 35328517 PMCID: PMC8949535 DOI: 10.3390/ijms23063098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Somatostatin is an inhibitory peptide, which regulates the release of several hormones, and affects neurotransmission and cell proliferation via its five Gi protein-coupled receptors (SST1-5). Although its endocrine regulatory and anti-tumour effects have been thoroughly studied, little is known about its effect on the vascular system. The aim of the present study was to analyse the effects and potential mechanisms of somatostatin on endothelial barrier function. Cultured human umbilical vein endothelial cells (HUVECs) express mainly SST1 and SST5 receptors. Somatostatin did not affect the basal HUVEC permeability, but primed HUVEC monolayers for thrombin-induced hyperpermeability. Western blot data demonstrated that somatostatin activated the phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt) and p42/44 mitogen-activated protein kinase (MAPK) pathways by phosphorylation. The HUVEC barrier destabilizing effects were abrogated by pre-treating HUVECs with mitogen-activated protein kinase kinase/extracellular signal regulated kinase (MEK/ERK), but not the Akt inhibitor. Moreover, somatostatin pre-treatment amplified vascular endothelial growth factor (VEGF)-induced angiogenesis (3D spheroid formation) in HUVECs. In conclusion, the data demonstrate that HUVECs under quiescence conditions express SST1 and SST5 receptors. Moreover, somatostatin primes HUVECs for thrombin-induced hyperpermeability mainly via the activation of MEK/ERK signalling and promotes HUVEC proliferation and angiogenesis in vitro.
Collapse
|
6
|
Purinergic Regulation of Endothelial Barrier Function. Int J Mol Sci 2021; 22:ijms22031207. [PMID: 33530557 PMCID: PMC7865261 DOI: 10.3390/ijms22031207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Increased vascular permeability is a hallmark of several cardiovascular anomalies, including ischaemia/reperfusion injury and inflammation. During both ischaemia/reperfusion and inflammation, massive amounts of various nucleotides, particularly adenosine 5'-triphosphate (ATP) and adenosine, are released that can induce a plethora of signalling pathways via activation of several purinergic receptors and may affect endothelial barrier properties. The nature of the effects on endothelial barrier function may depend on the prevalence and type of purinergic receptors activated in a particular tissue. In this review, we discuss the influence of the activation of various purinergic receptors and downstream signalling pathways on vascular permeability during pathological conditions.
Collapse
|
7
|
Xiao F, Li H, Feng Z, Huang L, Kong L, Li M, Wang D, Liu F, Zhu Z, Wei Y, Zhang W. Intermedin facilitates hepatocellular carcinoma cell survival and invasion via ERK1/2-EGR1/DDIT3 signaling cascade. Sci Rep 2021; 11:488. [PMID: 33436794 PMCID: PMC7803743 DOI: 10.1038/s41598-020-80066-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most malignant cancer types, hepatocellular carcinoma (HCC) is highly invasive and capable of metastasizing to distant organs. Intermedin (IMD), an endogenous peptide belonging to the calcitonin family, has been suggested playing important roles in cancer cell survival and invasion, including in HCC. However, how IMD affects the behavior of HCC cells and the underlying mechanisms have not been fully elucidated. Here, we show that IMD maintains an important homeostatic state by activating the ERK1/2-EGR1 (early growth response 1) signaling cascade, through which HCC cells acquire a highly invasive ability via significantly enhanced filopodia formation. The inhibition of IMD blocks the phosphorylation of ERK1/2, resulting in EGR1 downregulation and endoplasmic reticulum stress (ER) stress, which is evidenced by the upregulation of ER stress marker DDIT3 (DNA damage-inducible transcript 3). The high level of DDIT3 induces HCC cells into an ER-stress related apoptotic pathway. Along with our previous finding that IMD plays critical roles in the vascular remodeling process that improves tumor blood perfusion, IMD may facilitate the acquisition of increased invasive abilities and a survival benefit by HCC cells, and it is easier for HCC cells to obtain blood supply via the vascular remodeling activities of IMD. According to these results, blockade of IMD activity may have therapeutic potential in the treatment of HCC.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hongyu Li
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Luping Huang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lingmiao Kong
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Min Li
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Denian Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fei Liu
- Department of Liver Surgery, West China Hospital, Sichuan University, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhijun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Yong'gang Wei
- Department of Liver Surgery, West China Hospital, Sichuan University, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Wei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
8
|
Fan S, Qi D, Yu Q, Tang X, Wen X, Wang D, Deng X. Intermedin alleviates the inflammatory response and stabilizes the endothelial barrier in LPS-induced ARDS through the PI3K/Akt/eNOS signaling pathway. Int Immunopharmacol 2020; 88:106951. [PMID: 32892076 DOI: 10.1016/j.intimp.2020.106951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
Abstract
Inflammatory storms and endothelial barrier dysfunction are the central pathophysiological features of acute respiratory distress syndrome (ARDS). Intermedin (IMD), a member of the calcitonin gene-related peptide (CGRP) family, has been reported to alleviate inflammation and protect endothelial cell (EC) integrity. However, the effects of IMD on ARDS have not been clearly elucidated. In the present study, clinical ARDS data were used to explore the relationship between serum IMD levels and disease severity and prognosis, and we then established a model to predict the possibility of hospital survival. Mouse models of ARDS and LPS-challenged endothelial cells were used to analyze the protective effect and underlying mechanism of IMD. We found that in patients with ARDS, increased serum IMD levels were associated with reduced disease severity and increased rates of hospital survival. IMD alleviated the LPS-induced inflammatory response by decreasing proinflammatory cytokines, NF-κB p65 expression and NF-κB p65 nuclear translocation. In addition, IMD stabilized the endothelial barrier by repairing adherens junctions (AJs), cytoskeleton and capillary leakage. IMD exerted protective effects against ARDS on pulmonary endothelial cells, at least partly, through PI3K/Akt/eNOS signaling, while IMD's anti-inflammation effect was mediated through an eNOS-independent mechanism. Our study may provide new therapeutic insight for ARDS treatment.
Collapse
Affiliation(s)
- Shulei Fan
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Yu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xumao Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoting Wen
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xinyu Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Kong L, Xiao F, Wang L, Li M, Wang D, Feng Z, Huang L, Wei Y, Li H, Liu F, Kang Y, Liao X, Zhang W. Intermedin promotes vessel fusion by inducing VE-cadherin accumulation at potential fusion sites and to achieve a dynamic balance between VE-cadherin-complex dissociation/reconstitution. MedComm (Beijing) 2020; 1:84-102. [PMID: 34766111 PMCID: PMC8489673 DOI: 10.1002/mco2.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
To create a closed vascular system, angiogenic sprouts must meet and connect in a process called vessel fusion, which is a prerequisite for establishment of proper blood flow in nascent vessels. However, the molecular machinery underlying this process remains largely unknown. Herein, we report that intermedin (IMD), a calcitonin family member, promotes vessel fusion by inducing endothelial cells (ECs) to enter a "ready-to-anchor" state. IMD promotes vascular endothelial cadherin (VEC) accumulation at the potential fusion site to facilitate anchoring of approaching vessels to each other. Simultaneously, IMD fine-tunes VEC activity to achieve a dynamic balance between VEC complex dissociation and reconstitution in order to widen the anastomotic point. IMD induces persistent VEC phosphorylation. Internalized phospho-VEC preferentially binds to Rab4 and Rab11, which facilitate VEC vesicle recycling back to the cell-cell contact for reconstruction of the VEC complex. This novel mechanism may explain how neovessels contact and fuse to adjacent vessels to create a closed vascular system.
Collapse
Affiliation(s)
- Lingmiao Kong
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics West China Second University Hospital Sichuan University Chengdu China
| | - Lijun Wang
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Min Li
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Denian Wang
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Zhongxue Feng
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Luping Huang
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Yong'gang Wei
- Department of Liver Surgery West China Hospital Sichuan University Chengdu China
| | - Hongyu Li
- Liver Transplantation Center Beijing Friendship Hospital Capital Medical University Chengdu China
| | - Fei Liu
- Department of Liver Surgery West China Hospital Sichuan University Chengdu China
| | - Yan Kang
- Department of Critical Care Medicine West China Hospital Sichuan University Chengdu China
| | - Xuelian Liao
- Department of Critical Care Medicine West China Hospital Sichuan University Chengdu China
| | - Wei Zhang
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| |
Collapse
|
10
|
Wang Y, Wu Z, Tian J, Mi Y, Ren X, Kang J, Zhang W, Zhou X, Wang G, Li R. Intermedin protects HUVECs from ischemia reperfusion injury via Wnt/β-catenin signaling pathway. Ren Fail 2019; 41:159-166. [PMID: 30931679 PMCID: PMC6450471 DOI: 10.1080/0886022x.2019.1587468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Intermedin (IMD) is a member of the calcitonin gene-related peptide (CGRP) superfamily and a pro-angiogenic factor. In the present study, we identified activation of the Wnt/β-catenin signaling pathway by IMD. Adding CoCl2 HUVECs was used to establish an in vitro model. The migration of HUVECs was measured by wound healing assays and transwell migration assays. Capillary formation was measured using tube formation assays. Immunocytochemistry (ICC) analysis was used to evaluate VEGF and RAMP2 expression in HUVECs. The relevant signaling molecules were detected with western blot. Our study shows that IMD could promote H/R impaired HUVECs migration and tube formation in vitro. On the other hand, inhibition of Wnt/β-catenin signaling led to the suppression of this promotion of migration and tube formation. This result suggests that Wnt/β-catenin signaling is correlated to IMD induced angiogenesis. Analysis of results from ICC assays indicated that IMD works through increasing levels of VEGF and RAMP2. Meanwhile, the Wnt/β-catenin signaling specific inhibitor IWR-1-endo was shown to down-regulate VEGF and RAMP2 expression. Western blot results further confirmed the signaling mechanism by which IMD promotes angiogenesis. Thus, Wnt/β-catenin signaling plays an important role in IMD induced neovascularization. The data further suggest that the PI3K axis contributes positively downstream.
Collapse
Affiliation(s)
- Yanhong Wang
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China.,b Department of Nephrology , The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute , Taiyuan , China
| | - Zhijing Wu
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China
| | - Jihua Tian
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China
| | - Yang Mi
- c Department of Urology , First Hospital of Shanxi Medical University , Taiyuan , China
| | - Xiaojun Ren
- d Department of Nephrology , Shanxi Dayi Hospital of Shanxi Medical University , Taiyuan , China
| | - Jing Kang
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China
| | - Wan Zhang
- d Department of Nephrology , Shanxi Dayi Hospital of Shanxi Medical University , Taiyuan , China
| | - Xiaoshuang Zhou
- b Department of Nephrology , The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute , Taiyuan , China
| | - Guiqin Wang
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China
| | - Rongshan Li
- b Department of Nephrology , The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute , Taiyuan , China
| |
Collapse
|
11
|
Telli G, Erac Y, Tel BC, Gumusel B. Mechanism of adrenomedullin 2/intermedin mediated vasorelaxation in rat main pulmonary artery. Peptides 2018; 103:65-71. [PMID: 29588171 DOI: 10.1016/j.peptides.2018.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 11/25/2022]
Abstract
Adrenomedullin 2/intermedin (AM2/IMD) is a member of calcitonin related gene peptide family and an important nitric oxide mediated vasorelaxant in various vascular beds. However, the mechanism of post receptor-interaction is not clear and may differ depending on tissue type and species. In this study, we aimed to investigate the exact mechanism and the role of BKCa and calcium channels on the vasorelaxant effect of AM2/IMD in rat PA. Changes in the AM2/IMD-mediated vasorelaxation were evaluated in the presence of various inhibitors. CGRP(8-37) (10-6 M), L-NAME (10-4 M), ODQ (10-5 M), SQ22536 (10-4 M), H89 (10-6 M), TEA (10-2 M), iberiotoxin (3 × 10-7 M), and verapamil (10-5 M), all partly or completely inhibited the vasorelaxation. The relaxation was also abolished by removal of the endothelium, or in KCl precontracted PAs. AM2/IMD did not elicit vasorelaxation in the Ca2+-free conditions. However, the vasorelaxation was not inhibited with AM(22-52) (10-6 M), 4-AP (3 × 10-3 M), glibenclamide (10-5 M), apamin (3 × 10-7 M), TRAM-34 (10-5 M), and La+3 (10-4 M). AM2/IMD -induced changes in intracellular calcium levels and isometric force were monitored simultaneously in fura-2-loaded, endothelium-intact PAs. The AM2/IMD-induced increase in intracellular Ca2+ concentration was inhibited in the presence of iberiotoxin and verapamil, whereas no change was observed with La3+ incubation. Our data suggest that the cAMP/PKA pathway is one of the important pathways AM2/IMD-induced vasorelaxation. AM2/IMD acts through activation of endothelial BKCa and subsequently causes hyperpolarization of the endothelial cell membrane. The hyperpolarization induces Ca2+ influx, which leads to NO production and subsequent vasorelaxation.
Collapse
Affiliation(s)
- Gokcen Telli
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey
| | - Banu Cahide Tel
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Bulent Gumusel
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
12
|
González-Mariscal L, Raya-Sandino A, González-González L, Hernández-Guzmán C. Relationship between G proteins coupled receptors and tight junctions. Tissue Barriers 2018; 6:e1414015. [PMID: 29420165 DOI: 10.1080/21688370.2017.1414015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tight junctions (TJs) are sites of cell-cell adhesion, constituted by a cytoplasmic plaque of molecules linked to integral proteins that form a network of strands around epithelial and endothelial cells at the uppermost portion of the lateral membrane. TJs maintain plasma membrane polarity and form channels and barriers that regulate the transit of ions and molecules through the paracellular pathway. This structure that regulates traffic between the external milieu and the organism is affected in numerous pathological conditions and constitutes an important target for therapeutic intervention. Here, we describe how a wide array of G protein-coupled receptors that are activated by diverse stimuli including light, ions, hormones, peptides, lipids, nucleotides and proteases, signal through heterotrimeric G proteins, arrestins and kinases to regulate TJs present in the blood-brain barrier, the blood-retinal barrier, renal tubular cells, keratinocytes, lung and colon, and the slit diaphragm of the glomerulus.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Arturo Raya-Sandino
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Laura González-González
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Christian Hernández-Guzmán
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| |
Collapse
|
13
|
Liu Y, Dhall S, Castro A, Chan A, Alamat R, Martins-Green M. Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue. Biol Open 2018; 7:bio.026187. [PMID: 29101099 PMCID: PMC5827262 DOI: 10.1242/bio.026187] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Wound healing is a complex process that involves sequential phases that overlap in time and space and affect each other dynamically at the gene and protein levels. We previously showed that insulin accelerates wound healing by stimulating faster and regenerative healing. One of the processes that insulin stimulates is an increase in monocyte/macrophage chemotaxis. In this study, we performed experiments in vivo and in vitro to elucidate the signaling transduction pathways that are involved in insulin-induced monocyte/macrophage chemotaxis. We found that insulin stimulates THP-1 cell chemotaxis in a dose-dependent and insulin receptor-dependent manner. We also show that the kinases PI3K-Akt, SPAK/JNK, and p38 MAPK are key molecules in the insulin-induced signaling pathways that lead to chemoattraction of the THP-1 cell. Furthermore, both PI3K-Akt and SPAK/JNK signaling involve Rac1 activation, an important molecule in regulating cell motility. Indeed, topical application of Rac1 inhibitor at an early stage during the healing process caused delayed and impaired healing even in the presence of insulin. These results delineate cell and molecular mechanisms involved in insulin-induced chemotaxis of monocyte/macrophage, cells that are critical for proper healing. Summary: Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue, involving -Akt, SPAK/JNK, and p38 MAPK which in turn are involved in Rac1 activation. Furthermore, these results augment our understanding of the insulin-regulated wound inflammatory response.
Collapse
Affiliation(s)
- Yan Liu
- Department of Burn and Plastic Surgery, ShangHai JiaoTong University School of Medicine Ruijin hospital, Shanghai, P.R.China 200025
| | - Sandeep Dhall
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Anthony Castro
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Alex Chan
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Raquelle Alamat
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| |
Collapse
|
14
|
Souilhol C, Harmsen MC, Evans PC, Krenning G. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc Res 2018; 114:565-577. [DOI: 10.1093/cvr/cvx253] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Martin C Harmsen
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| |
Collapse
|
15
|
Zhang SY, Xu MJ, Wang X. Adrenomedullin 2/intermedin: a putative drug candidate for treatment of cardiometabolic diseases. Br J Pharmacol 2017; 175:1230-1240. [PMID: 28407200 DOI: 10.1111/bph.13814] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/15/2017] [Accepted: 03/30/2017] [Indexed: 11/28/2022] Open
Abstract
Adrenomedullin (ADM) 2/intermedin (IMD) is a short peptide that belongs to the CGRP superfamily. Although it shares receptors with CGRP, ADM and amylin, ADM2 has significant and unique functions in the cardiovascular system. In the past decade, the cardiovascular effect of ADM2 has been carefully analysed. In this review, progress in understanding the effects of ADM2 on the cardiovascular system and its protective role in cardiometabolic diseases are summarized. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Ming-Jiang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
16
|
García-Ponce A, Chánez Paredes S, Castro Ochoa KF, Schnoor M. Regulation of endothelial and epithelial barrier functions by peptide hormones of the adrenomedullin family. Tissue Barriers 2016; 4:e1228439. [PMID: 28123925 DOI: 10.1080/21688370.2016.1228439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/16/2023] Open
Abstract
The correct regulation of tissue barriers is of utmost importance for health. Barrier dysfunction accompanies inflammatory disorders and, if not controlled properly, can contribute to the development of chronic diseases. Tissue barriers are formed by monolayers of epithelial cells that separate organs from their environment, and endothelial cells that cover the vasculature, thus separating the blood stream from underlying tissues. Cells within the monolayers are connected by intercellular junctions that are linked by adaptor molecules to the cytoskeleton, and the regulation of these interactions is critical for the maintenance of tissue barriers. Many endogenous and exogenous molecules are known to regulate barrier functions in both ways. Proinflammatory cytokines weaken the barrier, whereas anti-inflammatory mediators stabilize barriers. Adrenomedullin (ADM) and intermedin (IMD) are endogenous peptide hormones of the same family that are produced and secreted by many cell types during physiologic and pathologic conditions. They activate certain G-protein-coupled receptor complexes to regulate many cellular processes such as cytokine production, actin dynamics and junction stability. In this review, we summarize current knowledge about the barrier-stabilizing effects of ADM and IMD in health and disease.
Collapse
Affiliation(s)
- Alexander García-Ponce
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Sandra Chánez Paredes
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Karla Fabiola Castro Ochoa
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| |
Collapse
|
17
|
Koyama T, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Shindo T. Adrenomedullin-RAMP2 System in Vascular Endothelial Cells. J Atheroscler Thromb 2015; 22:647-53. [DOI: 10.5551/jat.29967] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| |
Collapse
|
18
|
Ni X, Zhang J, Tang C, Qi Y. Intermedin/adrenomedullin2: an autocrine/paracrine factor in vascular homeostasis and disease. SCIENCE CHINA-LIFE SCIENCES 2014; 57:781-9. [DOI: 10.1007/s11427-014-4701-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/20/2014] [Indexed: 12/01/2022]
|
19
|
Barvitenko NN, Aslam M, Filosa J, Matteucci E, Nikinmaa M, Pantaleo A, Saldanha C, Baskurt OK. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature. Microcirculation 2014; 20:484-501. [PMID: 23441854 DOI: 10.1111/micc.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/19/2013] [Indexed: 12/20/2022]
Abstract
The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed.
Collapse
|
20
|
Mao SZ, Fan XF, Xue F, Chen R, Chen XY, Yuan GS, Hu LG, Liu SF, Gong YS. Intermedin modulates hypoxic pulmonary vascular remodeling by inhibiting pulmonary artery smooth muscle cell proliferation. Pulm Pharmacol Ther 2013; 27:1-9. [PMID: 23796770 DOI: 10.1016/j.pupt.2013.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/08/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypoxic pulmonary arterial hypertension (PAH) is a disabling disease with limited treatment options. Hypoxic pulmonary vascular remodeling is a major cause of hypoxic PAH. Pharmacological agents that can inhibit the remodeling process may have great therapeutic value. OBJECTIVE To examine the effect of intermedin (IMD), a new calcitonin gene-related peptide family of peptide, on hypoxic pulmonary vascular remodeling. METHODS Rats were exposed to normoxia or hypoxia (∼10% O(2)), or exposed to hypoxia and treated with IMD, administered by an implanted mini-osmotic pump (6.5 μg/rat/day), for 4 weeks. The effects of IMD infusion on the development of hypoxic PAH and right ventricle (RV) hypertrophy, on pulmonary vascular remodeling, on pulmonary artery smooth muscle cell (PASMC) proliferation and apoptosis, and on the activations of l-arginine nitric oxide (NO) pathway and endoplasmic reticulum stress apoptotic pathway were examined. RESULTS Rats exposed to hypoxia developed PAH and RV hypertrophy. IMD treatment alleviated PAH and prevented RV hypertrophy. IMD inhibited hypoxic pulmonary vascular remodeling as indicated by reduced wall thickness and increased lumen diameter of pulmonary arterioles, and decreased muscularization of distal pulmonary vasculature in hypoxia-exposed rats. IMD treatment inhibited PASMC proliferation and promoted PASMC apoptosis. IMD treatment increased tissue level of constitutive NO synthase activity and tissue NO content in lungs, and enhanced l-arginine uptake into pulmonary vascular tissues. IMD treatment increased cellular levels of glucose-regulated protein (GRP) 78 and GRP94, two major markers of endoplasmic reticulum (ER) stress, and increased caspase-12 expression, the ER stress-specific caspase, in lungs and cultured PASMCs. CONCLUSIONS These results demonstrate that IMD treatment attenuates hypoxic pulmonary vascular remodeling, and thereby hypoxic PAH mainly by inhibiting PASMC proliferation. Promotion of PASMC apoptosis may also contribute to the inhibitory effect of IMD. Activations l-arginine-NO pathway and of ER stress-specific apoptosis pathway could be the mechanisms mediating the anti-proliferative and pro-apoptotic effects of IMD.
Collapse
Affiliation(s)
- Sun-Zhong Mao
- Institute of Hypoxia Medicine, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Xiao-Fang Fan
- Institute of Hypoxia Medicine, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Feng Xue
- Institute of Hypoxia Medicine, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Ran Chen
- Institute of Hypoxia Medicine, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Xuan-Ying Chen
- Institute of Hypoxia Medicine, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Gong-Sheng Yuan
- Institute of Hypoxia Medicine, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Liang-Gang Hu
- Institute of Hypoxia Medicine, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Shu Fang Liu
- Institute of Hypoxia Medicine, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China; The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | - Yong-Sheng Gong
- Institute of Hypoxia Medicine, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
21
|
Koyama T, Ochoa-Callejero L, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Iinuma N, Arai T, Yoshizawa T, Iesato Y, Lei Y, Uetake R, Okimura A, Yamauchi A, Tanaka M, Igarashi K, Toriyama Y, Kawate H, Adams RH, Kawakami H, Mochizuki N, Martínez A, Shindo T. Vascular endothelial adrenomedullin-RAMP2 system is essential for vascular integrity and organ homeostasis. Circulation 2013; 127:842-53. [PMID: 23355623 DOI: 10.1161/circulationaha.112.000756] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Revealing the mechanisms underlying the functional integrity of the vascular system could make available novel therapeutic approaches. We previously showed that knocking out the widely expressed peptide adrenomedullin (AM) or receptor activity-modifying protein 2 (RAMP2), an AM-receptor accessory protein, causes vascular abnormalities and is embryonically lethal. Our aim was to investigate the function of the vascular AM-RAMP2 system directly. METHODS AND RESULTS We generated endothelial cell-specific RAMP2 and AM knockout mice (E-RAMP2(-/-) and E-AM(-/-)). Most E-RAMP2(-/-) mice died perinatally. In surviving adults, vasculitis occurred spontaneously. With aging, E-RAMP2(-/-) mice showed severe organ fibrosis with marked oxidative stress and accelerated vascular senescence. Later, liver cirrhosis, cardiac fibrosis, and hydronephrosis developed. We next used a line of drug-inducible E-RAMP2(-/-) mice (DI-E-RAMP2(-/-)) to induce RAMP2 deletion in adults, which enabled us to analyze the initial causes of the aforementioned vascular and organ damage. Early after the induction, pronounced edema with enhanced vascular leakage occurred. In vitro analysis revealed the vascular leakage to be caused by actin disarrangement and detachment of endothelial cells. We found that the AM-RAMP2 system regulates the Rac1-GTP/RhoA-GTP ratio and cortical actin formation and that a defect in this system causes the disruption of actin formation, leading to vascular and organ damage at the chronic stage after the gene deletion. CONCLUSIONS Our findings show that the AM-RAMP2 system is a key determinant of vascular integrity and homeostasis from prenatal stages through adulthood. Furthermore, our models demonstrate how endothelial cells regulate vascular integrity and how their dysregulation leads to organ damage.
Collapse
Affiliation(s)
- Teruhide Koyama
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Aslam M, Schluter KD, Rohrbach S, Rafiq A, Nazli S, Piper HM, Noll T, Schulz R, Gündüz D. Hypoxia-reoxygenation-induced endothelial barrier failure: role of RhoA, Rac1 and myosin light chain kinase. J Physiol 2012; 591:461-73. [PMID: 23090948 DOI: 10.1113/jphysiol.2012.237834] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hypoxia-reoxygenation induces loss of endothelial barrier function and oedema formation, which presents a major impediment for recovery of the organ. The integrity of the endothelial barrier is highly dependent on its contractile machinery and actin dynamics, which are precisely regulated by Rho GTPases. Perturbed activities of these Rho-GTPases under hypoxia-reoxygenation lead to derangement of the actin cytoskeleton and therefore may affect the integrity of the endothelial barrier. The aim of the present study was to analyse the role of these GTPases in regulating endothelial barrier function during hypoxia-reoxygenation in cultured porcine aortic endothelial cells and isolated perfused rat hearts. Hypoxia-reoxygenation induced an increase in albumin permeability of endothelial monolayers accompanied by an activation of the endothelial contractile machinery, derangement of the actin cytoskeleton and loss of VE-cadherin from cellular junctions. Inhibition of contractile activation with ML-7 partially protected against hypoxia-reoxygenation-induced hyperpermeability. Likewise, reoxygenation caused an increase in RhoA and a reduction in Rac1 activity accompanied by enhanced stress fibre formation and loss of peripheral actin. Inhibition of RhoA/rho kinase (Rock) signalling with RhoA or Rock inhibitors led to a complete depolymerisation and derangement of the actin cytoskeleton and worsened hypoxia-reoxygenation-induced hyperpermeability. Activation of Rac1 using a cAMP analogue, 8-CPT-O-Me-cAMP, which specifically activates Epac/Rap1 signalling, restored peripheral localisation of actin and VE-cadherin at cellular junctions and abrogated reoxygenation-induced hyperpermeability. Similar results were reproduced in isolated saline-perfused rat hearts. These data show that activation of Rac1 but not the inhibition of RhoA preserves endothelial integrity against reoxygenation-induced loss of barrier function.
Collapse
Affiliation(s)
- Muhammad Aslam
- Physiologisches Institut, Justus-Liebig-Universität, Giessen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gündüz D, Aslam M, Krieger U, Becker L, Grebe M, Arshad M, Sedding DG, Härtel FV, Abdallah Y, Piper HM, Voss RK, Noll T. Opposing effects of ATP and adenosine on barrier function of rat coronary microvasculature. J Mol Cell Cardiol 2012; 52:962-70. [PMID: 22266063 DOI: 10.1016/j.yjmcc.2012.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 12/07/2011] [Accepted: 01/05/2012] [Indexed: 11/25/2022]
Abstract
ATP can differentially affect the micro- and macrovascular endothelial barrier. It has been shown that it can both increase and/or decrease macromolecule permeability of microvascular endothelial cells and microvessels, in vivo. We hypothesised that the barrier stabilising effect is mediated by ATP itself via P2 receptors, while barrier-disrupting effect is mediated by its metabolite adenosine via adenosine receptors. The effects of ATP, ADP, AMP and adenosine on barrier function were studied in cultured rat coronary microvascular endothelial monolayers (RCEC) in vitro, as well as in rat mesentery vessels, and in rat hearts in vivo. ATP and ADP showed a biphasic effect on permeability of RCEC monolayers with a reduction followed by a later increase in albumin permeability. The permeability decreasing effect of ATP was enhanced by ecto-nucleotidase inhibitor ARL67156 while permeability increasing effect was enhanced by apyrase, an extracellular ecto-nucleotidase. Moreover, the permeability increasing effect was abrogated by adenosine receptor antagonists, 8-phenyltheophylline (8-PT) and DMPX. Adenosine and adenosine receptor agonists 5'-(N-ethylcarboxamido)-adenosine (NECA), CGS21680, and R-PIA enhanced albumin permeability which was antagonised by 8-PT, A(1), and A(2) but not by A(3) receptor antagonists. Likewise, immunofluorescence microscopy of VE-cadherin and actin showed that NECA induces a disturbance of intercellular junctions. Pre-incubation of ATP antagonised the effects of NECA on permeability, actin cytoskeleton and intercellular junctions. Similar effects of the applied substances were observed in rat mesentery artery by determining the vascular leakage using intravital microscopy as well as in rat hearts by assessing myocardial water contents in vivo. In conclusion, the study demonstrates that in RCEC, ATP, ADP, and its metabolite adenosine play opposing roles on endothelial barrier function.
Collapse
Affiliation(s)
- Dursun Gündüz
- Zentrum für Innere Medizin, Abteilung Kardiologie/Angiologie, Universitätsklinikum Giessen und Marburg, Geissen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|