1
|
Callegari S, Feher A, Smolderen KG, Mena-Hurtado C, Sinusas AJ. Multi-modality imaging for assessment of the microcirculation in peripheral artery disease: Bench to clinical practice. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 42:100400. [PMID: 38779485 PMCID: PMC11108852 DOI: 10.1016/j.ahjo.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Peripheral artery disease (PAD) is a highly prevalent disorder with a high risk of mortality and amputation despite the introduction of novel medical and procedural treatments. Microvascular disease (MVD) is common among patients with PAD, and despite the established role as a predictor of amputations and mortality, MVD is not routinely assessed as part of current standard practice. Recent pre-clinical and clinical perfusion and molecular imaging studies have confirmed the important role of MVD in the pathogenesis and outcomes of PAD. The recent advancements in the imaging of the peripheral microcirculation could lead to a better understanding of the pathophysiology of PAD, and result in improved risk stratification, and our evaluation of response to therapies. In this review, we will discuss the current understanding of the anatomy and physiology of peripheral microcirculation, and the role of imaging for assessment of perfusion in PAD, and the latest advancements in molecular imaging. By highlighting the latest advancements in multi-modality imaging of the peripheral microcirculation, we aim to underscore the most promising imaging approaches and highlight potential research opportunities, with the goal of translating these approaches for improved and personalized management of PAD in the future.
Collapse
Affiliation(s)
- Santiago Callegari
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kim G. Smolderen
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Mena-Hurtado
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Huang Y, Chen Z, Lu T, Bi G, Li M, Liang J, Hu Z, Zheng Y, Yin J, Xi J, Lin Z, Zhan C, Jiang W, Wang Q, Tan L. HIF-1α switches the functionality of TGF-β signaling via changing the partners of smads to drive glucose metabolic reprogramming in non-small cell lung cancer. J Exp Clin Cancer Res 2021; 40:398. [PMID: 34930376 PMCID: PMC8690885 DOI: 10.1186/s13046-021-02188-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/19/2021] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Most cancer cells have fundamentally different metabolic characteristics, particularly much higher glycolysis rates than normal tissues, which support the increased demand for biosynthesis and promote tumor progression. We found that transforming growth factor (TGF)-β plays a dual function in regulating glycolysis and cell proliferation in non-small cell lung cancer. METHODS We used the PET/MRI imaging system to observe the glucose metabolism of subcutaneous tumors in nude mice. Energy metabolism of non-small cell lung cancer cell lines detected by the Seahorse XFe96 cell outflow analyzer. Co-immunoprecipitation assays were used to detect the binding of Smads and HIF-1α. Western blotting and qRT-PCR were used to detect the regulatory effects of TGF-β and HIF-1α on c-MYC, PKM1/2, and cell cycle-related genes. RESULTS We discovered that TGF-β could inhibit glycolysis under normoxia while significantly promoting tumor cells' glycolysis under hypoxia in vitro and in vivo. The binding of hypoxia-inducible factor (HIF)-1α to the MH2 domain of phosphorylated Smad3 switched TGF-β function to glycolysis by changing Smad partners under hypoxia. The Smad-p107-E2F4/5 complex that initially inhibited c-Myc expression was transformed into a Smad-HIF-1α complex that promoted the expression of c-Myc. The increased expression of c-Myc promoted alternative splicing of PKM to PKM2, resulting in the metabolic reprogramming of tumor cells. In addition, the TGF-β/Smad signal lost its effect on cell cycle regulatory protein p15/p21. Furthermore, high expression of c-Myc inhibited p15/p21 and promoted the proliferation of tumor cells under hypoxia. CONCLUSIONS Our results indicated that HIF-1α functions as a critical factor in the dual role of TGF-β in tumor cells, and may be used as a biomarker or therapeutic target for TGF-β mediated cancer progression.
Collapse
Affiliation(s)
- Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Yuansheng Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Jiacheng Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China.
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China.
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| |
Collapse
|
3
|
Wang Y, Chu TS, Lin YR, Tsao CH, Tsai CH, Ger TR, Chen LT, Chang WSW, Liao LD. Assessment of Brain Functional Activity Using a Miniaturized Head-Mounted Scanning Photoacoustic Imaging System in Awake and Freely Moving Rats. BIOSENSORS 2021; 11:bios11110429. [PMID: 34821645 PMCID: PMC8615926 DOI: 10.3390/bios11110429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022]
Abstract
Understanding the relationship between brain function and natural behavior remains a significant challenge in neuroscience because there are very few convincing imaging/recording tools available for the evaluation of awake and freely moving animals. Here, we employed a miniaturized head-mounted scanning photoacoustic imaging (hmPAI) system to image real-time cortical dynamics. A compact photoacoustic (PA) probe based on four in-house optical fiber pads and a single custom-made 48-MHz focused ultrasound transducer was designed to enable focused dark-field PA imaging, and miniature linear motors were included to enable two-dimensional (2D) scanning. The total dimensions and weight of the proposed hmPAI system are only approximately 50 × 64 × 48 mm and 58.7 g (excluding cables). Our ex vivo phantom experimental tests revealed that a spatial resolution of approximately 0.225 mm could be achieved at a depth of 9 mm. Our in vivo results further revealed that the diameters of cortical vessels draining into the superior sagittal sinus (SSS) could be clearly imaged and continuously observed in both anesthetized rats and awake, freely moving rats. Statistical analysis showed that the full width at half maximum (FWHM) of the PA A-line signals (relative to the blood vessel diameter) was significantly increased in the selected SSS-drained cortical vessels of awake rats (0.58 ± 0.17 mm) compared with those of anesthetized rats (0.31 ± 0.09 mm) (p < 0.01, paired t-test). In addition, the number of pixels in PA B-scan images (relative to the cerebral blood volume (CBV)) was also significantly increased in the selected SSS-drained blood vessels of awake rats (107.66 ± 23.02 pixels) compared with those of anesthetized rats (81.99 ± 21.52 pixels) (p < 0.01, paired t-test). This outcome may result from a more active brain in awake rats than in anesthetized rats, which caused cerebral blood vessels to transport more blood to meet the increased nutrient demand of the tissue, resulting in an obvious increase in blood vessel volume. This hmPAI system was further validated for utility in the brains of awake and freely moving rats, showing that their natural behavior was unimpaired during vascular imaging, thereby providing novel opportunities for studies of behavior, cognition, and preclinical models of brain diseases.
Collapse
Affiliation(s)
- Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (Y.W.); (T.-S.C.); (C.-H.T.); (C.-H.T.)
| | - Tsung-Sheng Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (Y.W.); (T.-S.C.); (C.-H.T.); (C.-H.T.)
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan;
| | - Yan-Ren Lin
- Department of Emergency and Critical Care Medicine, Changhua Christian Hospital, Changhua County 50006, Taiwan;
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Hui Tsao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (Y.W.); (T.-S.C.); (C.-H.T.); (C.-H.T.)
| | - Chia-Hua Tsai
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (Y.W.); (T.-S.C.); (C.-H.T.); (C.-H.T.)
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan;
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Sanmin District, Kaohsiung City 80708, Taiwan
| | - Wun-Shaing Wayne Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan;
- Correspondence: (W.-S.W.C.); (L.-D.L.)
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (Y.W.); (T.-S.C.); (C.-H.T.); (C.-H.T.)
- Correspondence: (W.-S.W.C.); (L.-D.L.)
| |
Collapse
|
4
|
Qiu S, Li D, Wang Y, Xiu J, Lyu C, Kutty S, Zha D, Wu J. Ultrasound-Mediated Microbubble Cavitation Transiently Reverses Acute Hindlimb Tissue Ischemia through Augmentation of Microcirculation Perfusion via the eNOS/NO Pathway. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1014-1023. [PMID: 33487472 DOI: 10.1016/j.ultrasmedbio.2020.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Ultrasound-mediated microbubble cavitation improves perfusion in chronic limb and myocardial ischemia. The purpose of this study was to determine the effects of ultrasound-mediated microbubble cavitation in acute limb ischemia and investigate the mechanism of action. The animal with acute hindlimb ischemia was established using male Sprague-Dawley rats. The rats were randomly divided into three groups: intermittent high-mechanical-index ultrasound pulses combined with microbubbles (ultrasound [US] + MB group), US alone (US group) and MB alone (MB group). Both hindlimbs were treated for 10 min. Contrast ultrasound perfusion imaging of both hindlimbs was performed immediately and 5, 10, 15, 20 and 25 min after treatment. The role of the nitric oxide (NO) pathway in increasing blood flow in acutely ischemic tissue was evaluated by inhibiting endothelial nitric oxide synthase (eNOS) with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME). In the US + MB group, microvascular blood volume and microvascular blood flow of the ischemic hindlimb were significantly increased after treatment (both p values <0.05), while the microvascular flux rate (β) increased, but not significantly (p > 0.05). The increases were observed immediately after treatment, and had dissipated by 25 min. Changes in the US and MB groups were minimal. Inhibitory studies indicated cavitation increased phospho-eNOS concentration in ischemic hindlimb muscle tissue, and the increase was significantly inhibited by L-NAME (p < 0.05). Ultrasound-mediated microbubble cavitation transiently increases local perfusion in acutely ischemic tissue, mainly by improving microcirculatory perfusion. The eNOS/NO signaling pathway appears to be an important mediator of the effect.
Collapse
Affiliation(s)
- Shifeng Qiu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danxia Li
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuegang Wang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiancheng Xiu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuangye Lyu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shelby Kutty
- Helen B. Taussig Heart Center, Johns Hopkins Hospital and School of Medicine, Baltimore, Maryland, USA
| | - Daogang Zha
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Juefei Wu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Li J, Zhou W, Chen W, Wang H, Zhang Y, Yu T. Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post‑conditioning. Mol Med Rep 2020; 21:1527-1536. [PMID: 32016463 PMCID: PMC7003038 DOI: 10.3892/mmr.2020.10966] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/24/2019] [Indexed: 01/06/2023] Open
Abstract
Ischemic post-conditioning (IPO) and diazoxide post-conditioning (DPO) has been proven to reduce myocardial ischemia reperfusion injury (MIRI); however, the mechanisms of IPO/DPO are still not clear. The present study aimed to investigate whether mitochondrial ATP-sensitive potassium channels (mitoKATP) channels are activated by IPO/DPO, which may further activate the hypoxia inducible factor 1/hypoxic response element (HIF-1/HRE) pathway to mitigate MIRI. Using a Langendorff perfusion device, healthy male (250–300 g) Sprague Dawley rat hearts were randomly divided into the following groups. Group N was aerobically perfused with K-H solution for 120 min. Group ischaemia/reperfusion (I/R) was aerobically perfused for 20 min, then subjected to 40 min hypoxia plus 60 min reperfusion. Group IPO was treated like the I/R group, but with 10 sec of hypoxia plus 10 sec of reperfusion for six rounds before reperfusion. Group DPO was exposed to 50 µM diazoxide for 5 min before reperfusion and otherwise treated the same as group I/R. In groups IPO+5-hydroxydecanoic acid (5HD), DPO+5HD and I/R+5HD, exposure to 100 µM 5HD (a mitoKATP channel specific blocker) for 5 min before reperfusion as described for groups IPO, DPO and I/R, respectively. In groups IPO+2-methoxyestradiol (2ME2), DPO+2ME2 and I/R+2ME2, exposure to 2 µM 2ME2 (a HIF-1α specific blocker) for 10 min before reperfusion as described for groups IPO, DPO and I/R respectively. Cardiac hemodynamics, myocardial injury and the expression of HIF-1/HRE pathway [HIF-1α, heme oxygenase (HO-1), inducible nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF)] were detected in each group. The infarct size and mitochondrial Flameng scores of groups IPO/DPO were significantly decreased compared with the I/R group (P<0.05), but the myocardial protective effects of IPO/DPO could be eliminated by 5HD or 2ME2 (P<0.05). In addition, IPO/DPO could increase the mRNA expression of HIF-1α and the downstream factors of the HIF-1/HRE pathway (the mRNA and protein expression of HO-1, iNOS and VEGF; P<0.05). However, the myocardial protective effects and the activation the HIF-1/HRE pathway mediated by IPO/DPO could be eliminated by 5HD or 2ME2 (P<0.05). Therefore, the activation of the HIF-1/HRE pathway by opening mitoKATP channels may work with the mechanism of IPO/DPO in reducing MIRI.
Collapse
Affiliation(s)
- Jin Li
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Wenjing Zhou
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Wei Chen
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Haiying Wang
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yu Zhang
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Tian Yu
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
6
|
Li X, Guo S, Xu T, He X, Sun Y, Chen X, Cao S, Si X, Liao W, Liao Y, Han Y, Bin J. Therapeutic ultrasound combined with microbubbles improves atherosclerotic plaque stability by selectively destroying the intraplaque neovasculature. Theranostics 2020; 10:2522-2537. [PMID: 32194817 PMCID: PMC7052908 DOI: 10.7150/thno.39553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: The current antiangiogenic therapy for atherosclerotic plaques was mainly achieved by the use of antiangiogenic drugs, but serious side effects have limited the clinical application. The present study investigated whether therapeutic ultrasound (TUS) treatment with appropriate pressure could selectively deplete the neovasculature in vulnerable plaques to improve its stability with no side effects on the body; the underlying mechanisms were also explored. Methods and Results: A mouse model of advanced atherosclerosis was generated by maintaining apolipoprotein E-deficient (ApoE-/-) mice on a hypercholesterolemic diet (HCD). Plaque, skeletal muscle, mesentery and skin tissue from 114 atheroma-bearing mice were subjected to sham therapy, an ultrasound application combined with microbubbles at four different ultrasound pressures (1.0, 2.0, 3.0, 5.0 MPa), or ultrasound at 5.0 MPa alone. Microvessel density (MVD) was assessed by immunofluorescence and immunohistochemical methods. The plaque necrotic center/fiber cap (NC/FC) ratio and vulnerability index were calculated to evaluate plaque vulnerability. Twenty-four hours after TUS treatment at 3.0 MPa, the MVD in the plaque was substantially decreased by 84% (p < 0.05), while there was almost no change in MVD and neovessel density (NVD) in normal tissues, including skeletal muscle, mesentery and skin. Additionally, a marked reduction in the number of immature vessels was observed in the plaques (reduced by 90%, p < 0.05), whereas the number of mature vessels was not significantly decreased. Furthermore, TUS treatment at 3.0 MPa significantly improved plaque stability, as reflected by the NC/FC ratio and vulnerability index, which may be due to the selective destruction of intraplaque neovascularization by TUS treatment, thereby decreasing the extravasation of erythrocytes and leading to vascular inflammation alleviation and thin-cap fibroatheroma reduction. Conclusions: TUS treatment at 3.0 MPa selectively depleted plaque neovessels and improved the stability of vulnerable plaques through a reduction in erythrocyte extravasation and inflammatory mediator influx, with no significant effect on normal tissue.
Collapse
|
7
|
Cao W, Cui S, Yang L, Wu C, Liu J, Yang F, Liu Y, Bin J, Hou FF. Contrast-Enhanced Ultrasound for Assessing Renal Perfusion Impairment and Predicting Acute Kidney Injury to Chronic Kidney Disease Progression. Antioxid Redox Signal 2017; 27:1397-1411. [PMID: 28715949 DOI: 10.1089/ars.2017.7006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIMS Acute kidney injury (AKI) is increasingly recognized as a major risk factor leading to progression to chronic kidney disease (CKD). However, the diagnostic tools for predicting AKI to CKD progression are particularly lacking. Here, we tested the utility of contrast-enhanced ultrasound (CEUS) for predicting progression to CKD after AKI by using both mild (20-min) and severe (45-min) bilateral renal ischemia-reperfusion injury mice. RESULTS Renal perfusion measured by CEUS reduced to 25% ± 7% and 14% ± 6% of the pre-ischemic levels in mild and severe AKI 1 h after ischemia (p < 0.05). Renal perfusion returned to pre-ischemic levels 1 day after mild AKI followed by restoration of kidney function. However, severe AKI caused persistent renal perfusion impairment (60% ± 9% of baseline levels) accompanied by progressive renal fibrosis and sustained decrease in renal function. Renal perfusion at days 1-21 significantly correlated with tubulointerstitial fibrosis 42 days after AKI. For predicting renal fibrosis at day 42, the area under the receiver operating characteristics curve of renal perfusion impairment at day 1 was 0.84. Similar changes in the renal image of CEUS were observed in patients with AKI-CKD progression. INNOVATION This study demonstrates that CEUS enables dynamic and noninvasive detection of renal perfusion impairment after ischemic AKI and the perfusion abnormalities shown by CEUS can early predict the progression to CKD after AKI. CONCLUSIONS These results indicate that CEUS enables the evaluation of renal perfusion impairment associated with CKD after ischemic AKI and may serve as a noninvasive technique for assessing AKI-CKD progression. Antioxid. Redox Signal. 27, 1397-1411.
Collapse
Affiliation(s)
- Wei Cao
- 1 Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University , Guangzhou, P.R. China
| | - Shuang Cui
- 1 Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University , Guangzhou, P.R. China
| | - Li Yang
- 2 Division of Pharmacology, Nanfang Hospital , Southern Medical University, Guangzhou, P.R. China
| | - Chunyi Wu
- 1 Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University , Guangzhou, P.R. China
| | - Jian Liu
- 3 Division of Cardiology, Nanfang Hospital , Southern Medical University, Guangzhou, P.R. China
| | - Fang Yang
- 1 Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University , Guangzhou, P.R. China
| | - Youhua Liu
- 1 Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University , Guangzhou, P.R. China
| | - Jianping Bin
- 3 Division of Cardiology, Nanfang Hospital , Southern Medical University, Guangzhou, P.R. China
| | - Fan Fan Hou
- 1 Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University , Guangzhou, P.R. China
| |
Collapse
|
8
|
Mandic L, Traxler D, Gugerell A, Zlabinger K, Lukovic D, Pavo N, Goliasch G, Spannbauer A, Winkler J, Gyöngyösi M. Molecular Imaging of Angiogenesis in Cardiac Regeneration. CURRENT CARDIOVASCULAR IMAGING REPORTS 2016; 9:27. [PMID: 27683600 PMCID: PMC5018257 DOI: 10.1007/s12410-016-9389-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Myocardial infarction (MI) leading to heart failure displays an important cause of death worldwide. Adequate restoration of blood flow to prevent this transition is a crucial factor to improve long-term morbidity and mortality. Novel regenerative therapies have been thoroughly investigated within the past decades. RECENT FINDINGS Increased angiogenesis in infarcted myocardium has shown beneficial effects on the prognosis of MI; therefore, the proangiogenic capacity of currently tested treatments is of specific interest. Molecular imaging to visualize formation of new blood vessels in vivo displays a promising option to monitor proangiogenic effects of regenerative substances. SUMMARY Based on encouraging results in preclinical models, molecular angiogenesis imaging has recently been applied in a small set of patients. This article reviews recent literature on noninvasive in vivo molecular imaging of angiogenesis after MI as an integral part of cardiac regeneration.
Collapse
Affiliation(s)
- Ljubica Mandic
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Denise Traxler
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Alfred Gugerell
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Katrin Zlabinger
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Dominika Lukovic
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Georg Goliasch
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Andreas Spannbauer
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Johannes Winkler
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
9
|
Yeh JSM, Sennoga CA, McConnell E, Eckersley R, Tang MX, Nourshargh S, Seddon JM, Haskard DO, Nihoyannopoulos P. Quantitative ultrasound molecular imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2478-2496. [PMID: 26044707 DOI: 10.1016/j.ultrasmedbio.2015.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/10/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
Ultrasound molecular imaging using targeting microbubbles is predominantly a semi-quantitative tool, thus limiting its potential diagnostic power and clinical applications. In the work described here, we developed a novel method for acoustic quantification of molecular expression. E-Selectin expression in the mouse heart was induced by lipopolysaccharide. Real-time ultrasound imaging of E-selectin expression in the heart was performed using E-selectin-targeting microbubbles and a clinical ultrasound scanner in contrast pulse sequencing mode at 14 MHz, with a mechanical index of 0.22-0.26. The level of E-selectin expression was quantified using a novel time-signal intensity curve analytical method based on bubble elimination, which consisted of curve-fitting the bi-exponential equation [Formula: see text] to the elimination phase of the myocardial time-signal intensity curve. Ar and Af represent the maximum signal intensities of the retained and freely circulating bubbles in the myocardium, respectively; λr and λf represent the elimination rate constants of the retained and freely circulating bubbles in the myocardium, respectively. Ar correlated strongly with the level of E-selectin expression (|r|>0.8), determined using reverse transcriptase real-time quantitative polymerase chain reaction, and the duration of post-lipopolysaccharide treatment-both linearly related to cell surface E-selectin protein (actual bubble target) concentration in the expression range imaged. Compared with a conventional acoustic quantification method (which used retained bubble signal intensity at 20 min post-bubble injection), this new approach exhibited greater dynamic range and sensitivity and was able to simultaneously quantify other useful characteristics (e.g., the microbubble half-life). In conclusion, quantitative determination of the level of molecular expression is feasible acoustically using a time-signal intensity curve analytical method based on bubble elimination.
Collapse
Affiliation(s)
- James Shue-Min Yeh
- National Heart and Lung Institute, Imperial College London, London, UK; Department of Cardiology, Hammersmith Hospital, London, UK; Imaging Sciences Department, Medical Research Council, Imperial College London, London, UK
| | - Charles A Sennoga
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, UK; Department of Chemistry, Imperial College London, London, UK
| | - Ellen McConnell
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert Eckersley
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, UK
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, UK
| | - Sussan Nourshargh
- National Heart and Lung Institute, Imperial College London, London, UK; William Harvey Research Institute, Queen Mary, University of London, London, UK
| | - John M Seddon
- Department of Chemistry, Imperial College London, London, UK
| | - Dorian O Haskard
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Petros Nihoyannopoulos
- National Heart and Lung Institute, Imperial College London, London, UK; Department of Cardiology, Hammersmith Hospital, London, UK.
| |
Collapse
|