1
|
Hu W, Zhang W, Zhang K, Al-Moubarak E, Zhang Y, Harmer SC, Hancox JC, Zhang H. Evaluating pro-arrhythmogenic effects of the T634S-hERG mutation: insights from a simulation study. Interface Focus 2023; 13:20230035. [PMID: 38106919 PMCID: PMC10722218 DOI: 10.1098/rsfs.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
A mutation to serine of a conserved threonine (T634S) in the hERG K+ channel S6 pore region has been identified as a variant of uncertain significance, showing a loss-of-function effect. However, its potential consequences for ventricular excitation and arrhythmogenesis have not been reported. This study evaluated possible functional effects of the T634S-hERG mutation on ventricular excitation and arrhythmogenesis by using multi-scale computer models of the human ventricle. A Markov chain model of the rapid delayed rectifier potassium current (IKr) was reconstructed for wild-type and T634S-hERG mutant conditions and incorporated into the ten Tusscher et al. models of human ventricles at cell and tissue (1D, 2D and 3D) levels. Possible functional impacts of the T634S-hERG mutation were evaluated by its effects on action potential durations (APDs) and their rate-dependence (APDr) at the cell level; and on the QT interval of pseudo-ECGs, tissue vulnerability to unidirectional conduction block (VW), spiral wave dynamics and repolarization dispersion at the tissue level. It was found that the T634S-hERG mutation prolonged cellular APDs, steepened APDr, prolonged the QT interval, increased VW, destablized re-entry and augmented repolarization dispersion across the ventricle. Collectively, these results imply potential pro-arrhythmic effects of the T634S-hERG mutation, consistent with LQT2.
Collapse
Affiliation(s)
- Wei Hu
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Wenfeng Zhang
- College of Computer and Information Science, Chongqing Normal University, Chongqing, People's Republic of China
| | - Kevin Zhang
- Southmead Hospital, North Bristol Trust, Bristol, UK
| | - Ehab Al-Moubarak
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Stephen C. Harmer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jules C. Hancox
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, People's Republic of China
- Beijing Academy of Artificial Intelligence, Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Zhang S, Lu W, Yang F, Li Z, Wang S, Jiang M, Wang X, Wei Z. Computational analysis of arrhythmogenesis in KCNH2 T618I mutation-associated short QT syndrome and the pharmacological effects of quinidine and sotalol. NPJ Syst Biol Appl 2022; 8:43. [PMID: 36333337 PMCID: PMC9636227 DOI: 10.1038/s41540-022-00254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Short QT syndrome (SQTS) is a rare but dangerous genetic disease. In this research, we conducted a comprehensive in silico investigation into the arrhythmogenesis in KCNH2 T618I-associated SQTS using a multi-scale human ventricle model. A Markov chain model of IKr was developed firstly to reproduce the experimental observations. It was then incorporated into cell, tissue, and organ models to explore how the mutation provided substrates for ventricular arrhythmias. Using this T618I Markov model, we explicitly revealed the subcellular level functional alterations by T618I mutation, particularly the changes of ion channel states that are difficult to demonstrate in wet experiments. The following tissue and organ models also successfully reproduced the changed dynamics of reentrant spiral waves and impaired rate adaptions in hearts of T618I mutation. In terms of pharmacotherapy, we replicated the different effects of a drug under various conditions using identical mathematical descriptions for drugs. This study not only simulated the actions of an effective drug (quinidine) at various physiological levels, but also elucidated why the IKr inhibitor sotalol failed in SQT1 patients through profoundly analyzing its mutation-dependent actions.
Collapse
Affiliation(s)
- Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China
| | - Weigang Lu
- Department of Educational Technology, Ocean University of China, Qingdao, 266100, China.
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
| | - Fei Yang
- School of Mechanical, Electrical, and Information Engineering, Shandong University, Weihai, 264200, China
| | - Zhen Li
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| | - Shuang Wang
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Mingjian Jiang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | | | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
3
|
Wang M, Tu X. The Genetics and Epigenetics of Ventricular Arrhythmias in Patients Without Structural Heart Disease. Front Cardiovasc Med 2022; 9:891399. [PMID: 35783865 PMCID: PMC9240357 DOI: 10.3389/fcvm.2022.891399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmia without structural heart disease is an arrhythmic disorder that occurs in structurally normal heart and no transient or reversible arrhythmia factors, such as electrolyte disorders and myocardial ischemia. Ventricular arrhythmias without structural heart disease can be induced by multiple factors, including genetics and environment, which involve different genetic and epigenetic regulation. Familial genetic analysis reveals that cardiac ion-channel disorder and dysfunctional calcium handling are two major causes of this type of heart disease. Genome-wide association studies have identified some genetic susceptibility loci associated with ventricular tachycardia and ventricular fibrillation, yet relatively few loci associated with no structural heart disease. The effects of epigenetics on the ventricular arrhythmias susceptibility genes, involving non-coding RNAs, DNA methylation and other regulatory mechanisms, are gradually being revealed. This article aims to review the knowledge of ventricular arrhythmia without structural heart disease in genetics, and summarizes the current state of epigenetic regulation.
Collapse
|
4
|
Ramalho NJD, Švecová O, Kula R, Šimurdová M, Šimurda J, Bébarová M. Aminophylline at clinically relevant concentrations affects inward rectifier potassium current in a dual way. Pflugers Arch 2022; 474:303-313. [PMID: 35084562 DOI: 10.1007/s00424-021-02646-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
Bronchodilator aminophylline may induce atrial or less often ventricular arrhythmias. The mechanism of this proarrhythmic side effect has not been fully explained. Modifications of inward rectifier potassium (Kir) currents including IK1 are known to play an important role in arrhythmogenesis; however, no data on the aminophylline effect on these currents have been published. Hence, we tested the effect of aminophylline (3-100 µM) on IK1 in enzymatically isolated rat ventricular myocytes using the whole-cell patch-clamp technique. A dual steady-state effect of aminophylline was observed; either inhibition or activation was apparent in individual cells during the application of aminophylline at a given concentration. The smaller the magnitude of the control IK1, the more likely the activation of the current by aminophylline and vice versa. The effect was reversible; the relative changes at -50 and -110 mV did not differ. Using IK1 channel population model, the dual effect was explained by the interaction of aminophylline with two different channel populations, the first one being inhibited and the second one being activated. Considering various fractions of these two channel populations in individual cells, varying effects observed in the measured cells could be simulated. We propose that the dual aminophylline effect may be related to the direct and indirect effect of the drug on various Kir2.x subunits forming the homo- and heterotetrameric IK1 channels in a single cell. The observed IK1 changes induced by clinically relevant concentrations of aminophylline might contribute to arrhythmogenesis related to the use of this bronchodilator in clinical medicine.
Collapse
Affiliation(s)
- Nuno Jorge Dourado Ramalho
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Olga Švecová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Roman Kula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Brno, Masaryk University, Černopolní 9, 662 63, Brno, Czech Republic
| | - Milena Šimurdová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jiří Šimurda
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Markéta Bébarová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Du C, Rasmusson RL, Bett GC, Franks B, Zhang H, Hancox JC. Investigation of the Effects of the Short QT Syndrome D172N Kir2.1 Mutation on Ventricular Action Potential Profile Using Dynamic Clamp. Front Pharmacol 2022; 12:794620. [PMID: 35115940 PMCID: PMC8806151 DOI: 10.3389/fphar.2021.794620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
The congenital short QT syndrome (SQTS) is a cardiac condition that leads to abbreviated ventricular repolarization and an increased susceptibility to arrhythmia and sudden death. The SQT3 form of the syndrome is due to mutations to the KCNJ2 gene that encodes Kir2.1, a critical component of channels underlying cardiac inwardly rectifying K+ current, IK1. The first reported SQT3 KCNJ2 mutation gives rise to the D172N Kir2.1 mutation, the consequences of which have been studied on recombinant channels in vitro and in ventricular cell and tissue simulations. The aim of this study was to establish the effects of the D172N mutation on ventricular repolarization through real-time replacement of IK1 using the dynamic clamp technique. Whole-cell patch-clamp recordings were made from adult guinea-pig left ventricular myocytes at physiological temperature. Action potentials (APs) were elicited at 1 Hz. Intrinsic IK1 was inhibited with a low concentration (50 µM) of Ba2+ ions, which led to AP prolongation and triangulation, accompanied by a ∼6 mV depolarization of resting membrane potential. Application of synthetic IK1 through dynamic clamp restored AP duration, shape and resting potential. Replacement of wild-type (WT) IK1 with heterozygotic (WT-D172N) or homozygotic (D172N) mutant formulations under dynamic clamp significantly abbreviated AP duration (APD90) and accelerated maximal AP repolarization velocity, with no significant hyperpolarization of resting potential. Across stimulation frequencies from 0.5 to 3 Hz, the relationship between APD90 and cycle length was downward shifted, reflecting AP abbreviation at all stimulation frequencies tested. In further AP measurements at 1 Hz from hiPSC cardiomyocytes, the D172N mutation produced similar effects on APD and repolarization velocity; however, resting potential was moderately hyperpolarized by application of mutant IK1 to these cells. Overall, the results of this study support the major changes in ventricular cell AP repolarization with the D172N predicted from prior AP modelling and highlight the potential utility of using adult ventricular cardiomyocytes for dynamic clamp exploration of functional consequences of Kir2.1 mutations.
Collapse
Affiliation(s)
- Chunyun Du
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Randall L. Rasmusson
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University of New York, University at Buffalo, Buffalo, NY, United States
- Cytocybernetics Inc, North Tonawanda, NY, United States
| | - Glenna C. Bett
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University of New York, University at Buffalo, Buffalo, NY, United States
- Cytocybernetics Inc, North Tonawanda, NY, United States
- Department of Obstetrics and Gynecology, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, NY, United States
| | | | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- *Correspondence: Jules C. Hancox,
| |
Collapse
|
6
|
Fan X, Yang G, Kowitz J, Duru F, Saguner AM, Akin I, Zhou X, El-Battrawy I. Preclinical short QT syndrome models: studying the phenotype and drug-screening. Europace 2021; 24:481-493. [PMID: 34516623 DOI: 10.1093/europace/euab214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/05/2021] [Indexed: 11/14/2022] Open
Abstract
Cardiovascular diseases are the main cause of sudden cardiac death (SCD) in developed and developing countries. Inherited cardiac channelopathies are linked to 5-10% of SCDs, mainly in the young. Short QT syndrome (SQTS) is a rare inherited channelopathy, which leads to both atrial and ventricular tachyarrhythmias, syncope, and even SCD. International European Society of Cardiology guidelines include as diagnostic criteria: (i) QTc ≤ 340 ms on electrocardiogram, (ii) QTc ≤ 360 ms plus one of the follwing, an affected short QT syndrome pathogenic gene mutation, or family history of SQTS, or aborted cardiac arrest, or family history of cardiac arrest in the young. However, further evaluation of the QTc ranges seems to be required, which might be possible by assembling large short QT cohorts and considering genetic screening of the newly described pathogenic mutations. Since the mechanisms underlying the arrhythmogenesis of SQTS is unclear, optimal therapy for SQTS is still lacking. The disease is rare, unclear genotype-phenotype correlations exist in a bevy of cases and the absence of an international short QT registry limit studies on the pathophysiological mechanisms of arrhythmogenesis and therapy of SQTS. This leads to the necessity of experimental models or platforms for studying SQTS. Here, we focus on reviewing preclinical SQTS models and platforms such as animal models, heterologous expression systems, human-induced pluripotent stem cell-derived cardiomyocyte models and computer models as well as three-dimensional engineered heart tissues. We discuss their usefulness for SQTS studies to examine genotype-phenotype associations, uncover disease mechanisms and test drugs. These models might be helpful for providing novel insights into the exact pathophysiological mechanisms of this channelopathy and may offer opportunities to improve the diagnosis and treatment of patients with SQT syndrome.
Collapse
Affiliation(s)
- Xuehui Fan
- University of Mannheim, University of Heidelberg, Germany.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Guoqiang Yang
- Department of Acupuncture and Rehabilitation, Hospital (T.CM.) Affiliated to Southwest Medical University, Luzhou, Sichuan, China.,Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Firat Duru
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Ibrahim Akin
- University of Mannheim, University of Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site, Heidelberg-Mannheim, Germany
| | - Xiaobo Zhou
- University of Mannheim, University of Heidelberg, Germany.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.,DZHK (German Center for Cardiovascular Research) Partner Site, Heidelberg-Mannheim, Germany
| | - Ibrahim El-Battrawy
- University of Mannheim, University of Heidelberg, Germany.,Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Heikhmakhtiar AK, Abrha AT, Jeong DU, Lim KM. Proarrhythmogenic Effect of the L532P and N588K KCNH2 Mutations in the Human Heart Using a 3D Electrophysiological Model. J Korean Med Sci 2020; 35:e238. [PMID: 32715669 PMCID: PMC7384902 DOI: 10.3346/jkms.2020.35.e238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Atrial arrhythmia is a cardiac disorder caused by abnormal electrical signaling and transmission, which can result in atrial fibrillation and eventual death. Genetic defects in ion channels can cause myocardial repolarization disorders. Arrhythmia-associated gene mutations, including KCNH2 gene mutations, which are one of the most common genetic disorders, have been reported. This mutation causes abnormal QT intervals by a gain of function in the rapid delayed rectifier potassium channel (IKr). In this study, we demonstrated that mutations in the KCNH2 gene cause atrial arrhythmia. METHODS The N588K and L532P mutations were induced in the Courtemanche-Ramirez-Nattel (CRN) cell model, which was subjected to two-dimensional and three-dimensional simulations to compare the electrical conduction patterns of the wild-type and mutant-type genes. RESULTS In contrast to the early self-termination of the wild-type conduction waveforms, the conduction waveform of the mutant-type retained the reentrant wave (N588K) and caused a spiral break-up, resulting in irregular wave generation (L532P). CONCLUSION The present study confirmed that the KCNH2 gene mutation increases the vulnerability of the atrial tissue for arrhythmia.
Collapse
Affiliation(s)
- Aulia Khamas Heikhmakhtiar
- School of Computing, Telkom University, Bandung, Jawa Barat, Indonesia
- Research Center of Human Centric Engineering (HUMIC), Telkom University, Bandung, Jawa Barat, Indonesia
| | - Abebe Tekle Abrha
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Korea
| | - Da Un Jeong
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Korea
| | - Ki Moo Lim
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Korea.
| |
Collapse
|
8
|
Heikhmakhtiar AK, Lee CH, Song KS, Lim KM. Computational prediction of the effect of D172N KCNJ2 mutation on ventricular pumping during sinus rhythm and reentry. Med Biol Eng Comput 2020; 58:977-990. [PMID: 32095980 DOI: 10.1007/s11517-020-02124-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/07/2020] [Indexed: 01/30/2023]
Abstract
The understanding of cardiac arrhythmia under genetic mutations has grown in interest among researchers. Previous studies focused on the effect of the D172N mutation on electrophysiological behavior. In this study, we analyzed not only the electrophysiological activity but also the mechanical responses during normal sinus rhythm and reentry conditions by using computational modeling. We simulated four different ventricular conditions including normal case of ten Tusscher model 2006 (TTM), wild-type (WT), heterozygous (WT/D172N), and homozygous D172N mutation. The 2D simulation result (in wire-shaped mesh) showed the WT/D172N and D172N mutation shortened the action potential duration by 14%, and by 23%, respectively. The 3D electrophysiological simulation results showed that the electrical wavelength between TTM and WT conditions were identical. Under sinus rhythm condition, the WT/D172N and D172N reduced the pumping efficacy with a lower left ventricle (LV) and aortic pressures, stroke volume, ejection fraction, and cardiac output. Under the reentry conditions, the WT condition has a small probability of reentry. However, in the event of reentry, WT has shown the most severe condition. Furthermore, we found that the position of the rotor or the scroll wave substantially influenced the ventricular pumping efficacy during arrhythmia. If the rotor stays in the LV, it will cause very poor pumping performance. Graphical Abstract A model of a ventricular electromechanical system. This whole model was established to observe the effect of D172N KCNJ2 mutation on ventricular pumping behavior during sinus rhythm and reentry conditions. The model consists of two components; electrical component and mechanical component. The electrophysiological model based on ten Tusscher et al. with the IK1 D172N KCNJ2 mutation, and the myofilament dynamic (cross-bridge) model based on Rice et al. study. The 3D electrical component is a ventricular geometry based on MRI which composed of nodes representing single-cell with electrophysiological activation. The 3D ventricular mechanic is a finite element mesh composed of single-cells myofilament dynamic model. Both components were coupled with Ca2+ concentration. We used Gaussian points for the calcium interpolation from the electrical mesh to the mechanical mesh.
Collapse
Affiliation(s)
- Aulia Khamas Heikhmakhtiar
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Chung Hao Lee
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, USA
| | - Kwang Soup Song
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Ki Moo Lim
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
9
|
Luo C, Whittaker DG, Liu T, Wang K, Li Y, He Y, Zhang H. Pharmacotherapeutic Effects of Quinidine on Short QT Syndrome by Using Purkinje-Ventricle Model: A Simulation Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2856-2859. [PMID: 31946488 DOI: 10.1109/embc.2019.8857134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Short QT syndrome (SQTS) arises due to gene mutations leading to accelerated ventricular repolarization, and increased risk of cardiac arrhythmias and sudden cardiac death (SCD). The SQT1, SQT2 and SQT3 variants of the SQTS result from inherited gain-of-function mutations (e.g. N588K, V307L and D172N, respectively) to potassium channels. However, the effective management of SQTS remains a challenge, and is incompletely understood. In this study, computational modelling was used to investigate pharmacotherapeutic effects of selected class I drug quinidine on SQT1, SQT2 and SQT3 variants. METHODS AND RESULTS The biophysically-detailed Stewart et al. model of Purkinje fibre cell action potentials and the ten Tusscher et al. model of ventricular cell action potentials were coupled together into a heterogeneous two-dimensional (2D) tissue model. Previously validated IKr, IKs and IK1 channel formulations for SQT1, SQT2 and SQT3 were incorporated in ventricular cell and tissue models. The channel-blocking effects of quinidine on ionic currents were modelled by using Hill coefficient and IC50 values from the literature. At the 10 μM concentration tested in this study, quinidine effectively prolonged the action potential duration (APD) under all the SQT1, SQT2 and SQT3 conditions. In 2D simulations, quinidine prolonged the ventricular repolarization process and prolonged the QT intervals under all SQTS variants conditions. CONCLUSIONS Our findings provide a rational basis for the pursuit of pharmacotherapeutic agent quinidine in the treatment of all SQTS variants.
Collapse
|
10
|
Kurata Y, Tsumoto K, Hayashi K, Hisatome I, Kuda Y, Tanida M. Multiple Dynamical Mechanisms of Phase-2 Early Afterdepolarizations in a Human Ventricular Myocyte Model: Involvement of Spontaneous SR Ca 2+ Release. Front Physiol 2020; 10:1545. [PMID: 31998140 PMCID: PMC6965073 DOI: 10.3389/fphys.2019.01545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Early afterdepolarization (EAD) is known to cause lethal ventricular arrhythmias in long QT syndrome (LQTS). In this study, dynamical mechanisms of EAD formation in human ventricular myocytes (HVMs) were investigated using the mathematical model developed by ten Tusscher and Panfilov (Am J Physiol Heart Circ Physiol 291, 2006). We explored how the rapid (IKr) and slow (IKs) components of delayed-rectifier K+ channel currents, L-type Ca2+ channel current (ICa L), Na+/Ca2+ exchanger current (INCX), and intracellular Ca2+ handling via the sarcoplasmic reticulum (SR) contribute to initiation, termination and modulation of phase-2 EADs during pacing in relation to bifurcation phenomena in non-paced model cells. Parameter-dependent dynamical behaviors of the non-paced model cell were determined by calculating stabilities of equilibrium points (EPs) and limit cycles, and bifurcation points to construct bifurcation diagrams. Action potentials (APs) and EADs during pacing were reproduced by numerical simulations for constructing phase diagrams of the paced model cell dynamics. Results are summarized as follows: (1) A modified version of the ten Tusscher-Panfilov model with accelerated ICaL inactivation could reproduce bradycardia-related EADs in LQTS type 2 and β-adrenergic stimulation-induced EADs in LQTS type 1. (2) Two types of EADs with different initiation mechanisms, ICaL reactivation-dependent and spontaneous SR Ca2+ release-mediated EADs, were detected. (3) Termination of EADs (AP repolarization) during pacing depended on the slow activation of IKs. (4) Spontaneous SR Ca2+ releases occurred at higher Ca2+ uptake rates, attributable to the instability of steady-state intracellular Ca2+ concentrations. Dynamical mechanisms of EAD formation and termination in the paced model cell are closely related to stability changes (bifurcations) in dynamical behaviors of the non-paced model cell, but they are model-dependent. Nevertheless, the modified ten Tusscher-Panfilov model would be useful for systematically investigating possible dynamical mechanisms of EAD-related arrhythmias in LQTS.
Collapse
Affiliation(s)
- Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| | - Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular and Internal Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medical Sciences, Tottori University, Yonago, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
11
|
Luo C, Wang K, Liu T, Zhang H. Computational Analysis of the Action of Chloroquine on Short QT Syndrome Variant 1 and Variant 3 in Human Ventricles. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5462-5465. [PMID: 30441573 DOI: 10.1109/embc.2018.8513572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AIMS The short QT syndrome (SQTS) is a rare genetic disorder associated with arrhythmias and sudden cardiac death (SCD). The SQTI and SQT3, SQTS variants, result from gain-of-function mutations (N588K and D172N, respectively) in the KCNH2-encoded and KCNJ2-encoded potassium channels, in which treatment with potassium channel blocking agents has demonstrated some efficacy. This study used in silico modelling to gain mechanistic insights into the actions of anti-malarial drug chloroquine (CQ) in the setting of SQTI and SQT3. METHODS AND RESULTS The ten Tusscher et al. human ventricle model was modified to a Markov chain formulation of $I_{J}$<r and a Hodgkin-Huxley formulation of $I_{J}$<1 describing SQTI and SQT3 mutant conditions, respectively. Cell models were incorporated into heterogeneous one-dimensional (ID) transmural ventricular strand model to assess prolongation of the QT intervals. The blocking effects of CQ on $I_{J}$<1 and $I_{J}$<r were modelled by using Hill coefficient and IC50 from literatures. At the single cells, CQ prolonged the AP duration (APD) under both the SQTI and SQT3 conditions; at the multi-cell strand level, CQ prolonged the QT intervals and declined the T-wave amplitude under both conditions. CONCLUSIONS This computational study provides novel insights into the efficacy of CQ in the setting of SQTI and SQT3 variants, and indicates that CQ is a useful drug in the treatment of SQTS.
Collapse
|
12
|
Hancox JC, Whittaker DG, Zhang H, Stuart AG. Learning from studying very rare cardiac conditions: the example of short QT syndrome. JOURNAL OF CONGENITAL CARDIOLOGY 2019. [DOI: 10.1186/s40949-019-0024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
13
|
Effects of island-distribution of mid-cardiomyocytes on ventricular electrical excitation associated with the KCNQ1-linked short QT syndrome. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:3684-3687. [PMID: 29060698 DOI: 10.1109/embc.2017.8037657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIMS Short QT syndrome (SQTS) is a new genetic disorder of the electrical system of the heart. To date, there are six gene mutations in ion channels underlying SQTS. However, functional effects of spatial heterogeneities, such as island-distribution of mid-cardiomyocytes (M island) on ventricular electrical excitation in SQTS condition are poorly understood or even not understood at all. Therefore, this study used computational modelling to investigate such possible effects. METHODS The spatial heterogeneities of ventricular tissue was studied by using ten Tusscher et al. MODEL The model was modified to simulate changes to IKs based on experimental observations of KCNQ1 V307L mutation in SQT2 condition. Cell models were coupled to construct a strand tissue, among which 35% were mid-cardiomyocytes, either distributed in island form or in band form, 25% were endocardial (ENDO), and the rest part were epicardial (EPI) cells. RESULTS In simulations, the QT interval was shortened due to the KCNQ1 V307L mutation. The model with M band form failed to reproduce a markedly increase in the T-wave height. However, the model with M island form was able to produce a markedly increased T-wave height with the V307L mutation, matching the major features of SQT clinical ECGs. CONCLUSIONS This study substantiates a causal link between the M island and T-wave amplitude in the KCNQ1-linked short QT syndrome.
Collapse
|
14
|
Ni H, Morotti S, Grandi E. A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research. Front Physiol 2018; 9:958. [PMID: 30079031 PMCID: PMC6062641 DOI: 10.3389/fphys.2018.00958] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
In cardiac electrophysiology, there exist many sources of inter- and intra-personal variability. These include variability in conditions and environment, and genotypic and molecular diversity, including differences in expression and behavior of ion channels and transporters, which lead to phenotypic diversity (e.g., variable integrated responses at the cell, tissue, and organ levels). These variabilities play an important role in progression of heart disease and arrhythmia syndromes and outcomes of therapeutic interventions. Yet, the traditional in silico framework for investigating cardiac arrhythmias is built upon a parameter/property-averaging approach that typically overlooks the physiological diversity. Inspired by work done in genetics and neuroscience, new modeling frameworks of cardiac electrophysiology have been recently developed that take advantage of modern computational capabilities and approaches, and account for the variance in the biological data they are intended to illuminate. In this review, we outline the recent advances in statistical and computational techniques that take into account physiological variability, and move beyond the traditional cardiac model-building scheme that involves averaging over samples from many individuals in the construction of a highly tuned composite model. We discuss how these advanced methods have harnessed the power of big (simulated) data to study the mechanisms of cardiac arrhythmias, with a special emphasis on atrial fibrillation, and improve the assessment of proarrhythmic risk and drug response. The challenges of using in silico approaches with variability are also addressed and future directions are proposed.
Collapse
Affiliation(s)
| | | | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Yuniarti AR, Setianto F, Marcellinus A, Hwang HJ, Choi SW, Trayanova N, Lim KM. Effect of KCNQ1 G229D mutation on cardiac pumping efficacy and reentrant dynamics in ventricles: Computational study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2970. [PMID: 29488358 PMCID: PMC6556218 DOI: 10.1002/cnm.2970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 05/12/2023]
Abstract
There is growing interest in genetic arrhythmia since mutations in gene which encodes the ion channel underlie numerous arrhythmias. Hasegawa et al reported that G229D mutation in KCNQ1 underlies atrial fibrillation due to significant shortening of action potential duration (APD) in atrial cells. Here, we predicted whether KCNQ1 G229D mutation affects ventricular fibrillation generation, although it shortens APD slightly compared with the atrial cell. We analyzed the effects of G229D mutation on electrical and mechanical ventricle behaviors (not considered in previous studies). We compared action potential shapes under wild-type and mutant conditions. Electrical wave propagations through ventricles were analyzed during sinus rhythm and reentrant conditions. IKs enhancement due to G229D mutation shortened the APD in the ventricular cells (6%, 0.3%, and 8% for endo, M, and epi-cells, respectively). The shortened APD contributed to 7% shortening of QT intervals, 29% shortening of wavelengths, 20% decrease in intraventricular pressure, and increase in end-systolic volume 17%, end-diastolic volume 7%, and end-diastolic pressure 11%, which further resulted in reduction in stroke volume as well as cardiac output (28%), ejection fraction 33% stroke work 44%, and ATP consumption 28%. In short, using computational model of the ventricle, we predicted that G229D mutation decreased cardiac pumping efficacy and increased the vulnerability of ventricular fibrillation.
Collapse
Affiliation(s)
- Ana Rahma Yuniarti
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Febrian Setianto
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Aroli Marcellinus
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Han Jeong Hwang
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Seong Wook Choi
- Department of Mechanical & Biomedical Engineering, Kangwon National University, Chuncheon, South Korea
| | - Natalia Trayanova
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ki Moo Lim
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| |
Collapse
|
16
|
Hancox JC, Whittaker DG, Du C, Stuart AG, Zhang H. Emerging therapeutic targets in the short QT syndrome. Expert Opin Ther Targets 2018; 22:439-451. [DOI: 10.1080/14728222.2018.1470621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Dominic G Whittaker
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Chunyun Du
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - A. Graham Stuart
- Cardiology, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Abstract
Short QT syndrome (SQTS) is a myocardial conduction disorder characterized by a short QT interval on electrocardiogram and predisposition to familial atrial fibrillation and/or sudden cardiac death. Genetic SQTS is primarily caused by one or more cardiac ion channelopathies, in which either impaired depolarization currents, or enhanced repolarization currents, shorten cardiac action potential duration. Given that QT interval duration is not always predictive of arrhythmia burden and risk of death in SQTS, there is a need to understand the molecular mechanisms of the condition to improve risk prognostication and potential pharmacologic treatment. In the last decade, several computational advances and in vitro preclinical studies have provided insight into the molecular mechanisms underlying congenital SQTS. In this review, we discuss recent findings in SQTS molecular mechanisms and correlate these advances with clinical guidelines for SQTS diagnosis and treatment.
Collapse
Affiliation(s)
- Srikanth Perike
- Department of Medicine, Section of Cardiology, Department of Bioengineering, Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mark D McCAULEY
- Department of Medicine, Section of Cardiology, Department of Bioengineering, Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
18
|
Modelling the effects of chloroquine on KCNJ2-linked short QT syndrome. Oncotarget 2017; 8:106511-106526. [PMID: 29290967 PMCID: PMC5739752 DOI: 10.18632/oncotarget.22490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
A gain-of-function KCNJ2 D172N mutation in KCNJ2-encoded Kir2.1 channels underlies one form of short QT syndrome (SQT3), which is associated with increased susceptibility to arrhythmias and sudden death. Anti-malarial drug chloroquine was reported as an effective inhibitor of Kir2.1 channels. Using biophysically-detailed human ventricle computer models, this study assessed the effects of chloroquine on SQT3. The ten Tusscher et al. model of human ventricular cell action potential was modified to recapitulate functional changes in the inward rectifier K+ current (IK1) due to heterozygous and homozygous forms of the D172N mutation. Mutant formulations were incorporated into multi-scale models. The blocking effects of chloroquine on ionic currents were modelled using IC50 and Hill coefficient values from literatures. Effects of chloroquine on action potential duration (APD), effective refractory period (ERP) and pseudo-ECGs were quantified. It was shown that chloroquine caused a dose-dependent reduction in IK1, prolonged APD, and decreased the maximum voltage heterogeneity. Chloroquine prolonged QT interval and declined the T-wave amplitude. Although chloroquine reduced tissue’s temporal vulnerability, it increased the minimum substrate size necessary for sustaining re-entry. The actions of chloroquine decreased arrhythmia risk, due to the reduced tissue vulnerability, prolonged ERP and wavelength of re-entrant excitation waves, which in combination prevented and terminated re-entry in the tissue models. In conclusion, the results of this study provide new evidence that the anti-arrhythmic effects of chloroquine on SQT3 and, by extension, to the possibility that chloroquine may be a potential therapeutic agent for SQT3 treatment.
Collapse
|
19
|
Modeling the effects of amiodarone on short QT syndrome variant 2 in the human ventricles. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:4273-4276. [PMID: 29060841 DOI: 10.1109/embc.2017.8037800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AIMS The short QT syndrome (SQTS) is a new genetic disorder associated with atrial and ventricular arrhythmias and sudden death. The SQT2, SQTS variant, results from a gain-of-function mutation (V307L) in the KCNQ1-encoded potassium channel. Although pro-arrhythmogenic effects of SQTS have been characterized, less is known about the pharmacology of SQTS. Therefore, this study aims to assess the effects of amiodarone on SQT2. METHODS AND RESULTS The ten Tusscher et al. model of the human ventricular action potential (AP) was modified to incorporate changes to IKs based on experimental data. Cell models were incorporated into heterogeneous one-dimensional (1D) tissue to compute the pseudo-ECG and the corresponding QT interval. The blocking effects of amiodarone on IKs, INa, INaK, ICaL, INaCa, and IKr were modeled using nH (Hill coefficient) and IC50 values from the literature. At the cellular level, amiodarone both at low and high doses prolonged the SQT2 AP duration (APD); at the tissue level, amiodarone at a high dose caused QT prolongation to the physiological range, but failed at a low dose. CONCLUSIONS Amiodarone at a high dose produced better therapeutic effects on SQT2 than at a low dose. This study provides new evidence that amiodarone at a high dose may be a potential pharmacological treatment for SQT2.
Collapse
|
20
|
Luo C, Wang K, Zhang H. Modelling the effects of quinidine, disopyramide, and E-4031 on short QT syndrome variant 3 in the human ventricles. Physiol Meas 2017; 38:1859-1873. [PMID: 28812984 DOI: 10.1088/1361-6579/aa8695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Short QT syndrome (SQTS) is an inherited cardiac channelopathy, but at present little information is available on its pharmacological treatment. SQT3 variant (linked to the inward rectifier potassium current I K1) of SQTS, results from a gain-of-function mutation (Kir2.1 D172N) in the KCNJ2-encoded channels, which is associated with ventricular fibrillation (VF). Using biophysically-detailed human ventricular computer models, this study investigated the potential effects of quinidine, disopyramide, and E-4031 on SQT3. APPROACH The ten Tusscher et al model of human ventricular myocyte action potential (AP) was modified to recapitulate the changes in I K1 due to heterozygous and homozygous forms of the D172N mutation. Wild-type (WT) and mutant WT-D172N and D172N formulations were incorporated into one-dimensional (1D) and 2D tissue models with transmural heterogeneities. Effects of drugs on channel-blocking activity were modelled using half-maximal inhibitory concentration (IC50) and Hill coefficient (nH) values. Effects of drugs on AP duration (APD), effective refractory period (ERP) and QT interval of pseudo-ECGs were quantified, and both temporal and spatial vulnerability to re-entry was measured. Re-entry was simulated in the 2D ventricular tissue. MAIN RESULTS At the single cell level, the drugs quinidine, disopyramide, and E-4031 prolonged APD at 90% repolarization (APD90), and decreased maximal transmural voltage heterogeneity (δV); this caused the decreased transmural dispersion of APD90. Quinidine prolonged the QT interval and decreased the T-wave amplitude. Furthermore, quinidine increased ERP and reduced temporal vulnerability and increased spatial vulnerability, resulting in a reduced susceptibility to arrhythmogenesis in SQT3. In the 2D tissue, quinidine was effective in terminating and preventing re-entry associated with the heterozygous D172N condition. Quinidine exhibited significantly better therapeutic effects on SQT3 than disopyramide and E-4031. SIGNIFICANCE This study substantiates a causal link between quinidine and QT interval prolongation in SQT3 Kir2.1 mutations and highlights possible pharmacological agent quinidine for treating SQT3 patients.
Collapse
Affiliation(s)
- Cunjin Luo
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin 150001, People's Republic of China
| | | | | |
Collapse
|
21
|
In silico investigation of a KCNQ1 mutation associated with short QT syndrome. Sci Rep 2017; 7:8469. [PMID: 28814790 PMCID: PMC5559555 DOI: 10.1038/s41598-017-08367-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022] Open
Abstract
Short QT syndrome (SQTS) is a rare condition characterized by abnormally 'short' QT intervals on the ECG and increased susceptibility to cardiac arrhythmias and sudden death. This simulation study investigated arrhythmia dynamics in multi-scale human ventricle models associated with the SQT2-related V307L KCNQ1 'gain-of-function' mutation, which increases slow-delayed rectifier potassium current (IKs). A Markov chain (MC) model recapitulating wild type (WT) and V307L mutant IKs kinetics was incorporated into a model of the human ventricular action potential (AP) for investigation of QT interval changes and arrhythmia substrates. In addition, the degree of simulated IKs inhibition necessary to normalize the QT interval and terminate re-entry in SQT2 conditions was quantified. The developed MC model accurately reproduced AP shortening and reduced effective refractory period associated with altered IKs kinetics in homozygous (V307L) and heterozygous (WT-V307L) mutation conditions, which increased the lifespan and dominant frequency of re-entry in 3D human ventricle models. IKs reductions of 58% and 65% were sufficient to terminate re-entry in WT-V307L and V307L conditions, respectively. This study further substantiates a causal link between the V307L KCNQ1 mutation and pro-arrhythmia in human ventricles, and establishes partial inhibition of IKs as a potential anti-arrhythmic strategy in SQT2.
Collapse
|
22
|
Ng GA. Feasibility of selection of antiarrhythmic drug treatment on the basis of arrhythmogenic mechanism — Relevance of electrical restitution, wavebreak and rotors. Pharmacol Ther 2017; 176:1-12. [DOI: 10.1016/j.pharmthera.2016.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Luo C, Wang K, Zhang H. In silico assessment of the effects of quinidine, disopyramide and E-4031 on short QT syndrome variant 1 in the human ventricles. PLoS One 2017. [PMID: 28632743 PMCID: PMC5478111 DOI: 10.1371/journal.pone.0179515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aims Short QT syndrome (SQTS) is an inherited disorder associated with abnormally abbreviated QT intervals and an increased incidence of atrial and ventricular arrhythmias. SQT1 variant (linked to the rapid delayed rectifier potassium channel current, IKr) of SQTS, results from an inactivation-attenuated, gain-of-function mutation (N588K) in the KCNH2-encoded potassium channels. Pro-arrhythmogenic effects of SQT1 have been well characterized, but less is known about the possible pharmacological antiarrhythmic treatment of SQT1. Therefore, this study aimed to assess the potential effects of E-4031, disopyramide and quinidine on SQT1 using a mathematical model of human ventricular electrophysiology. Methods The ten Tusscher et al. biophysically detailed model of the human ventricular action potential (AP) was modified to incorporate IKr Markov chain (MC) formulations based on experimental data of the kinetics of the N588K mutation of the KCNH2-encoded subunit of the IKr channels. The modified ventricular cell model was then integrated into one-dimensional (1D) strand, 2D regular and realistic tissues with transmural heterogeneities. The channel-blocking effect of the drugs on ion currents in healthy and SQT1 cells was modeled using half-maximal inhibitory concentration (IC50) and Hill coefficient (nH) values from literatures. Effects of drugs on cell AP duration (APD), effective refractory period (ERP) and pseudo-ECG traces were calculated. Effects of drugs on the ventricular temporal and spatial vulnerability to re-entrant excitation waves were measured. Re-entry was simulated in both 2D regular and realistic ventricular tissue. Results At the single cell level, the drugs E-4031 and disopyramide had hardly noticeable effects on the ventricular cell APD at 90% repolarization (APD90), whereas quinidine caused a significant prolongation of APD90. Quinidine prolonged and decreased the maximal transmural AP heterogeneity (δV); this led to the decreased transmural heterogeneity of APD across the 1D strand. Quinidine caused QT prolongation and a decrease in the T-wave amplitude, and increased ERP and decreased temporal susceptibility of the tissue to the initiation of re-entry and increased the minimum substrate size necessary to prevent re-entry in the 2D regular model, and further terminated re-entrant waves in the 2D realistic model. Quinidine exhibited significantly better therapeutic effects on SQT1 than E-4031 and disopyramide. Conclusions The simulated pharmacological actions of quinidine exhibited antiarrhythmic effects on SQT1. This study substantiates a causal link between quinidine and QT interval prolongation in SQT1 and suggests that quinidine may be a potential pharmacological agent for treating SQT1 patients.
Collapse
Affiliation(s)
- Cunjin Luo
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, China
- * E-mail: (KW); (HZ)
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, China
- School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Space Institute of Southern China, Shenzhen, China
- * E-mail: (KW); (HZ)
| |
Collapse
|
24
|
Atrial arrhythmogenicity of KCNJ2 mutations in short QT syndrome: Insights from virtual human atria. PLoS Comput Biol 2017; 13:e1005593. [PMID: 28609477 PMCID: PMC5487071 DOI: 10.1371/journal.pcbi.1005593] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/27/2017] [Accepted: 05/25/2017] [Indexed: 12/17/2022] Open
Abstract
Gain-of-function mutations in KCNJ2-encoded Kir2.1 channels underlie variant 3 (SQT3) of the short QT syndrome, which is associated with atrial fibrillation (AF). Using biophysically-detailed human atria computer models, this study investigated the mechanistic link between SQT3 mutations and atrial arrhythmogenesis, and potential ion channel targets for treatment of SQT3. A contemporary model of the human atrial action potential (AP) was modified to recapitulate functional changes in IK1 due to heterozygous and homozygous forms of the D172N and E299V Kir2.1 mutations. Wild-type (WT) and mutant formulations were incorporated into multi-scale homogeneous and heterogeneous tissue models. Effects of mutations on AP duration (APD), conduction velocity (CV), effective refractory period (ERP), tissue excitation threshold and their rate-dependence, as well as the wavelength of re-entry (WL) were quantified. The D172N and E299V Kir2.1 mutations produced distinct effects on IK1 and APD shortening. Both mutations decreased WL for re-entry through a reduction in ERP and CV. Stability of re-entrant excitation waves in 2D and 3D tissue models was mediated by changes to tissue excitability and dispersion of APD in mutation conditions. Combined block of IK1 and IKr was effective in terminating re-entry associated with heterozygous D172N conditions, whereas IKr block alone may be a safer alternative for the E299V mutation. Combined inhibition of IKr and IKur produced a synergistic anti-arrhythmic effect in both forms of SQT3. In conclusion, this study provides mechanistic insights into atrial proarrhythmia with SQT3 Kir2.1 mutations and highlights possible pharmacological strategies for management of SQT3-linked AF. Atrial fibrillation (AF) is the most common cardiac arrhythmia, and is characterised by complex and irregular electrical activation of the upper chambers of the heart. One rare, genetic condition associated with increased risk of AF is the short QT syndrome (SQTS), which is caused by mutations in genes involved in normal electrical function of the heart. Underlying mechanisms by which SQTS-related gene mutations facilitate development of arrhythmias in the human atria are not well understood. In this study, sophisticated computer models representing ‘virtual’ human atria, incorporating detailed electrophysiological data at the ‘ion channel’ protein level into both idealised and realistic multi-scale tissue geometries, were used to dissect mechanisms by which two mutations in the KCNJ2 gene responsible for SQTS variant 3 (SQT3) promote initiation and sustenance of arrhythmias. It was found that the D172N and E299V mutations to KCNJ2 accelerated the repolarisation process at the cellular level through distinct mechanisms. This, along with the way the mutations affected heterogeneity in electrical behaviour at the organ level, mediated stability of arrhythmias and response to simulated ion channel block. This study improves understanding of mechanisms underlying increased AF risk associated with D172N and E299V KCNJ2 mutations, and outlines potential therapeutic strategies.
Collapse
|
25
|
Luo C, Wang K, Zhang H. Effects of amiodarone on short QT syndrome variant 3 in human ventricles: a simulation study. Biomed Eng Online 2017; 16:69. [PMID: 28592292 PMCID: PMC5463381 DOI: 10.1186/s12938-017-0369-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/01/2017] [Indexed: 01/23/2023] Open
Abstract
Background Short QT syndrome (SQTS) is a newly identified clinical disorder associated with atrial and/or ventricular arrhythmias and increased risk of sudden cardiac death (SCD). The SQTS variant 3 is linked to D172N mutation to the KCNJ2 gene that causes a gain-of-function to the inward rectifier potassium channel current (IK1), which shortens the ventricular action potential duration (APD) and effective refractory period (ERP). Pro-arrhythmogenic effects of SQTS have been characterized, but less is known about the possible pharmacological treatment of SQTS. Therefore, in this study, we used computational modeling to assess the effects of amiodarone, class III anti-arrhythmic agent, on human ventricular electrophysiology in SQT3. Methods The ten Tusscher et al. model for the human ventricular action potentials (APs) was modified to incorporate IK1 formulations based on experimental data of Kir2.1 channels (including WT, WT-D172N and D172N conditions). The modified cell model was then implemented to construct one-dimensional (1D) and 2D tissue models. The blocking effects of amiodarone on ionic currents were modeled using IC50 and Hill coefficient values from literatures. Effects of amiodarone on APD, ERP and pseudo-ECG traces were computed. Effects of the drug on the temporal and spatial vulnerability of ventricular tissue to genesis and maintenance of re-entry were measured, as well as on the dynamic behavior of re-entry. Results Amiodarone prolonged the ventricular cell APD and decreased the maximal voltage heterogeneity (δV) among three difference cells types across transmural ventricular wall, leading to a decreased transmural heterogeneity of APD along a 1D model of ventricular transmural strand. Amiodarone increased cellular ERP, prolonged QT interval and decreased the T-wave amplitude. It reduced tissue’s temporal susceptibility to the initiation of re-entry and increased the minimum substrate size necessary to sustain re-entry in the 2D tissue. Conclusions At the therapeutic-relevant concentration of amiodarone, the APD and ERP at the single cell level were increased significantly. The QT interval in pseudo-ECG was prolonged and the re-entry in tissue was prevented. This study provides further evidence that amiodarone may be a potential pharmacological agent for preventing arrhythmogenesis for SQT3 patients. Electronic supplementary material The online version of this article (doi:10.1186/s12938-017-0369-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cunjin Luo
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150001, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150001, China.
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150001, China. .,School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK. .,Space Institute of Southern China, Shenzhen, 518117, China.
| |
Collapse
|
26
|
Bai J, Yin R, Wang K, Zhang H. Mechanisms Underlying the Emergence of Post-acidosis Arrhythmia at the Tissue Level: A Theoretical Study. Front Physiol 2017; 8:195. [PMID: 28424631 PMCID: PMC5371659 DOI: 10.3389/fphys.2017.00195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/15/2017] [Indexed: 11/17/2022] Open
Abstract
Acidosis has complex electrophysiological effects, which are associated with a high recurrence of ventricular arrhythmias. Through multi-scale cardiac computer modeling, this study investigated the mechanisms underlying the emergence of post-acidosis arrhythmia at the tissue level. In simulations, ten Tusscher-Panfilov ventricular model was modified to incorporate various data on acidosis-induced alterations of cellular electrophysiology and intercellular electrical coupling. The single cell models were incorporated into multicellular one-dimensional (1D) fiber and 2D sheet tissue models. Electrophysiological effects were quantified as changes of action potential profile, sink-source interactions of fiber tissue, and the vulnerability of tissue to the genesis of unidirectional conduction that led to initiation of re-entry. It was shown that acidosis-induced sarcoplasmic reticulum (SR) calcium load contributed to delayed afterdepolarizations (DADs) in single cells. These DADs may be synchronized to overcome the source-sink mismatch arising from intercellular electrotonic coupling, and produce a premature ventricular complex (PVC) at the tissue level. The PVC conduction can be unidirectionally blocked in the transmural ventricular wall with altered electrical heterogeneity, resulting in the genesis of re-entry. In conclusion, altered source-sink interactions and electrical heterogeneity due to acidosis-induced cellular electrophysiological alterations may increase susceptibility to post-acidosis ventricular arrhythmias.
Collapse
Affiliation(s)
- Jieyun Bai
- School of Computer Science and Technology, Harbin Institute of TechnologyHarbin, China
| | - Renli Yin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of TechnologyHarbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of TechnologyHarbin, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of TechnologyHarbin, China.,Biological Physics Group, School of Physics and Astronomy, University of ManchesterManchester, UK.,Space Institute of Southern ChinaShenzhen, China
| |
Collapse
|
27
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Bai J, Wang K, Li Q, Yuan Y, Zhang H. Pro-arrhythmogenic effects of CACNA1C G1911R mutation in human ventricular tachycardia: insights from cardiac multi-scale models. Sci Rep 2016; 6:31262. [PMID: 27502440 PMCID: PMC4977499 DOI: 10.1038/srep31262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/14/2016] [Indexed: 01/11/2023] Open
Abstract
Mutations in the CACNA1C gene are associated with ventricular tachycardia (VT). Although the CACNA1C mutations were well identified in patients with cardiac arrhythmias, mechanisms by which cardiac arrhythmias are generated in such genetic mutation conditions remain unclear. In this study, we identified a novel mechanism of VT resulted from enhanced repolarization dispersion which is a key factor for arrhythmias in the CACNA1C G1911R mutation using multi-scale computational models of the human ventricle. The increased calcium influx in the mutation prolonged action potential duration (APD), produced steepened action potential duration restitution (APDR) curves as well as augmented membrane potential differences among different cell types during repolarization, increasing transmural dispersion of repolarization (DOR) and the spatial and temporal heterogeneity of cardiac electrical activities. Consequentially, the vulnerability to unidirectional conduction block in response to a premature stimulus increased at tissue level in the G1911R mutation. The increased functional repolarization dispersion anchored reentrant excitation waves in tissue and organ models, facilitating the initiation and maintenance of VT due to less meandering rotor tip. Thus, the increased repolarization dispersion caused by the G1911R mutation is a primary factor that may primarily contribute to the genesis of cardiac arrhythmias in Timothy Syndrome.
Collapse
Affiliation(s)
- Jieyun Bai
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, 150001, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, 150001, China
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, 150001, China
| | - Yongfeng Yuan
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, 150001, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, 150001, China
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
29
|
Comparison between Hodgkin–Huxley and Markov formulations of cardiac ion channels. J Theor Biol 2016; 399:92-102. [DOI: 10.1016/j.jtbi.2016.03.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 11/18/2022]
|
30
|
Dibb K, Trafford A, Zhang H, Eisner D. A model model: a commentary on DiFrancesco and Noble (1985) 'A model of cardiac electrical activity incorporating ionic pumps and concentration changes'. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2014.0316. [PMID: 25750236 PMCID: PMC4360121 DOI: 10.1098/rstb.2014.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This paper summarizes the advances made by the DiFrancesco and Noble (DFN) model of cardiac cellular electrophysiology, which was published in Philosophical Transactions B in 1985. This model was developed at a time when the introduction of new techniques and provision of experimental data had resulted in an explosion of knowledge about the cellular and biophysical properties of the heart. It advanced the cardiac modelling field from a period when computer models considered only the voltage-dependent channels in the surface membrane. In particular, it included a consideration of changes of both intra- and extracellular ionic concentrations. In this paper, we summarize the most important contributions of the DiFrancesco and Noble paper. We also describe how computer modelling has developed subsequently with the extension from the single cell to the whole heart as well as its use in understanding disease and predicting the effects of pharmaceutical interventions. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Collapse
Affiliation(s)
- Katharine Dibb
- Institute for Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Andrew Trafford
- Institute for Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Henggui Zhang
- Computational Biology, Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - David Eisner
- Institute for Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Adeniran I, MacIver DH, Garratt CJ, Ye J, Hancox JC, Zhang H. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics - Insights from a 3D Model of the Human Atria. PLoS One 2015; 10:e0142397. [PMID: 26606047 PMCID: PMC4659575 DOI: 10.1371/journal.pone.0142397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/21/2015] [Indexed: 11/28/2022] Open
Abstract
Aims Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. Methods and Results A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. Conclusions This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients.
Collapse
Affiliation(s)
- Ismail Adeniran
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - David H. MacIver
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- Taunton & Somerset Hospital, Somerset, United Kingdom
| | - Clifford J. Garratt
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Jianqiao Ye
- Department of Engineering, Lancaster University, Lancaster, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Physiology and Pharmacology, and Cardiovascular Research Laboratories, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
LU WEIGANG, LI JIE, YANG FEI, LUO CUNJIN, WANG KUANQUAN, ADENIRAN ISMAIL, ZHANG HENGGUI. EFFECTS OF ACUTE GLOBAL ISCHEMIA ON RE-ENTRANT ARRHYTHMOGENESIS: A SIMULATION STUDY. J BIOL SYST 2015. [DOI: 10.1142/s0218339015500114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sudden cardiac death is mainly caused by arrhythmogenesis. For a functional abnormal heart, such as an ischemic heart, the probability of arrhythmia occurring is greatly increased. During myocardial ischemia, re-entry is prone to degenerate into ventricular fibrillation (VF). Therefore it has important meaning to investigate the intricate mechanisms underlying VF under an ischemic condition in order to better facilitate therapeutic interventions. In this paper, to analyze the functional influence of acute global ischemia on cardiac electrical activity and subsequently on re-entrant arrhythmogenesis, we take into account three main pathophysiological consequences of ischemia: hyperkalaemia, acidosis, and anoxia, and develop a 3D human ventricular ischemic model that combines a detailed biophysical description of the excitation kinetics of human ventricular cells with an integrated geometry of human ventricular tissue which incorporates fiber direction anisotropy and the stimulation activation sequence. The results show that under acute global ischemia, the tissue excitability and the slope of ventricular cellular action potential duration restitution (APDR) are greatly decreased. As a result, the complexity of VF activation patterns is reduced. For the three components of ischemia, hyperkalaemia is the dominant contributor to the stability of re-entry under acute global ischemia. Increasing [K+]o acts to prolong the cell refractory period, reduce the tissue excitability and slow the conduction velocity. Our results also show that VF can be eliminated by decreasing cellular excitability, primarily by elevating the concentration value of extracellular K+.
Collapse
Affiliation(s)
- WEIGANG LU
- Department of Educational Technology, Ocean University of China, Qingdao, P. R. China
| | - JIE LI
- School of Electrical Engineering, Yanshan University, Qinhuangdao, P. R. China
| | - FEI YANG
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, P. R. China
| | - CUNJIN LUO
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, P. R. China
| | - KUANQUAN WANG
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, P. R. China
| | - ISMAIL ADENIRAN
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - HENGGUI ZHANG
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
33
|
Huang CLH. Computational analysis of the electromechanical consequences of short QT syndrome. Front Physiol 2015; 6:44. [PMID: 25717305 PMCID: PMC4324072 DOI: 10.3389/fphys.2015.00044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/29/2015] [Indexed: 11/13/2022] Open
|
34
|
Butters TD, Aslanidi OV, Zhao J, Smaill B, Zhang H. A novel computational sheep atria model for the study of atrial fibrillation. Interface Focus 2014; 3:20120067. [PMID: 24427521 DOI: 10.1098/rsfs.2012.0067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/21/2012] [Indexed: 11/12/2022] Open
Abstract
Sheep are often used as animal models for experimental studies into the underlying mechanisms of cardiac arrhythmias. Previous studies have shown that biophysically detailed computer models of the heart provide a powerful alternative to experimental animal models for underpinning such mechanisms. In this study, we have developed a family of mathematical models for the electrical action potentials of various sheep atrial cell types. The developed cell models were then incorporated into a three-dimensional anatomical model of the sheep atria, which was recently reconstructed and segmented based on anatomical features within different regions. This created a novel biophysically detailed computational model of the three-dimensional sheep atria. Using the model, we then investigated the mechanisms by which paroxysmal rapid focal activity in the pulmonary veins can transit to sustained atrial fibrillation. It was found that the anisotropic property of the atria arising from the fibre structure plays an important role in facilitating the development of fibrillatory atrial excitation waves, and the electrical heterogeneity plays an important role in its initiation.
Collapse
Affiliation(s)
- Timothy D Butters
- School of Physics and Astronomy , University of Manchester , Manchester , UK
| | - Oleg V Aslanidi
- School of Physics and Astronomy , University of Manchester , Manchester , UK ; Division of Imaging Sciences and Biomedical Engineering , King's College London , London , UK
| | - Jichao Zhao
- Auckland Bioengineering Institute , University of Auckland , Auckland , New Zealand
| | - Bruce Smaill
- Auckland Bioengineering Institute , University of Auckland , Auckland , New Zealand
| | - Henggui Zhang
- School of Physics and Astronomy , University of Manchester , Manchester , UK
| |
Collapse
|
35
|
Adeniran I, Hancox JC, Zhang H. In silico investigation of the short QT syndrome, using human ventricle models incorporating electromechanical coupling. Front Physiol 2013; 4:166. [PMID: 23847545 PMCID: PMC3701879 DOI: 10.3389/fphys.2013.00166] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/14/2013] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Genetic forms of the Short QT Syndrome (SQTS) arise due to cardiac ion channel mutations leading to accelerated ventricular repolarization, arrhythmias and sudden cardiac death. Results from experimental and simulation studies suggest that changes to refractoriness and tissue vulnerability produce a substrate favorable to re-entry. Potential electromechanical consequences of the SQTS are less well-understood. The aim of this study was to utilize electromechanically coupled human ventricle models to explore electromechanical consequences of the SQTS. METHODS AND RESULTS The Rice et al. mechanical model was coupled to the ten Tusscher et al. ventricular cell model. Previously validated K(+) channel formulations for SQT variants 1 and 3 were incorporated. Functional effects of the SQTS mutations on [Ca(2+)] i transients, sarcomere length shortening and contractile force at the single cell level were evaluated with and without the consideration of stretch-activated channel current (I sac). Without I sac, at a stimulation frequency of 1Hz, the SQTS mutations produced dramatic reductions in the amplitude of [Ca(2+)] i transients, sarcomere length shortening and contractile force. When I sac was incorporated, there was a considerable attenuation of the effects of SQTS-associated action potential shortening on Ca(2+) transients, sarcomere shortening and contractile force. Single cell models were then incorporated into 3D human ventricular tissue models. The timing of maximum deformation was delayed in the SQTS setting compared to control. CONCLUSION The incorporation of I sac appears to be an important consideration in modeling functional effects of SQT 1 and 3 mutations on cardiac electro-mechanical coupling. Whilst there is little evidence of profoundly impaired cardiac contractile function in SQTS patients, our 3D simulations correlate qualitatively with reported evidence for dissociation between ventricular repolarization and the end of mechanical systole.
Collapse
Affiliation(s)
- Ismail Adeniran
- Computational Biology, Biological Physics Group, School of Physics and Astronomy, The University of Manchester Manchester, UK
| | | | | |
Collapse
|
36
|
Wolpert C, Veltmann C, Schimpf R, Borggrefe M, Herrera-Siklody C, Parade U, Strotmann C, Rüb N. [Short QT syndrome]. Herzschrittmacherther Elektrophysiol 2012; 23:220-4. [PMID: 23001291 DOI: 10.1007/s00399-012-0229-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/20/2012] [Indexed: 11/24/2022]
Abstract
Short QT syndrome was first described in 2000. It is a sporadic or familial ion channel disease that is associated with abbreviation of the QT interval permanently or transiently. The time of first manifestation of symptoms such as atrial fibrillation or syncope or even sudden death is between the 2nd and 4th decade. Sudden death has also been described for newborns and adolescents. Therapy depends on the severity of the symptoms. The therapy of choice for secondary prevention of sudden death is the implantable cardioverter-defibrillator (ICD). Quinidine has been shown to be effective in preventing arrhythmias in a number of patients. It is mostly used as an adjunct to the ICD but has also been used with considerable success in children and individuals who refused ICD implantation.
Collapse
Affiliation(s)
- C Wolpert
- Klinik für Innere Medizin, Kardiologie, Nephrologie und internistische Intensivmedizin, Klinikum Ludwigsburg, Posilipostraße 4, 71640, Ludwigsburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Roberts BN, Yang PC, Behrens SB, Moreno JD, Clancy CE. Computational approaches to understand cardiac electrophysiology and arrhythmias. Am J Physiol Heart Circ Physiol 2012; 303:H766-83. [PMID: 22886409 DOI: 10.1152/ajpheart.01081.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy.
Collapse
Affiliation(s)
- Byron N Roberts
- Tri-Institutional MD-PhD Program, Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College/The Rockefeller University/Sloan-Kettering Cancer Institute, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | |
Collapse
|