1
|
Lu FT, Huang CC, Lai WY, Yang GY, Liang ZJ, Zhang ZY, Chokshi T, Guo KM, Tang YB, Chen Y, Yang ZH, Liang SJ, Pang RP, Zhou JG, Guan YY, Lv XF, Ma MM. Vascular smooth muscle-specific LRRC8A knockout ameliorates angiotensin II-induced cerebrovascular remodeling by inhibiting the WNK1/FOXO3a/MMP signaling pathway. Acta Pharmacol Sin 2024; 45:1848-1860. [PMID: 38719954 PMCID: PMC11335743 DOI: 10.1038/s41401-024-01280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 08/22/2024] Open
Abstract
Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.
Collapse
Affiliation(s)
- Feng-Ting Lu
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Cheng-Cui Huang
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Wen-Yi Lai
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Gui-Yong Yang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhu-Jun Liang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zi-Yi Zhang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tanvi Chokshi
- Research Division, Joslin Diabetes Center, Harvard University, Boston, MA, USA
| | - Kai-Min Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yu-Bo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Chen
- Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhong-Han Yang
- Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Jia Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Rui-Ping Pang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia-Guo Zhou
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yong-Yuan Guan
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Fei Lv
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Ming-Ming Ma
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Gao M, Ma MM, Lu FT, Huang CC, Sun L, Lv XF, Zhang B, Wang GL, Guan YY. Low Chloride-Regulated ClC-5 Contributes to Arterial Smooth Muscle Cell Proliferation and Cerebrovascular Remodeling. Hypertension 2022; 79:e73-e85. [PMID: 35144478 DOI: 10.1161/hypertensionaha.121.18472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Low serum chloride (Cl-) level is considered an independent predictor of cardiovascular mortality associated with chronic hypertension. However, the underlying mechanisms are unknown. ClC-5, a member of the Cl- channel family, is sensitive to changes in intracellular and extracellular Cl- concentration and conducts outwardly rectifying Cl- currents. The aims of this study were to determine if ClC-5 is regulated by low extracellular Cl-, clarify its putative roles in hypertension-induced cerebrovascular remodeling, and elucidate the associated underlying mechanisms. METHODS Whole-cell patch technique, intracellular Cl- concentration measurements, flow cytometry, Western blot, Clcn5 knockdown (Clcn5-/y), and adenovirus-mediated ClC-5 overexpression mice, 2-kidney, 2-clip, and angiotensin II infusion-induced hypertensive models were used. RESULTS We found that low extracellular Cl- evoked a ClC-5-dependent Cl- current that was abolished by ClC-5 depletion in basilar artery smooth muscle cells. ClC-5 was upregulated in the arterial tissues of rats and patients with hypertension. Low Cl--induced current and ClC-5 protein expression positively correlated with basilar artery remodeling during hypertension. ClC-5 knockdown ameliorated hypertension-induced cerebrovascular remodeling and smooth muscle cell proliferation, whereas ClC-5 overexpression mice exhibited the opposite phenotype. ClC-5-dependent Cl- efflux induced by low extracellular Cl- activated WNK1 (lysine-deficient protein kinase 1) which, in turn, activated AKT, and culminated in basilar artery smooth muscle cell proliferation and vascular remodeling. CONCLUSIONS ClC-5 mediates low Cl--induced Cl- currents in basilar artery smooth muscle cells and regulates hypertension-induced cerebrovascular remodeling by promoting basilar artery smooth muscle cell proliferation via the WNK1/AKT signaling pathway.
Collapse
Affiliation(s)
- Min Gao
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.).,Department of Pharmacy, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China. (M.G., C.-C.H.)
| | - Ming-Ming Ma
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| | - Feng-Ting Lu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| | - Cheng-Cui Huang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.).,Department of Pharmacy, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China. (M.G., C.-C.H.)
| | - Lu Sun
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.).,Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (L.S.)
| | - Xiao-Fei Lv
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| | - Bin Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, China (B.Z.)
| | - Guan-Lei Wang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| |
Collapse
|
3
|
Li XY, Lv XF, Huang CC, Sun L, Ma MM, Liu C, Guan YY. LRRC8A is essential for volume-regulated anion channel in smooth muscle cells contributing to cerebrovascular remodeling during hypertension. Cell Prolif 2021; 54:e13146. [PMID: 34725866 PMCID: PMC8666279 DOI: 10.1111/cpr.13146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Objectives Recent studies revealed LRRC8A to be an essential component of volume‐regulated anion channel (VRAC), which regulates cellular volume homeostasis. However, evidence for the contribution of LRRC8A‐dependent VRAC activity in vascular smooth muscle cells (VSMCs) is still lacking, and the relevant functional role of LRRC8A in VSMCs remains unknown. The primary goal of this study was to elucidate the role of LRRC8A in VRAC activity in VSMCs and the functional role of LRRC8A in cerebrovascular remodeling during hypertension. Materials and Methods siRNA‐mediated knockdown and adenovirus‐mediated overexpression of LRRC8A were used to elucidate the electrophysiological properties of LRRC8A in basilar smooth muscle cells (BASMCs). A smooth muscle–specific overexpressing transgenic mouse model was used to investigate the functional role of LRRC8A in cerebrovascular remodeling. Results LRRC8A is essential for volume‐regulated chloride current (ICl, Vol) in BASMCs. Overexpression of LRRC8A induced a voltage‐dependent Cl− current independently of hypotonic stimulation. LRRC8A regulated BASMCs proliferation through activation of WNK1/PI3K‐p85/AKT axis. Smooth muscle‐specific upregulation of LRRC8A aggravated Angiotensin II‐induced cerebrovascular remodeling in mice. Conclusions LRRC8A is an essential component of VRAC and is required for cell volume homeostasis during osmotic challenge in BASMCs. Smooth muscle specific overexpression of LRRC8A increases BASMCs proliferation and substantially aggravates basilar artery remodeling, revealing a potential therapeutic target for vascular remodeling in hypertension.
Collapse
Affiliation(s)
- Xiang-Yu Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Xiao-Fei Lv
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cheng-Cui Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lu Sun
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Ming-Ming Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Canzhao Liu
- Department of Cardiovascular Medicine, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Ma MM, Jin CC, Huang XL, Sun L, Zhou H, Wen XJ, Huang XQ, Du JY, Sun HS, Ren ZX, Liu J, Guan YY, Zhao XM, Wang GL. Clcn3 deficiency ameliorates high-fat diet-induced obesity and adipose tissue macrophage inflammation in mice. Acta Pharmacol Sin 2019; 40:1532-1543. [PMID: 31165783 PMCID: PMC7470880 DOI: 10.1038/s41401-019-0229-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity induces accumulation of adipose tissue macrophages (ATMs) and ATM-driven inflammatory responses that promote the development of glucose and lipid metabolism disorders. ClC-3 chloride channel/antiporter, encoded by the Clcn3, is critical for some basic cellular functions. Our previous work has shown significant alleviation of type 2 diabetes in Clcn3 knockout (Clcn3−/−) mice. In the present study we investigated the role of Clcn3 in high-fat diet (HFD)-induced obesity and ATM inflammation. To establish the mouse obesity model, both Clcn3−/− mice and wild-type mice were fed a HFD for 4 or 16 weeks. The metabolic parameters were assessed and the abdominal total adipose tissue was scanned using computed tomography. Their epididymal fat pad tissue and adipose tissue stromal vascular fraction (SVF) cells were isolated for analyses. We found that the HFD-fed Clcn3−/− mice displayed a significant decrease in obesity-induced body weight gain and abdominal visceral fat accumulation as well as an improvement of glucose and lipid metabolism as compared with HFD-fed wild-type mice. Furthermore, the Clcn3 deficiency significantly attenuated HFD-induced ATM accumulation, HFD-increased F4/80+ CD11c+ CD206− SVF cells as well as HFD-activated TLR-4/NF-κB signaling in epididymal fat tissue. In cultured human THP-1 macrophages, adenovirus-mediated transfer of Clcn3 specific shRNA inhibited, whereas adenovirus-mediated cDNA overexpression of Clcn3 enhanced lipopolysaccharide-induced activation of NF-κB and TLR-4. These results demonstrate a novel role for Clcn3 in HFD-induced obesity and ATM inflammation.
Collapse
|
5
|
Cheng LM, Li YJ, Chen XF, Li XL, Chen XS, Du YH. ClC-3 Deficiency Impairs the Neovascularization Capacity of Early Endothelial Progenitor Cells by Decreasing CXCR4/JAK-2 Signalling. Can J Cardiol 2019; 35:1546-1556. [DOI: 10.1016/j.cjca.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
|
6
|
Zeng XL, Sun L, Zheng HQ, Wang GL, Du YH, Lv XF, Ma MM, Guan YY. Smooth muscle-specific TMEM16A expression protects against angiotensin II-induced cerebrovascular remodeling via suppressing extracellular matrix deposition. J Mol Cell Cardiol 2019; 134:131-143. [PMID: 31301303 DOI: 10.1016/j.yjmcc.2019.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022]
Abstract
Cerebrovascular remodeling is the leading factor for stroke and characterized by increased extracellular matrix deposition, migration and proliferation of vascular smooth muscle cells, and inhibition of their apoptosis. TMEM16A is an important component of Ca2+-activated Cl- channels. Previously, we showed that downregulation of TMEM16A in the basilar artery was negatively correlated with cerebrovascular remodeling during hypertension. However, it is unclear whether TMEM16A participates in angiotensin II (Ang II)-induced vascular remodeling in mice that have TMEM16A gene modification. In this study, we generated a transgenic mouse that overexpresses TMEM16A specifically in vascular smooth muscle cells. We observed that vascular remodeling in the basilar artery during Ang II-induced hypertension was significantly suppressed upon vascular smooth muscle-specific overexpression of TMEM16A relative to control mice. Specifically, we observed a large reduction in the deposition of fibronectin and collagen I. The expression of matrix metalloproteinases (MMP-2, MMP-9, and MMP-14), and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were upregulated in the basilar artery during Ang II-induced hypertension, but this was suppressed upon overexpression of TMEM16A in blood vessels. Furthermore, TMEM16A overexpression alleviated the overactivity of the canonical TGF-β1/Smad3, and non-canonical TGF-β1/ERK and JNK pathways in the basilar artery during Ang II-induced hypertension. These in vivo results were similar to the results derived in vitro with basilar artery smooth muscle cells stimulated by Ang II. Moreover, we observed that the inhibitory effect of TMEM16A on MMPs was mediated by decreasing the activation of WNK1, which is a Cl--sensitive serine/threonine kinase. In conclusion, this study demonstrates that TMEM16A protects against cerebrovascular remodeling during hypertension by suppressing extracellular matrix deposition. We also showed that TMEM16A exerts this effect by reducing the expression of MMPs via inhibiting WNK1, and decreasing the subsequent activities of TGF-β1/Smad3, ERK, and JNK. Accordingly, our results suggest that TMEM16A may serve as a novel therapeutic target for vascular remodeling.
Collapse
Affiliation(s)
- Xue-Lin Zeng
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Lu Sun
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Qing Zheng
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guan-Lei Wang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yan-Hua Du
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Xiao-Fei Lv
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Ming-Ming Ma
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yong-Yuan Guan
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Yang C, He L, Chen G, Ning Z, Xia Z. LRRC8A potentiates temozolomide sensitivity in glioma cells via activating mitochondria-dependent apoptotic pathway. Hum Cell 2019; 32:41-50. [PMID: 30426452 DOI: 10.1007/s13577-018-0221-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023]
Abstract
Chloride (Cl-), a primary anion in the extracellular fluid, plays an important role in a variety of physiological and pathological processes, such as cell apoptosis and proliferation. However, the information about Cl- in cancer cell apoptosis and chemoresistance is poorly understood. In the present study, we found that temozolomide (TMZ) treatment led to a decrease in intracellular concentration of Cl- ([Cl-]i) in both U87 and TMZ-resistant U87/R glioma cells. The decrease in [Cl-]i was more noticeable in U87 cells than in U87/R cells. Moreover, the expression of LRRC8A was reduced in U87/R cells compared with U87 cells. LRRC8A downregulation inhibited TMZ, induced the decrease in [Cl-]i and abolished the difference of [Cl-]i between U87 cells and U87/R cells. Knockdown of LRRC8A using small interfering RNA attenuated TMZ-induced U87 cell growth inhibition and apoptosis, while overexpression of LRRC8A by adenoviral infection enhanced the effect of TMZ on U87 and U87/R cell viability and apoptosis. Furthermore, LRRC8A downregulation inhibited TMZ-induced mitochondria-dependent apoptosis, including elevated Bcl-2 expression, reduced Bax expression, cytochrome c release, and caspase nine and caspase three activation. On the contrary, upregulation of LRRC8A augmented the activation of mitochondria-dependent apoptotic pathway in U87 and U87/R cells. In conclusion, this study demonstrates that LRRC8A potentiates TMZ-induced glioma cell apoptosis via promoting mitochondria-dependent apoptosis, suggesting that LRRC8A can be represented as a novel target for drug resistance treatment in glioma cells.
Collapse
Affiliation(s)
- Chao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, 58th Zhongshan Road II, Guangzhou, 510089, China
| | - Longshuang He
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Gaofei Chen
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510089, China
| | - Zeqian Ning
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Zhibai Xia
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, 58th Zhongshan Road II, Guangzhou, 510089, China.
| |
Collapse
|
8
|
ClC-3 promotes angiotensin II-induced reactive oxygen species production in endothelial cells by facilitating Nox2 NADPH oxidase complex formation. Acta Pharmacol Sin 2018; 39:1725-1734. [PMID: 29977005 DOI: 10.1038/s41401-018-0072-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/10/2018] [Indexed: 12/28/2022] Open
Abstract
Recent evidence suggests that ClC-3, a member of the ClC family of Cl- channels or Cl-/H+ antiporters, plays a critical role in NADPH oxidase-derived reactive oxygen species (ROS) generation. However, the underling mechanisms remain unclear. In this study we investigated the effects and mechanisms of ClC-3 on NADPH oxidase activation and ROS generation in endothelial cells. Treatment with angiotensin II (Ang II, 1 μmol/L) significantly elevated ClC-3 expression in cultured human umbilical vein endothelial cells (HUVECs). Furthermore, Ang II treatment increased ROS production and NADPH oxidase activity, an effect that could be significantly inhibited by knockdown of ClC-3, and further enhanced by overexpression of ClC-3. SA-β-galactosidase staining showed that ClC-3 silencing abolished Ang II-induced HUVEC senescence, whereas ClC-3 overexpression caused the opposite effects. We further showed that Ang II treatment increased the translocation of p47phox and p67phox from the cytosol to membrane, accompanied by elevated Nox2 and p22phox expression, which was significantly attenuated by knockdown of ClC-3 and potentiated by overexpression of ClC-3. Moreover, overexpression of ClC-3 increased Ang II-induced phosphorylation of p47phox and p38 MAPK in HUVECs. Pretreatment with a p38 inhibitor SB203580 abolished ClC-3 overexpression-induced increase in p47phox phosphorylation, as well as NADPH oxidase activity and ROS generation. Our results demonstrate that ClC-3 acts as a positive regulator of Ang II-induced NADPH oxidase activation and ROS production in endothelial cells, possibly via promoting both Nox2/p22phox expression and p38 MAPK-dependent p47phox/p67phox membrane translocation, then increasing Nox2 NADPH oxidase complex formation.
Collapse
|
9
|
Lu J, Xu F, Zhang Y, Lu H, Zhang J. ClC-2 knockdown prevents cerebrovascular remodeling via inhibition of the Wnt/β-catenin signaling pathway. Cell Mol Biol Lett 2018; 23:29. [PMID: 29988306 PMCID: PMC6022329 DOI: 10.1186/s11658-018-0095-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/19/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mishandling of intracellular chloride (Cl-) concentration ([Cl-]i) in cerebrovascular smooth muscle cells is implicated in several pathological processes, including hyperplasia and remodeling. We investigated the effects of ClC-2-mediated Cl- efflux on the proliferation of human brain vascular smooth muscle cells (HBVSMCs) induced by angiotensin II (AngII). METHODS Cell proliferation and motility were determined using the CCK-8, bromodeoxyuridine staining, wound healing and invasion assays. ClC-2, PCNA, Ki67, survivin and cyclin D1 expression, and β-catenin and GSK-3β phosphorylation were examined using western blotting. Histological analyses were performed using hematoxylin and eosin staining and α-SMA staining. RESULTS Our results showed that AngII-induced HBVSMC proliferation was accompanied by a decrease in [Cl-]i and an increase in ClC-2 expression. Inhibition of ClC-2 by siRNA prevented AngII from inducing the efflux of Cl-. AngII-induced HBVSMC proliferation, migration and invasion were significantly attenuated by ClC-2 downregulation. The inhibitory effects of ClC-2 knockout on HBVSMC proliferation and motility were associated with inactivation of the Wnt/β-catenin signaling pathway, as evidenced by inhibition of β-catenin phosphorylation and nuclear translocation, and decrease of GSK-3β phosphorylation and survivin and cyclin D1 expression. Recombinant Wnt3a treatment markedly reversed the effect of ClC-2 knockdown on HBVSMC viability. An in vivo study revealed that knockdown of ClC-2 with shRNA adenovirus ameliorated basilar artery remodeling by inhibiting Wnt/β-catenin signaling in AngII-treated mice. CONCLUSION This study demonstrates that blocking ClC-2-mediated Cl- efflux inhibits AngII-induced cerebrovascular smooth muscle cell proliferation and migration by inhibiting the Wnt/β-catenin pathway. Our data indicate that downregulation of ClC-2 may be a viable strategy in the prevention of hyperplasia and remodeling of cerebrovascular smooth muscle cells.
Collapse
Affiliation(s)
- Jingjing Lu
- Department of Neurology, Henan People’s Hospital, No. 7 Wai-5 Road, Zhengzhou, 450052 Henan Province China
| | - Feng Xu
- Department of Urology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yingna Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong Lu
- Department of Neurology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052 Henan Province China
| | - Jiewen Zhang
- Department of Neurology, Henan People’s Hospital, No. 7 Wai-5 Road, Zhengzhou, 450052 Henan Province China
| |
Collapse
|
10
|
Peng J, Chen W, Chen J, Yuan Y, Zhang J, He Y. Overexpression of chloride channel-3 predicts unfavorable prognosis and promotes cellular invasion in gastric cancer. Cancer Manag Res 2018; 10:1163-1175. [PMID: 29795988 PMCID: PMC5958948 DOI: 10.2147/cmar.s159790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chloride channel-3 (CLC-3) has been reported to promote the proliferation and invasion in various tumors, yet little is known about its role in gastric cancer. In the present study, we investigated the clinical significance of CLC-3 and its biological role in gastric cancer. METHODS Bioinformatic analysis, immunohistochemical staining, quantitative real-time polymerase chain reaction and Western blot assay were used to assess the expression of CLC-3 and its clinical significance in gastric cancer. The biological role of CLC-3 and its underlying mechanism were detected through in vitro experiments. RESULTS CLC-3 was highly expressed in gastric cancer tissues and cell lines, and high levels of CLC-3 were significantly associated with adverse clinicopathological parameters and shorter overall survival time in patients with gastric cancer. Functional studies revealed that silencing of CLC-3 decreased, while overexpression promoted, the proliferation, migration and invasion of gastric cancer cells in vitro. Mechanistic studies suggested that canonical TGF-β/Smad signaling pathway is involved in CLC-3-induced gastric cancer cells proliferation, migration and invasion. CONCLUSION These findings indicate the vital role of CLC-3 in gastric cancer progression and its potential role of a therapeutic target for treatment.
Collapse
Affiliation(s)
- Jianjun Peng
- Gastrointestinal Surgical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Gastrointestinal Surgical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianhui Chen
- Gastrointestinal Surgical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yujie Yuan
- Gastrointestinal Surgical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Zhang
- Gastrointestinal Surgical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yulong He
- Gastrointestinal Surgical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Ni X, Zhang L, Peng M, Shen TW, Yu XS, Shan LY, Li L, Si JQ, Li XZ, Ma KT. Hydrogen Sulfide Attenuates Hypertensive Inflammation via Regulating Connexin Expression in Spontaneously Hypertensive Rats. Med Sci Monit 2018; 24:1205-1218. [PMID: 29485979 PMCID: PMC5841927 DOI: 10.12659/msm.908761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) has anti-inflammatory and anti-hypertensive effects, and connexins (Cxs) are involved in regulation of immune homeostasis. In this study, we explored whether exogenous H2S prevents hypertensive inflammation by regulating Cxs expression of T lymphocytes in spontaneously hypertensive rats (SHR). MATERIAL AND METHODS We treated SHR with sodium hydrosulfide (NaHS) for 9 weeks. Vehicle-treated Wistar-Kyoto rats (WKYs) were used as a control. The arterial pressure was monitored by the tail-cuff method, and vascular function in basilar arteries was examined by pressure myography. Hematoxylin and eosin staining was used to show vascular remodeling and renal injury. The percentage of T cell subtypes in peripheral blood, surface expressions of Cx40/Cx43 on T cell subtypes, and serum cytokines level were determined by flow cytometry or ELISA. Expression of Cx40/Cx43 proteins in peripheral blood lymphocytes was analyzed by Western blot. RESULTS Chronic NaHS treatment significantly attenuated blood pressure elevation, and inhibited inflammation of target organs, vascular remodeling, and renal injury in SHR. Exogenous NaHS also improved vascular function by attenuating KCl-stimulated vasoconstrictor response in basilar arteries of SHR. In addition, chronic NaHS administration significantly suppressed inflammation of peripheral blood in SHR, as evidenced by the decreased serum levels of IL-2, IL-6, and CD4/CD8 ratio and the increased IL-10 level and percentage of regulatory T cells. NaHS treatment decreased hypertension-induced Cx40/Cx43 expressions in T lymphocytes from SHR. CONCLUSIONS Our data demonstrate that H2S reduces hypertensive inflammation, at least partly due to regulation of T cell subsets balance by Cx40/Cx43 expressions inhibition.
Collapse
Affiliation(s)
- Xin Ni
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi Universit, Shihezi, Xinjiang, China (mainland)
| | - Liang Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Min Peng
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Tu-Wang Shen
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Xiu-Shi Yu
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Li-Ya Shan
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Li Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Xin-Zhi Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Pathophysiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| |
Collapse
|
12
|
Boedtkjer E, Matchkov VV, Boedtkjer DMB, Aalkjaer C. Negative News: Cl− and HCO3− in the Vascular Wall. Physiology (Bethesda) 2016; 31:370-83. [DOI: 10.1152/physiol.00001.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cl− and HCO3− are the most prevalent membrane-permeable anions in the intra- and extracellular spaces of the vascular wall. Outwardly directed electrochemical gradients for Cl− and HCO3− permit anion channel opening to depolarize vascular smooth muscle and endothelial cells. Transporters and channels for Cl− and HCO3− also modify vascular contractility and structure independently of membrane potential. Transport of HCO3− regulates intracellular pH and thereby modifies the activity of enzymes, ion channels, and receptors. There is also evidence that Cl− and HCO3− transport proteins affect gene expression and protein trafficking. Considering the extensive implications of Cl− and HCO3− in the vascular wall, it is critical to understand how these ions are transported under physiological conditions and how disturbances in their transport can contribute to disease development. Recently, sensing mechanisms for Cl− and HCO3− have been identified in the vascular wall where they modify ion transport and vasomotor function, for instance, during metabolic disturbances. This review discusses current evidence that transport (e.g., via NKCC1, NBCn1, Ca2+-activated Cl− channels, volume-regulated anion channels, and CFTR) and sensing (e.g., via WNK and RPTPγ) of Cl− and HCO3− influence cardiovascular health and disease.
Collapse
Affiliation(s)
| | | | - Donna M. B. Boedtkjer
- Department of Biomedicine, Aarhus University, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark; and
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Ma MM, Lin CX, Liu CZ, Gao M, Sun L, Tang YB, Zhou JG, Wang GL, Guan YY. Threonine532 phosphorylation in ClC-3 channels is required for angiotensin II-induced Cl(-) current and migration in cultured vascular smooth muscle cells. Br J Pharmacol 2016; 173:529-44. [PMID: 26562480 DOI: 10.1111/bph.13385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/11/2015] [Accepted: 10/25/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Angiotensin II (AngII) induces migration and growth of vascular smooth muscle cell (VSMC), which is responsible for vascular remodelling in some cardiovascular diseases. Ang II also activates a Cl(-) current, but the underlying mechanism is not clear. EXPERIMENTAL APPROACH The A10 cell line and primary cultures of VSMC from control, ClC-3 channel null mice and WT mice made hypertensive with AngII infusions were used. Techniques employed included whole-cell patch clamp, co-immunoprecipitation, site-specific mutagenesis and Western blotting, KEY RESULTS In VSMC, AngII induced Cl(-) currents was carried by the chloride ion channel ClC-3. This current was absent in VSMC from ClC-3 channel null mice. The AngII-induced Cl(-) current involved interactions between ClC-3 channels and Rho-kinase 2 (ROCK2), shown by N- or C-terminal truncation of ClC-3 protein, ROCK2 siRNA and co-immunoprecipitation assays. Phosphorylation of ClC-3 channels at Thr(532) by ROCK2 was critical for AngII-induced Cl(-) current and VSMC migration. The ClC-3 T532D mutant (mutation of Thr(532) to aspartate), mimicking phosphorylated ClC-3 protein, significantly potentiated AngII-induced Cl(-) current and VSMC migration, while ClC-3 T532A (mutation of Thr(532) to alanine) had the opposite effects. AngII-induced cell migration was markedly decreased in VSMC from ClC-3 channel null mice that was insensitive to Y27632, an inhibitor of ROCK2. In addition, AngII-induced cerebrovascular remodelling was decreased in ClC-3 null mice, possibly by the ROCK2 pathway. CONCLUSIONS AND IMPLICATIONS ClC-3 protein phosphorylation at Thr(532) by ROCK2 is required for AngII-induced Cl(-) current and VSMC migration that are involved in AngII-induced vascular remodelling in hypertension.
Collapse
Affiliation(s)
- Ming-Ming Ma
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Cai-Xia Lin
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Can-Zhao Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Min Gao
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Lu Sun
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yong-Bo Tang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guan-Lei Wang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Liu CZ, Li XY, Du RH, Gao M, Ma MM, Li FY, Huang EW, Sun HS, Wang GL, Guan YY. Endophilin A2 Influences Volume-Regulated Chloride Current by Mediating ClC-3 Trafficking in Vascular Smooth Muscle Cells. Circ J 2016; 80:2397-2406. [DOI: 10.1253/circj.cj-16-0793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Can-Zhao Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University
| | - Xiang-Yu Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University
| | - Ren-Hong Du
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University
| | - Min Gao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University
| | - Ming-Ming Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University
| | - Fei-Ya Li
- Departments of Surgery and Physiology, Institute of Medical Science, Faculty of Medicine, University of Toronto
| | - Er-Wen Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University
| | - Hong-Shuo Sun
- Departments of Surgery and Physiology, Institute of Medical Science, Faculty of Medicine, University of Toronto
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University
| | - Yong-Yuan Guan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University
| |
Collapse
|
15
|
Tao J, Liu CZ, Yang J, Xie ZZ, Ma MM, Li XY, Li FY, Wang GL, Zhou JG, Du YH, Guan YY. ClC-3 deficiency prevents atherosclerotic lesion development in ApoE−/− mice. J Mol Cell Cardiol 2015; 87:237-47. [DOI: 10.1016/j.yjmcc.2015.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 11/29/2022]
|
16
|
Zeng JW, Zeng XL, Li FY, Ma MM, Yuan F, Liu J, Lv XF, Wang GL, Guan YY. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) prevents apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells. Apoptosis 2015; 19:1317-29. [PMID: 24999019 DOI: 10.1007/s10495-014-1014-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) acts as a cAMP-dependent chloride channel, has been studied in various types of cells. CFTR is abundantly expressed in vascular smooth muscle cells and closely linked to vascular tone regulation. However, the functional significance of CFTR in basilar vascular smooth muscle cells (BASMCs) remains elusive. Accumulating evidence has shown the direct role of CFTR in cell apoptosis that contributes to several main pathological events in CF, such as inflammation, lung injury and pancreatic insufficiency. We therefore investigated the role of CFTR in BASMC apoptotic process induced by hydrogen peroxide (H2O2). We found that H2O2-induced cell apoptosis was parallel to a significant decrease in endogenous CFTR protein expression. Silencing CFTR with adenovirus-mediated CFTR specific siRNA further enhanced H2O2-induced BASMC injury, mitochondrial cytochrome c release into cytoplasm, cleaved caspase-3 and -9 protein expression and oxidized glutathione levels; while decreased cell viability, the Bcl-2/Bax ratio, mitochondrial membrane potential, total glutathione levels, activities of superoxide dismutase and catalase. The pharmacological activation of CFTR with forskolin produced the opposite effects. These results strongly suggest that CFTR may modulate oxidative stress-related BASMC apoptosis through the cAMP- and mitochondria-dependent pathway and regulating endogenous antioxidant defense system.
Collapse
Affiliation(s)
- Jia-Wei Zeng
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zeng JW, Wang XG, Ma MM, Lv XF, Liu J, Zhou JG, Guan YY. Integrin β3 mediates cerebrovascular remodelling through Src/ClC-3 volume-regulated Cl(-) channel signalling pathway. Br J Pharmacol 2015; 171:3158-70. [PMID: 24611720 DOI: 10.1111/bph.12654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/24/2014] [Accepted: 02/19/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebrovascular remodelling is one of the important risk factors of stroke. The underlying mechanisms are unclear. Integrin β3 and volume-regulated ClC-3 Cl(-) channels have recently been implicated as important contributors to vascular cell proliferation. Therefore, we investigated the role of integrin β3 in cerebrovascular remodelling and related Cl(-) signalling pathway. EXPERIMENTAL APPROACH Cl(-) currents were recorded using a patch clamp technique. The expression of integrin β3 in hypertensive animals was examined by Western blot and immunohistochemisty. Immunoprecipitation, cDNA and siRNA transfection were employed to investigate the integrin β3/Src/ClC-3 signalling. KEY RESULTS Integrin β3 expression was up-regulated in stroke-prone spontaneously hypertensive rats, 2-kidney 2-clip hypertensive rats and angiotensin II-infused hypertensive mice. Integrin β3 expression was positively correlated with medial cross-sectional area and ClC-3 expression in the basilar artery of 2-kidney 2-clip hypertensive rats. Knockdown of integrin β3 inhibited the proliferation of rat basilar vascular smooth muscle cells induced by angiotensin II. Co-immunoprecipitation and immunofluorescence experiments revealed a physical interaction between integrin β3, Src and ClC-3 protein. The integrin β3/Src/ClC-3 signalling pathway was shown to be involved in the activation of volume-regulated chloride channels induced by both hypo-osmotic stress and angiotensin II. Tyrosine 284 within a concensus Src phosphorylation site was the key point for ClC-3 channel activation. ClC-3 knockout significantly attenuated angiotensin II-induced cerebrovascular remodelling. CONCLUSIONS AND IMPLICATIONS Integrin β3 mediates cerebrovascular remodelling during hypertension via Src/ClC-3 signalling pathway.
Collapse
Affiliation(s)
- Jia-Wei Zeng
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, China; Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Zheng L, Xing L, Zeng C, Wu T, Gui Y, Li W, Lan T, Yang Y, Gu Q, Qi C, Zhang Q, Tang F, He X, Wang L. Inactivation of PI3Kδ induces vascular injury and promotes aneurysm development by upregulating the AP-1/MMP-12 pathway in macrophages. Arterioscler Thromb Vasc Biol 2014; 35:368-77. [PMID: 25503990 DOI: 10.1161/atvbaha.114.304365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE An aneurysm is an inflammatory vascular condition. Phosphatidylinositol 3-kinases δ is highly expressed in leukocytes, and play a key role in innate immunity. However, the link between phosphatidylinositol 3-kinases δ and aneurysm development has not yet been elucidated. APPROACH AND RESULTS Carotid ligation unexpectedly induced characteristic aneurysm formation beneath the ligation point in p110δ(D910A/D910A) mice (n=25; P<0.001 versus wild-type). Besides, p110δ inactivation exacerbated CaCl2-induced abdominal aortic aneurysms development. A reverse transcription polymerase chain reaction microarray revealed significant extracellular matrix components degradation and matrix metalloproteinases (MMPs) upregulation in the abdominal aorta of p110δ(D910A/D910A) mice. Similarly, the expression of both collagen I and IV was significantly decreased (n=10; P<0.05 versus wild-type) in carotid artery. Western blot assay confirmed that MMP-12 was significantly upregulated in arteries of p110δ(D910A/D910A) mice (n=10; P<0.01 versus wild-type). In vitro, p110δ inactivation marked increase peritoneal macrophages recruitment and synergistically enhance tumor necrosis factor-α-induced recruitment. A specific phosphatidylinositol 3-kinases δ inhibitor (IC87114) or genetic p110δ inactivation upregulated MMP-12 expression and c-Jun phosphorylation (n=6; P<0.05 versus wild-type macrophages). IC87114 also increased activator protein-1 DNA-binding activity (n=6; P<0.001 versus control) and enhanced the effect of tumor necrosis factor-α on activator protein-1-binding activity (n=5; P<0.01 versus tumor necrosis factor-α treatment groups). Knockdown of c-Jun suppressed the effect of the IC87114 and tumor necrosis factor-α on MMP-12 mRNA expression (n=5 in each group; P<0.01 versus scrRNA treatment groups). CONCLUSIONS Our findings demonstrate that p110δ inactivation leads to extracellular matrix degradation in vessels and promotes aneurysm development by inducing macrophages migration and upregulating the activator protein-1/MMP-12 pathway in macrophages.
Collapse
Affiliation(s)
- Lingyun Zheng
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Liying Xing
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Cuiling Zeng
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Teng Wu
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Yali Gui
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Weidong Li
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Tian Lan
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Yongxia Yang
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Quliang Gu
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Cuiling Qi
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Qianqian Zhang
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Futian Tang
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Xiaodong He
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Lijing Wang
- From the Vascular Biology Research Institute (L.Z., L.X., C.Z., T.W., Y.G., W.L., T.L., Y.Y., Q.G., C.Q., Q.Z., F.T., X.H., L.W.) and Department of Basic Course (L.Z., Y.Y., Q.G.), Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China.
| |
Collapse
|