1
|
Yamamichi G, Kato T, Arakawa N, Ino Y, Ujike T, Nakano K, Koh Y, Motoyama Y, Outani H, Myoba S, Ishizuya Y, Yamamoto Y, Hatano K, Kawashima A, Fukuhara S, Uemura H, Okada S, Morii E, Nonomura N, Uemura M. GDF15 propeptide promotes bone metastasis of castration-resistant prostate cancer by augmenting the bone microenvironment. Biomark Res 2024; 12:147. [PMID: 39587633 PMCID: PMC11590406 DOI: 10.1186/s40364-024-00695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Bone metastasis (BM) is a common and fatal condition in patients with castration-resistant prostate cancer (CRPC). However, there are no useful blood biomarkers for CRPC with BM, and the mechanism underlying BM is unclear. In this study, we investigated precise blood biomarkers for evaluating BM that can improve the prognosis of patients with CRPC. METHODS We comprehensively examined culture supernatants from four prostate cancer (PCa) cell lines using Orbitrap mass spectrometry to identify specific proteins secreted abundantly by PCa cells. The effects of this protein to PCa cells, osteoblasts, osteoclasts were examined, and BM mouse model. In addition, we measured the plasma concentration of this protein in CRPC patients for whom bone scan index (BSI) by bone scintigraphy was performed. RESULTS A total of 2,787 proteins were identified by secretome analysis. We focused on GDF15 propeptide (GDPP), which is secreted by osteoblasts, osteoclasts, and PCa cells. GDPP promoted the proliferation, invasion, and migration of PC3 and DU145 CRPC cells, and GDPP aggravated BM in a mouse model. Importantly, GDPP accelerated bone formation and absorption in the bone microenvironment by enhancing the proliferation of osteoblasts and osteoclasts by upregulating individual transcription factors such as RUNX2, OSX, ATF4, NFATc1, and DC-STAMP. In clinical settings, including a total of 416 patients, GDPP was more diagnostic of BM than prostate-specific antigen (PSA) (AUC = 0.92 and 0.78) and the seven other blood biomarkers (alkaline phosphatase, lactate dehydrogenase, bone alkaline phosphatase, tartrate-resistant acid phosphatase 5b, osteocalcin, procollagen I N-terminal propeptide and mature GDF15) in patients with CRPC. The changes in BSI over time with systemic treatment were correlated with that of GDPP (r = 0.63) but not with that of PSA (r = -0.16). CONCLUSIONS GDPP augments the tumor microenvironment of BM and is a novel blood biomarker of BM in CRPC, which could lead to early treatment interventions in patients with CRPC.
Collapse
Grants
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
- 21K09396, 20K23002 and 24K12436 Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Gaku Yamamichi
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Noriaki Arakawa
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
- Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Yokohama, Kanagawa, 236-0004, Japan
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Yokohama, Kanagawa, 236-0004, Japan
| | - Takeshi Ujike
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kosuke Nakano
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoko Koh
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuichi Motoyama
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetatsu Outani
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shohei Myoba
- Bioscience Division, Research and Development Department, Tosoh Corporation, 2743-1 Hayakawa, Ayase, Kanagawa, 252-1123, Japan
| | - Yu Ishizuya
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiyuki Yamamoto
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroji Uemura
- Departments of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafunechou, Yokohama, Kanagawa, 232-0024, Japan
| | - Seiji Okada
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Urology, Iwase General Hospital, 20 Kitamachi, Sukagawa, Fukushima, 962-8503, Japan
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| |
Collapse
|
2
|
Jeon HY, Lee AJ, Moon CH, Ha KS. Regulation of AMPK and GAPDH by Transglutaminase 2 Plays a Pivotal Role in Microvascular Leakage in Diabetic Retinas. Diabetes 2024; 73:1756-1766. [PMID: 39024127 DOI: 10.2337/db23-0885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Diabetic retinopathy is the most common microvascular complication caused by chronic hyperglycemia and is a leading cause of blindness; however, the underlying molecular mechanism has not been clearly elucidated. Therefore, we investigated whether regulation of AMPK and GAPDH by transglutaminase 2 (TGase2) is important for hyperglycemia-induced microvascular leakage in the diabetic retina. In human retinal endothelial cells (HRECs) and diabetic mouse retinas, we found that TGase2, activated by sequential elevation of intracellular Ca2+ and reactive oxygen species (ROS) levels, played an essential role in hyperglycemia-induced vascular leakage. ROS generation and TGsae2 activation were involved in hyperglycemia-induced AMPK dephosphorylation, which resulted in vascular endothelial-cadherin (VE-cadherin) disassembly and increased fluorescein isothiocyanate-dextran extravasation. Furthermore, high glucose-induced TGase2 activation suppressed GAPDH activity, determined by an on-chip activity assay, through inhibition of AMPK, which induced VE-cadherin disassembly and endothelial permeability in HRECs. Overall, our findings suggest that inhibition of AMPK and GAPDH by TGase2 plays a pivotal role in hyperglycemia-induced microvascular leakage in the retinas of diabetic mice. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
- Scripps Korea Antibody Institute, Chuncheon, Kangwon-do, Korea
| | - Ah-Jun Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Chan-Hee Moon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| |
Collapse
|
3
|
Dakroub A, Dbouk A, Asfour A, Nasser SA, El-Yazbi AF, Sahebkar A, Eid AA, Iratni R, Eid AH. C-peptide in diabetes: A player in a dual hormone disorder? J Cell Physiol 2024; 239:e31212. [PMID: 38308646 DOI: 10.1002/jcp.31212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.
Collapse
Affiliation(s)
- Ali Dakroub
- St. Francis Hospital and Heart Center, Roslyn, New York, USA
| | - Ali Dbouk
- Department of Medicine, Saint-Joseph University Medical School, Hotel-Dieu de France Hospital, Beirut, Lebanon
| | - Aref Asfour
- Leeds Teaching Hospitals NHS Trust, West Yorkshire, United Kingdom
| | | | - Ahmed F El-Yazbi
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Kim EB, Jeon HY, Ouh YT, Lee AJ, Moon CH, Na SH, Ha KS. Proinsulin C-peptide inhibits high glucose-induced migration and invasion of ovarian cancer cells. Biomed Pharmacother 2024; 172:116232. [PMID: 38310652 DOI: 10.1016/j.biopha.2024.116232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Proinsulin C-peptide, a biologically active polypeptide released from pancreatic β-cells, is known to prevent hyperglycemia-induced microvascular leakage; however, the role of C-peptide in migration and invasion of cancer cells is unknown. Here, we investigated high glucose-induced migration and invasion of ovarian cancer cells and the inhibitory effects of human C-peptide on metastatic cellular responses. In SKOV3 human ovarian cancer cells, high glucose conditions activated a vicious cycle of reactive oxygen species (ROS) generation and transglutaminase 2 (TGase2) activation through elevation of intracellular Ca2+ levels. TGase2 played a critical role in high glucose-induced ovarian cancer cell migration and invasion through β-catenin disassembly. Human C-peptide inhibited high glucose-induced disassembly of adherens junctions and ovarian cancer cell migration and invasion through inhibition of ROS generation and TGase2 activation. The preventive effect of C-peptide on high glucose-induced ovarian cancer cell migration and invasion was further demonstrated in ID8 murine ovarian cancer cells. Our findings suggest that high glucose conditions induce the migration and invasion of ovarian cancer cells, and human C-peptide inhibits these metastatic responses by preventing ROS generation, TGase2 activation, and subsequent disassembly of adherens junctions.
Collapse
Affiliation(s)
- Eun-Bin Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, South Korea
| | - Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, South Korea; Scripps Korea Antibody Institute, Kangwon National University Chuncheon Campus, Chuncheon, Kangwon-do 24341, South Korea
| | - Yung-Taek Ouh
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, South Korea; Department of Obstetrics and Gynecology, Korea University Ansan Hospital, Ansan, Gyeonggi-do 15355, Korea
| | - Ah-Jun Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, South Korea
| | - Chan-Hee Moon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, South Korea
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, South Korea.
| |
Collapse
|
5
|
Zhang Y, Song X, Qi T, Gao S, Sun C, Yang J, Zhou X. Association between lipocalin-2 levels and diabetic retinopathy in patients with overweight/obese type 2 diabetes mellitus. Ir J Med Sci 2023; 192:2785-2792. [PMID: 37069380 DOI: 10.1007/s11845-023-03365-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
AIMS The study aimed to investigate the association between lipocalin-2 (LCN-2) levels and diabetic retinopathy (DR) in patients with overweight/obese type 2 diabetes mellitus(T2DM), and to explore the mechanism of LCN-2 in overweight/obese DR. METHODS The study involved 237 T2DM inpatients divided into the normal group and overweight/obese group, and the two groups were further divided into two subgroups according to the presence or absence of DR. The demographic data and biochemical parameters were measured. RESULTS LCN-2 levels in overweight/obese groups were higher than those in normal groups (P < 0.001 for all), and patients with DR had higher levels of LCN-2 than those without DR(P < 0.05 for all) in normal groups and overweight/obese groups. Binary logistic regression analysis showed that no significant significance was observed for LCN-2 levels compared to those below the median in the normal group, but individuals with LCN-2 levels above the median had 4.198 times higher risk of developing DR than those below the median (OR = 4.198, 95% CI = 1.676-10.516) after adjustment for potential confounding factors in the overweight/obese group. In the total, normal and overweight/obese groups, the prediction capacity of LCN-2 for DR was 1.56, 1.58 and 1.65 times, respectively. Conclusionsː In conclusion, our study found that LCN-2 levels were higher in overweight/obese patients with DR, and LCN-2 was an independent predictor of DR in T2DM patients with overweight/obese. In addition, LCN-2 may be a valuable predictor of DR-like factors such as the duration of diabetes and hypertension.
Collapse
Affiliation(s)
- Yajuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Xiaojun Song
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Tianying Qi
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Shan Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Chao Sun
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jiaxuan Yang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xinli Zhou
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China.
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.
| |
Collapse
|
6
|
Chen J, Huang Y, Liu C, Chi J, Wang Y, Xu L. The role of C-peptide in diabetes and its complications: an updated review. Front Endocrinol (Lausanne) 2023; 14:1256093. [PMID: 37745697 PMCID: PMC10512826 DOI: 10.3389/fendo.2023.1256093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Worldwide, diabetes and its complications have seriously affected people's quality of life and become a serious public health problem. C-peptide is not only an indicator of pancreatic β-cell function, but also a biologically active peptide that can bind to cell membrane surface signaling molecules and activate downstream signaling pathways to play antioxidant, anti-apoptotic and inflammatory roles, or regulate cellular transcription through internalization. It is complex how C-peptide is related to diabetic complications. Both deficiencies and overproduction can lead to complications, but their mechanisms of action may be different. C-peptide replacement therapy has shown beneficial effects on diabetic complications in animal models when C-peptide is deficient, but results from clinical trials have been unsatisfactory. The complex pattern of the relationship between C-peptide and diabetic chronic complications has not yet been fully understood. Future basic and clinical studies of C-peptide replacement therapies will need to focus on baseline levels of C-peptide in addition to more attention also needs to be paid to post-treatment C-peptide levels to explore the optimal range of fasting C-peptide and postprandial C-peptide maintenance.
Collapse
Affiliation(s)
| | | | | | | | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Xu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Toprak K, Kaplangöray M, Memioğlu T, İnanir M, Omar B, Taşcanov MB, Biçer A, Demirbağ R. HbA1c/C-peptide ratio is associated with angiographic thrombus burden and short-term mortality in patients presenting with ST-elevation myocardial infarction. Blood Coagul Fibrinolysis 2023; 34:385-395. [PMID: 37577863 DOI: 10.1097/mbc.0000000000001240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
OBJECTIVES Angiographic high thrombus burden (HTB) is associated with increased adverse cardiovascular events in patients with ST-elevation myocardial infarction (STEMI). HbA1c and C-peptide are two interrelated bioactive markers that affect many cardiovascular pathways. HbA1c exhibits prothrombogenic properties, while C-peptide, in contrast, exhibits antithrombogenic effects. In this study, we aimed to demonstrate the value of combining these two biomarkers in a single fraction in predicting HTB and short-term mortality in patients with STEMI. METHODS 1202 patients who underwent primary percutaneous coronary intervention (pPCI) for STEMI were retrospectively included in this study. The study population was divided into thrombus burden (TB) groups and compared in terms of basic clinical demographics, laboratory parameters and HbA1c/C-peptide ratios (HCR). In addition, short-term mortality of the study population was compared according to HCR and TB categories. RESULTS HCR values were significantly higher in the HTB group than in the LTB group (3.5 ± 1.2 vs. 2.0 ± 1.1; P < 0.001; respectively). In the multivariable regression analysis, HCR was determined as an independent predictor of HTB both as a continuous variable [odds ratio (OR): 2.377; confidence interval (CI): 2.090-2.704; P < 0.001] and as a categorical variable (OR: 5.492; CI: 4.115-7.331; P < 0.001). In the receiver operating characteristic (ROC) analysis, HCR predicted HTB with 73% sensitivity and 72% specificity, and furthermore, HCR's predictive value for HTB was superior to HbA1c and C-peptide. The Kaplan-Meier cumulative survival curve showed that short-term mortality increased at HTB. In addition, HCR strongly predicted short-term mortality in Cox regression analysis. CONCLUSIONS In conclusion, HCR is closely associated with HTB and short-term mortality in STEMI patients.
Collapse
Affiliation(s)
- Kenan Toprak
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa
| | | | - Tolga Memioğlu
- Bolu Abant Izzet Baysal University, Medical Faculty, Cardiology Department, Bolu
| | - Mehmet İnanir
- Bolu Abant Izzet Baysal University, Medical Faculty, Cardiology Department, Bolu
| | - Bahadir Omar
- Umraniye training and research hospital, Cardiology Department, Istanbul, Turkey
| | | | - Asuman Biçer
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa
| | - Recep Demirbağ
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa
| |
Collapse
|
8
|
Abstract
CONTEXT The prevalence of diabetic neuropathy is drastically increasing in the world. To halt the progression of diabetic neuropathy, there is an unmet need to have potential biomarkers for the diagnosis and new drug discovery. OBJECTIVE To study various biomarkers involved in the pathogenesis of diabetic neuropathy. METHODS The literature was searched with the help of various scientific databases and resources like PubMed, ProQuest, Scopus, and Google scholar from the year 1976 to 2020. RESULTS Biomarkers of diabetic neuropathy are categorised as inflammatory biomarkers such as MCP-1, VEGF, TRPV1, NF-κB; oxidative biomarkers such as adiponectin, NFE2L2; enzyme biomarkers like NADPH, ceruloplasmin, HO-1, DPP-4, PARP α; miscellaneous biomarkers such as SIRT1, caveolin 1, MALAT1, and microRNA. All biomarkers have a significant role in the pathogenesis of diabetic neuropathy. CONCLUSION These biomarkers have a potential role in the progression of diabetic neuropathy and can be considered as potential targets for new drug discovery.
Collapse
Affiliation(s)
- Kaveri M Adki
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
9
|
Li Y, Wang K, Zhu X, Cheng Z, Zhu L, Murray M, Zhou F. Ginkgo biloba extracts protect human retinal Müller glial cells from t-BHP induced oxidative damage by activating the AMPK-Nrf2-NQO-1 axis. J Pharm Pharmacol 2023; 75:385-396. [PMID: 36583518 DOI: 10.1093/jpp/rgac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/25/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Retinal Müller glial cell loss is almost involved in all retinal diseases, especially diabetic retinopathy (DR). Oxidative stress significantly contributes to the development of Müller glial cell loss. Ginkgo biloba extracts (GBE) have been reported to possess antioxidant property, beneficial in treating human retinal diseases. However, little is known about its role in Müller glial cells. This study investigated the protective effect of GBE (prepared from ginkgo biloba dropping pills) in human Müller glial cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress and its underlying molecular mechanism. METHODS MIO-M1 cells were pretreated with or without GBE prior to the exposure to t-BHP-induced oxidative stress. Cell viability, cell death profile and lipid peroxidation were subsequently assessed. Protein expression of the key anti-oxidative signalling factors were investigated. KEY FINDINGS We showed that GBE can effectively protect human MIO-M1 cells from t-BHP-induced oxidative injury by improving cell viability, reducing intracellular ROS accumulation and suppressing lipid peroxidation, which effect is likely mediated through activating AMPK-Nrf2-NQO-1 antioxidant respondent axis. CONCLUSIONS Our study is the first to reveal the great potentials of GBE in protecting human retinal Müller glial cell loss against oxidative stress. GBE might be used to prevent human retinal diseases particularly DR.
Collapse
Affiliation(s)
- Yue Li
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Zhengqi Cheng
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, NSW, 2000, Australia
| | - Michael Murray
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| |
Collapse
|
10
|
Lee AJ, Moon CH, Lee YJ, Jeon HY, Park WS, Ha KS. Systemic C-peptide supplementation ameliorates retinal neurodegeneration by inhibiting VEGF-induced pathological events in diabetes. FASEB J 2023; 37:e22763. [PMID: 36625326 DOI: 10.1096/fj.202201390rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
Diabetic retinopathy (DR) is caused by retinal vascular dysfunction and neurodegeneration. Intraocular delivery of C-peptide has been shown to be beneficial against hyperglycemia-induced microvascular leakage in the retina of diabetes; however, the effect of C-peptide on diabetes-induced retinal neurodegeneration remains unknown. Moreover, extraocular C-peptide replacement therapy against DR to avoid various adverse effects caused by intravitreal injections has not been studied. Here, we demonstrate that systemic C-peptide supplementation using osmotic pumps or biopolymer-conjugated C-peptide hydrogels ameliorates neurodegeneration by inhibiting vascular endothelial growth factor-induced pathological events, but not hyperglycemia-induced vascular endothelial growth factor expression, in the retinas of diabetic mice. C-peptide inhibited hyperglycemia-induced activation of macroglial and microglial cells, downregulation of glutamate aspartate transporter 1 expression, neuronal apoptosis, and histopathological changes by a mechanism involving reactive oxygen species generation in the retinas of diabetic mice, but transglutaminase 2, which is involved in retinal vascular leakage, is not associated with these pathological events. Overall, our findings suggest that systemic C-peptide supplementation alleviates hyperglycemia-induced retinal neurodegeneration by inhibiting a pathological mechanism, involving reactive oxygen species, but not transglutaminase 2, in diabetes.
Collapse
Affiliation(s)
- Ah-Jun Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Chan-Hee Moon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
11
|
Lee YJ, Jeon HY, Lee AJ, Kim M, Ha KS. Dopamine ameliorates hyperglycemic memory-induced microvascular dysfunction in diabetic retinopathy. FASEB J 2022; 36:e22643. [PMID: 36331561 DOI: 10.1096/fj.202200865r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Dopamine is a neurotransmitter that mediates visual function in the retina and diabetic retinopathy (DR) is the most common microvascular complication of diabetes and the leading cause of blindness; however, the role of dopamine in retinal vascular dysfunction in DR remains unclear. Here, we report a mechanism of hyperglycemic memory (HGM)-induced retinal microvascular dysfunction and the protective effect of dopamine against the HGM-induced retinal microvascular leakage and abnormalities. We found that HGM induced persistent oxidative stress, mitochondrial membrane potential collapse and fission, and adherens junction disassembly and subsequent vascular leakage after blood glucose normalization in the mouse retinas. These persistent hyperglycemic stresses were inhibited by dopamine treatment in human retinal endothelial cells and by intravitreal injection of levodopa in the retinas of HGM mice. Moreover, levodopa supplementation ameliorated HGM-induced pericyte degeneration, acellular capillary and pericyte ghost generation, and endothelial apoptosis in the mouse retinas. Our findings suggest that dopamine alleviates HGM-induced retinal microvascular leakage and abnormalities by inhibiting persistent oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yeon-Ju Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Ah-Jun Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Minsoo Kim
- Department of Anesthesiology and Pain Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
12
|
Polymer-Based Delivery of Peptide Drugs to Treat Diabetes: Normalizing Hyperglycemia and Preventing Diabetic Complications. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00057-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Rossiter JL, Redlinger LJ, Kolar GR, Samson WK, Yosten GLC. The actions of C-peptide in HEK293 cells are dependent upon insulin and extracellular glucose concentrations. Peptides 2022; 150:170718. [PMID: 34954230 DOI: 10.1016/j.peptides.2021.170718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Connecting peptide, or C-peptide, is a part of the insulin prohormone and is essential for the proper folding and processing of the mature insulin peptide. C-peptide is released from the same beta cell secretory granules as insulin in equimolar amounts. However, due to their relative stabilities in plasma, the two peptides are detected in the circulation at ratios of approximately 4:1 to 6:1 (C-peptide to insulin), depending on metabolic state. C-peptide binds specifically to human cell membranes and induces intracellular signaling cascades, likely through an interaction with the G protein coupled receptor, GPR146. C-peptide has been shown to exert protective effects against the vascular, renal, and ocular complications of diabetes. The effects of C-peptide appear to be dependent upon the presence of insulin and the absolute, extracellular concentration of glucose. In this study, we employed HEK293 cells to further examine the interactive effects of C-peptide, insulin, and glucose on cell signaling. We observed that C-peptide's cellular effects are dampened significantly when cells are exposed to physiologically relevant concentrations of both insulin and C-peptide. Likewise, the actions of C-peptide on cFos and GPR146 mRNA expressions were affected by changes in extracellular glucose concentration. In particular, C-peptide induced significant elevations in cFos expression in the setting of high (25 mmol) extracellular glucose concentration. These data indicate that future experimentation on the actions of C-peptide should control for the presence or absence of insulin and the concentration of glucose. Furthermore, these findings should be considered prior to the development of C-peptide-based therapeutics for the treatment of diabetes-associated complications.
Collapse
Affiliation(s)
- Jacqueline L Rossiter
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Lauren J Redlinger
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| |
Collapse
|
14
|
Königs V, Pierre S, Schicht M, Welss J, Hahnefeld L, Rimola V, Lütjen-Drecoll E, Geisslinger G, Scholich K. GPR40 Activation Abolishes Diabetes-Induced Painful Neuropathy by Suppressing VEGF-A Expression. Diabetes 2022; 71:774-787. [PMID: 35061031 DOI: 10.2337/db21-0711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022]
Abstract
G-protein-coupled receptor 40 (GPR40) is a promising target to support glucose-induced insulin release in patients with type 2 diabetes. We studied the role of GPR40 in the regulation of blood-nerve barrier integrity and its involvement in diabetes-induced neuropathies. Because GPR40 modulates insulin release, we used the streptozotocin model for type 1 diabetes, in which GPR40 functions can be investigated independently of its effects on insulin release. Diabetic wild-type mice exhibited increased vascular endothelial permeability and showed epineural microlesions in sciatic nerves, which were also observed in naïve GPR40-/- mice. Fittingly, expression of vascular endothelial growth factor-A (VEGF-A), an inducer of vascular permeability, was increased in diabetic wild-type and naïve GPR40-/- mice. GPR40 antagonists increased VEGF-A expression in murine and human endothelial cells as well as permeability of transendothelial barriers. In contrast, GPR40 agonists suppressed VEGF-A release and mRNA expression. The VEGF receptor inhibitor axitinib prevented diabetes-induced hypersensitivities and reduced endothelial and epineural permeability. Importantly, the GPR40 agonist GW9508 reverted established diabetes-induced hypersensitivity, an effect that was blocked by VEGF-A administration. Thus, GPR40 activation suppresses VEGF-A expression, thereby reducing diabetes-induced blood-nerve barrier permeability and reverting diabetes-induced hypersensitivities.
Collapse
Affiliation(s)
- Vanessa Königs
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jessica Welss
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Hahnefeld
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Vittoria Rimola
- Institute of Clinical Pharmacology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Elke Lütjen-Drecoll
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Klaus Scholich
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Pokhrel S, Giri N, Pokhrel R, Pardhe BD, Lamichhane A, Chaudhary A, Bhatt MP. Vitamin D deficiency and cardiovascular risk in type 2 diabetes population. Open Life Sci 2021; 16:464-474. [PMID: 34017921 PMCID: PMC8114957 DOI: 10.1515/biol-2021-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022] Open
Abstract
This study aims to assess vitamin D deficiency-induced dyslipidemia and cardiovascular disease (CVD) risk in poor glycemic control among type 2 diabetes mellitus (T2DM) patients. This study was carried out among 455 T2DM patients involving poor glycemic control (n = 247) and good glycemic control (n = 208). Fasting plasma glucose (FPG) and HbA1c were measured to assess glycemic control. Cardiac risk ratio, atherogenic index plasma, and atherogenic coefficient were calculated to assess and compare the CVD risk in different groups. Patients with poor control had a significantly higher level of total cholesterol (TC), triglyceride (TG), and non-high-density lipoprotein lipase cholesterol (non-HDL-C), atherogenic variables, and lower level of high-density lipoprotein lipase cholesterol (HDL-C) as compared to patients with good glycemic control. We also observed significant negative correlation of vitamin D with lipid markers and atherogenic variables in poor glycemic control diabetic population. The serum vitamin D levels were inversely associated with HbA1c, FPG, TG, TC, and non-HDL-C. Furthermore, hypercholesterolemia, hypertriglyceridemia, and elevated non-HDL-C were the independent risks in hypovitaminosis D population. Vitamin D deficiency in poor glycemic control is likely to develop dyslipidemia as compared to vitamin D insufficient and sufficient groups. Thus, vitamin D supplementation and an increase in exposure to sunlight may reduce the risk of cardiovascular complications in diabetes.
Collapse
Affiliation(s)
- Sushant Pokhrel
- Department of Laboratory Medicine, Manmohan Memorial Institute of Health Sciences, P. O. Box No. 15201, Kathmandu, Nepal
- Department of Genetics, National academy of Medical Sciences, Bir Hospital, Kathmandu, Nepal
| | - Nisha Giri
- Department of Laboratory Medicine, Manmohan Memorial Institute of Health Sciences, P. O. Box No. 15201, Kathmandu, Nepal
| | - Rakesh Pokhrel
- Department of Biochemistry, Institute of Medicine, Maharajgunj Medical Campus, Kathmandu, Nepal
| | - Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-Si, Chumgnam, South Korea
| | - Anit Lamichhane
- Department of Laboratory Medicine, Manmohan Memorial Institute of Health Sciences, P. O. Box No. 15201, Kathmandu, Nepal
| | - Abhisek Chaudhary
- Department of Clinical Pathology, Modern Diagnostic Laboratory and Research Center, Kathmandu, Nepal
| | - Mahendra Prasad Bhatt
- Department of Laboratory Medicine, Manmohan Memorial Institute of Health Sciences, P. O. Box No. 15201, Kathmandu, Nepal
| |
Collapse
|
16
|
Cai A, Chatziantoniou C, Calmont A. Vascular Permeability: Regulation Pathways and Role in Kidney Diseases. Nephron Clin Pract 2021; 145:297-310. [PMID: 33744890 DOI: 10.1159/000514314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vascular permeability (VP) is a fundamental aspect of vascular biology. A growing number of studies have revealed that many signalling pathways govern VP in both physiological and pathophysiological conditions. Furthermore, emerging evidence identifies VP alteration as a pivotal pathogenic factor in acute kidney injury, chronic kidney disease, diabetic kidney disease, and other proteinuric diseases. Therefore, perceiving the connections between these pathways and the aetiology of kidney disease is an important task as such knowledge may trigger the development of novel therapeutic or preventive medical approaches. In this regard, the discussion summarizing VP-regulating pathways and associating them with kidney diseases is highly warranted. SUMMARY Major pathways of VP regulation comprise angiogenic factors including vascular endothelial growth factor/VEGFR, angiopoietin/Tie, and class 3 semaphorin/neuropilin and inflammatory factors including histamine, platelet-activating factor, and leukocyte extravasation. These pathways mainly act on vascular endothelial cadherin to modulate adherens junctions of endothelial cells (ECs), thereby augmenting VP via the paracellular pathway. Elevated VP in diverse kidney diseases involves EC apoptosis, imbalanced regulatory factors, and many other pathophysiological events, which in turn exacerbates renal structural and functional disorders. Measures improving VP effectively ameliorate the diseased kidney in terms of tissue injury, endothelial dysfunction, kidney function, and long-term prognosis. Key Messages: (1) Angiogenic factors, inflammatory factors, and adhesion molecules represent major pathways that regulate VP. (2) Vascular hyperpermeability links various pathophysiological processes and plays detrimental roles in multiple kidney diseases.
Collapse
Affiliation(s)
- Anxiang Cai
- Unité mixte Inserm - Sorbonne Université, UMR_S1155, Tenon Hospital, Paris, France,
| | | | - Amélie Calmont
- Unité mixte Inserm - Sorbonne Université, UMR_S1155, Tenon Hospital, Paris, France
| |
Collapse
|
17
|
C-Peptide as a Therapy for Type 1 Diabetes Mellitus. Biomedicines 2021; 9:biomedicines9030270. [PMID: 33800470 PMCID: PMC8000702 DOI: 10.3390/biomedicines9030270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease affecting one-third of the United States population. It is characterized by hyperglycemia, where the hormone insulin is either not produced sufficiently or where there is a resistance to insulin. Patients with Type 1 DM (T1DM), in which the insulin-producing beta cells are destroyed by autoimmune mechanisms, have a significantly increased risk of developing life-threatening cardiovascular complications, even when exogenous insulin is administered. In fact, due to various factors such as limited blood glucose measurements and timing of insulin administration, only 37% of T1DM adults achieve normoglycemia. Furthermore, T1DM patients do not produce C-peptide, a cleavage product from insulin processing. C-peptide has potential therapeutic effects in vitro and in vivo on many complications of T1DM, such as peripheral neuropathy, atherosclerosis, and inflammation. Thus, delivery of C-peptide in conjunction with insulin through a pump, pancreatic islet transplantation, or genetically engineered Sertoli cells (an immune privileged cell type) may ameliorate many of the cardiovascular and vascular complications afflicting T1DM patients.
Collapse
|
18
|
Kida T, Oku H, Osuka S, Horie T, Ikeda T. Hyperglycemia-induced VEGF and ROS production in retinal cells is inhibited by the mTOR inhibitor, rapamycin. Sci Rep 2021; 11:1885. [PMID: 33479328 PMCID: PMC7820225 DOI: 10.1038/s41598-021-81482-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Determine the impact of the mTOR inhibitor, rapamycin, on the hyperglycemia-induced expression of vascular endothelial growth factor (VEGF) and the production of reactive oxygen species (ROS) in retinal cells. Rats made hyperglycemic for 8 weeks by streptozotocin, as well as control rats, received i.p. rapamycin (1 mg/kg) for 3 days prior to immunostaining of their retinas with anti-VEGF and anti-glial fibrillary acidic protein (GFAP) and measuring retinal protein levels of VEGF and GFAP by Western blotting. In other experiments, flow cytometry analysis of ethidium fluorescence determined intracellular ROS levels in the absence or presence of rapamycin (1 μM) under normoglycemic (5.5 mM) and hyperglycemic (25 mM) conditions in a rat retinal Müller cell line (TR-MUL5) and primary human retinal microvascular endothelial cells (HRMECs). In the diabetic retina, VEGF was elevated and colocalized with the glial marker, GFAP, whose level was also elevated. Treatment with rapamycin inhibited the diabetes-induced VEGF and GFAP increases. We also found that raising extracellular glucose from 5.5 mM to 25 mM resulted in significant rapamycin-sensitive increases in the ROS levels of TR-MUL5 cells and HRMECs. In rat retina, rapamycin attenuates the diabetes-induced VEGF overexpression, and in cultured Müller cells and HRMECs, inhibits the hyperglycemia-induced boost ROS.
Collapse
Affiliation(s)
- Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-City, Osaka, 569-8686, Japan.
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-City, Osaka, 569-8686, Japan
| | - Sho Osuka
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-City, Osaka, 569-8686, Japan
| | - Taeko Horie
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-City, Osaka, 569-8686, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-City, Osaka, 569-8686, Japan
| |
Collapse
|
19
|
Application of elastin-like biopolymer-conjugated C-peptide hydrogel for systemic long-term delivery against diabetic aortic dysfunction. Acta Biomater 2020; 118:32-43. [PMID: 33035695 DOI: 10.1016/j.actbio.2020.09.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 01/28/2023]
Abstract
Due to their short half-lives, repeated administration of anti-hyperglycemic drugs can cause pain, discomfort, tissue damage, and infection in diabetic patients. Therefore, there is a need to develop long-term drug delivery systems to treat diabetes and its complications. C-peptide can prevent diabetic complications, including diabetic vasculopathy, but its clinical application is limited by its short half-life. Here, we developed K9-C-peptide (human C-peptide conjugated to an elastin-like biopolymer) and investigated its long-term influence on hyperglycemia-induced vascular dysfunction using an aortic endothelium model in diabetic mice. Using pharmacokinetics and in vivo imaging, we found that subcutaneously injected K9-C-peptide formed a hydrogel depot that slowly released human C-peptide into the blood circulation for 19 days. Administration of K9-C-peptide, human C-peptide, or K8 polypeptide had no effect on body weight or blood glucose levels. The slow release of C-peptide from K9-C-peptide hydrogels provided prolonged prevention of oxidative stress, inflammatory responses, and endothelial apoptosis in a hyperglycemia-induced vascular dysfunction model using the diabetic mouse aorta. Subcutaneous administration of unbound human C-peptide and K8 polypeptide were used as negative controls and had no effects. These results suggest that K9-C-peptide is suitable for the long-term delivery of human C-peptide for treating vascular dysfunction in diabetic patients.
Collapse
|
20
|
Abdel-Hamid HA, Abdel-Hakeem EA, Zenhom NM, Toni NDM. C-peptide corrects hepatocellular dysfunction in a rat model of type 1 diabetes. J Physiol Biochem 2020; 76:417-425. [PMID: 32529526 DOI: 10.1007/s13105-020-00748-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
Abstract
C-peptide is gaining much interest recently due to its well-documented beneficial effects on multiple organ dysfunction induced by diabetes. Our study was designed to investigate the effect of C-peptide on hepatocellular dysfunction in diabetic rats. Wistar male rats were separated into four groups: control, diabetic, diabetic + insulin, and diabetic + C-peptide. Serum levels of glucose, insulin, and liver biomarkers were assessed. Liver sections were collected for histopathological examination and immuno-histochemical assessment of tumor necrosis factor alpha (TNF-α). Oxidative stress markers and gene expression of inducible nitric oxide synthase (iNOS), transforming growth factor beta 1 (TGF-β1), and glucose-6-phosphatase (G6Pase) were also measured in liver tissues. C-peptide administration prevented hepatic dysfunction induced by diabetes to a similar extent as that of insulin which was confirmed microscopically. We concluded that C-peptide could be used as an alternative therapy to insulin to correct hepatocellular dysfunction associated with type 1 diabetes mellitus (T1DM).
Collapse
Affiliation(s)
- Heba A Abdel-Hamid
- Medical Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| | | | - Nagwa M Zenhom
- Biochemistry Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nisreen D M Toni
- Pathology Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
21
|
Fawwad A, Waris N, Askari S, Ogle G, Ahmedani MY, Basit A. Relationship of C-peptide levels to duration of Type 1 diabetes - A study from Sindh, Pakistan. Pak J Med Sci 2020; 36:765-769. [PMID: 32494271 PMCID: PMC7260921 DOI: 10.12669/pjms.36.4.1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the relationship of C-peptide levels with duration of type 1 diabetes mellitus. METHODS This prospective study was conducted at Baqai Institute of Diabetology and Endocrinology (BIDE), Baqai Medical University (BMU), Karachi-Pakistan from December 2013 to December 2015. A total of 184 subjects were recruited during the study period, 100 in Group-A and 84 in Group-B. Subjects clinically diagnosed with type 1 diabetes Mellitus (T1DM) were categorized into two groups based on duration of diabetes: Group-A (with ≤1-year duration of diabetes) and Group-B (with >1-year duration of diabetes). Ninety-nine of the 100 enrolled subjects in Group-A were diagnosed as having T1DM, with one subject who presented at 11.9 years of age and diagnosed with T2DM excluded from this study. Blood samples were drawn for biochemical parameters. Data for baseline characteristics and clinical parameters (HbA1c and C-peptide) were obtained from hospital management system of BIDE. RESULTS Fifty-seven (57.6%) subjects in Group-A, and 39 (46.4%) in Group-B were males. Mean±SD duration of diabetes (years) was 0.64±0.6 (range 0-1) in Group-A, and 7.65±5.5 (range 1-23) in Group-B. Family history of T1DM and T2DM was 1(1%) and 27(27.3%) in Group-A, and 8(9.52%) and 21(25%) in Group-B, respectively. Twenty-one (21.2%) subjects presented in diabetic ketoacidosis (DKA) in Group-A and 18(21.4%), in Group-B. Mean±SD for HbA1c was non-significantly higher in Group-A 11.12±2.31 compared to Group-B 10.42±1.45. Mean±SD for C-peptide was 1.91±1.53 ng/mL (0.60±0.481 nmol/L) in Group-A, and 1.82±1.01 (0.57±0.32 nmol/L) in Group-B (p=0.984). CONCLUSION The study found that subjects with longer duration of T1DM had non-significantly decreased C-peptide levels compared to a group in which C-peptide was measured at or soon after diagnosis. Furthermore, C-peptide levels in many subjects with longer duration were higher than expected in classic T1DM.
Collapse
Affiliation(s)
- Asher Fawwad
- Asher Fawwad, PhD. Professor & Head of the Biochemistry Department (BMU), Honorary Research Director (BIDE), Baqai Institute of Diabetology and Endocrinology (BIDE), Karachi, Pakistan. Baqai Medical University (BMU), Karachi, Pakistan
| | - Nazish Waris
- Nazish Waris, M.Phil. Clinical Biochemistry and Psychopharmacology Research Unit Department of Biochemistry, University of Karachi-Pakistan Research Associate, Research Department (BIDE-BMU), Baqai Institute of Diabetology and Endocrinology (BIDE), Karachi, Pakistan. Baqai Medical University (BMU), Karachi, Pakistan
| | - Saima Askari
- Saima Askari, Fellow Endocrine, (BIDE-BMU), Baqai Institute of Diabetology and Endocrinology (BIDE), Karachi, Pakistan. Baqai Medical University (BMU), Karachi, Pakistan
| | - Graham Ogle
- Graham David Ogle, General Manager, Life for a Child Program, Diabetes NSW, Glebe, NSW, Sydney, Australia
| | - Muhammad Yakoob Ahmedani
- Muhammad Yakoob Ahmedani, FCPS, Professor of Medicine, Department of Medicine (BIDE-BMU), Baqai Institute of Diabetology and Endocrinology (BIDE), Karachi, Pakistan. Baqai Medical University (BMU), Karachi, Pakistan
| | - Abdul Basit
- Abdul Basit, FRCP, Professor of Medicine (BMU), Director (BIDE), Baqai Institute of Diabetology and Endocrinology (BIDE), Karachi, Pakistan. Baqai Medical University (BMU), Karachi, Pakistan
| |
Collapse
|
22
|
Souto SB, Campos JR, Fangueiro JF, Silva AM, Cicero N, Lucarini M, Durazzo A, Santini A, Souto EB. Multiple Cell Signalling Pathways of Human Proinsulin C-Peptide in Vasculopathy Protection. Int J Mol Sci 2020; 21:E645. [PMID: 31963760 PMCID: PMC7013900 DOI: 10.3390/ijms21020645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
A major hallmark of diabetes is a constant high blood glucose level (hyperglycaemia), resulting in endothelial dysfunction. Transient or prolonged hyperglycemia can cause diabetic vasculopathy, a secondary systemic damage. C-Peptide is a product of cleavage of proinsulin by a serine protease that occurs within the pancreatic β-cells, being secreted in similar amounts as insulin. The biological activity of human C-peptide is instrumental in the prevention of diabetic neuropathy, nephropathy and other vascular complications. The main feature of type 1 diabetes mellitus is the lack of insulin and of C-peptide, but the progressive β-cell loss is also observed in later stage of type 2 diabetes mellitus. C-peptide has multifaceted effects in animals and diabetic patients due to the activation of multiple cell signalling pathways, highlighting p38 mitogen-activated protein kinase and extracellular signal-regulated kinase ½, Akt, as well as endothelial nitric oxide production. Recent works highlight the role of C-peptide in the prevention and amelioration of diabetes and also in organ-specific complications. Benefits of C-peptide in microangiopathy and vasculopathy have been shown through conservation of vascular function, and also in the prevention of endothelial cell death, microvascular permeability, neointima formation, and in vascular inflammation. Improvement of microvascular blood flow by replacing a physiological amount of C-peptide, in several tissues of diabetic animals and humans, mainly in nerve tissue, myocardium, skeletal muscle, and kidney has been described. A review of the multiple cell signalling pathways of human proinsulin C-peptide in vasculopathy protection is proposed, where the approaches to move beyond the state of the art in the development of innovative and effective therapeutic options of diabetic neuropathy and nephropathy are discussed.
Collapse
Affiliation(s)
- Selma B. Souto
- Department of Endocrinology, Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Joana R. Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.R.C.); (J.F.F.)
| | - Joana F. Fangueiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.R.C.); (J.F.F.)
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Nicola Cicero
- Dipartimento di Scienze biomediche, odontoiatriche e delle immagini morfologiche e funzionali, Università degli Studi di Messina, Polo Universitario Annunziata, 98168 Messina, Italy;
| | - Massimo Lucarini
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (M.L.); (A.D.)
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (M.L.); (A.D.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.R.C.); (J.F.F.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
23
|
Lee JY, Lee YJ, Jeon HY, Han ET, Park WS, Hong SH, Kim YM, Ha KS. The vicious cycle between transglutaminase 2 and reactive oxygen species in hyperglycemic memory-induced endothelial dysfunction. FASEB J 2019; 33:12655-12667. [PMID: 31462079 DOI: 10.1096/fj.201901358rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clinical trials suggested that the vascular system can remember episodes of poor glycemic control through a phenomenon known as hyperglycemic memory (HGM). HGM is associated with long-term diabetic vascular complications in type 1 and type 2 diabetes, although the molecular mechanism of that association is not clearly understood. We hypothesized that transglutaminase 2 (TGase2) and intracellular reactive oxygen species (ROS) play a key role in HGM-induced vascular dysfunction. We found that hyperglycemia induced persistent oxidative stress, expression of inflammatory adhesion molecules, and apoptosis in the aortic endothelium of HGM mice whose blood glucose levels had been normalized by insulin supplementation. TGase2 activation and ROS generation were in a vicious cycle in the aortic endothelium of HGM mice and also in human aortic endothelial cells after glucose normalization, which played a key role in the sustained expression of inflammatory adhesion molecules and apoptosis. Our findings suggest that the TGase2-ROS vicious cycle plays an important role in HGM-induced endothelial dysfunction.-Lee, J.-Y., Lee, Y.-J., Jeon, H.-Y., Han, E.-T., Park, W. S., Hong, S.-H., Kim, Y.-M., Ha, K.-S. The vicious cycle between transglutaminase 2 and reactive oxygen species in hyperglycemic memory-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Jee-Yeon Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
24
|
Jeon HY, Seo JA, Jung SH, Lee YJ, Han ET, Park WS, Hong SH, Kim YM, Ha KS. Insulin prevents pulmonary vascular leakage by inhibiting transglutaminase 2 in diabetic mice. Life Sci 2019; 233:116711. [PMID: 31374233 DOI: 10.1016/j.lfs.2019.116711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
AIMS Insulin is a central peptide hormone required for carbohydrate metabolism; however, its role in diabetes-associated pulmonary disease is unknown. Here, we investigated the preventative effect of insulin against hyperglycemia-induced pulmonary vascular leakage and its molecular mechanism of action in the lungs of diabetic mice. MAIN METHODS Vascular endothelial growth factor (VEGF) activated transglutaminase 2 (TGase2) by sequentially elevating intracellular Ca2+ and reactive oxygen species (ROS) levels in primary human pulmonary microvascular endothelial cells (HPMVECs). KEY FINDINGS Insulin inhibited VEGF-induced TGase2 activation, but did not affect intracellular Ca2+ elevation and ROS generation. Insulin prevented VEGF-induced vascular leakage by inhibiting TGase2-mediated c-Src phosphorylation, disassembly of VE-cadherin and β-catenin, and stress fiber formation. Insulin replacement therapy prevented hyperglycemia-induced TGase2 activation, but not ROS generation, in the lungs of diabetic mice. Insulin also prevented vascular leakage and cancer metastasis in the diabetic lung. Notably, vascular leakage was not detectable in the lungs of TGase2-null (Tgm2-/-) diabetic mice. SIGNIFICANCE These findings demonstrate that insulin prevents hyperglycemia-induced pulmonary vascular leakage in diabetic mice by inhibiting VEGF-induced TGase2 activation rather than ROS generation.
Collapse
Affiliation(s)
- Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Republic of Korea
| | - Jae-Ah Seo
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Republic of Korea
| | - Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Republic of Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Republic of Korea.
| |
Collapse
|
25
|
Sergeys J, Etienne I, Van Hove I, Lefevere E, Stalmans I, Feyen JHM, Moons L, Van Bergen T. Longitudinal In Vivo Characterization of the Streptozotocin-Induced Diabetic Mouse Model: Focus on Early Inner Retinal Responses. Invest Ophthalmol Vis Sci 2019; 60:807-822. [PMID: 30811545 DOI: 10.1167/iovs.18-25372] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The goal of this study was to perform an extensive temporal characterization of the early pathologic processes in the streptozotocin (STZ)-induced diabetic retinopathy (DR) mouse model, beyond the vascular phenotype, and to investigate the potential of clinically relevant compounds in attenuating these processes. Methods Visual acuity and contrast sensitivity (CS) were studied in the mouse STZ model until 24 weeks postdiabetes onset. ERG, spectral domain optical coherence tomography (SD-OCT), leukostasis, and immunohistochemistry were applied to investigate neurodegeneration, inflammation, and gliosis during early-, mid- and late-phase diabetes. Aflibercept or triamcinolone acetonide (TAAC) was administered to investigate their efficacy on the aforementioned processes. Results Visual acuity and CS loss started at 4 and 18 weeks postdiabetes onset, respectively, and progressively declined over time. ERG amplitudes were diminished and OP latencies increased after 6 weeks, whereas SD-OCT revealed retinal thinning from 4 weeks postdiabetes. Immunohistochemical analyses linked these findings to retinal ganglion and cholinergic amacrine cell loss at 4 and 8 weeks postdiabetes onset, respectively, which was further decreased after aflibercept administration. The number of adherent leukocytes was augmented after 2 weeks, whereas increased micro- and macroglia reactivity was present from 4 weeks postdiabetes. Aflibercept or TAAC showed improved efficacy on inflammation and gliosis. Conclusions STZ-induced diabetic mice developed early pathologic DR hallmarks, from which inflammation seemed the initial trigger, leading to further development of functional and morphologic retinal changes. These findings indicate that the mouse STZ model is suitable to study novel integrative non-vascular therapies to treat early DR.
Collapse
Affiliation(s)
- Jurgen Sergeys
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Zoological Institute, KU Leuven, Leuven, Belgium
| | | | - Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Zoological Institute, KU Leuven, Leuven, Belgium.,Oxurion NV, Leuven, Belgium
| | - Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Ingeborg Stalmans
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, O&N II, KU Leuven, Leuven, Belgium
| | | | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Zoological Institute, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
26
|
Akla N, Viallard C, Popovic N, Lora Gil C, Sapieha P, Larrivée B. BMP9 (Bone Morphogenetic Protein-9)/Alk1 (Activin-Like Kinase Receptor Type I) Signaling Prevents Hyperglycemia-Induced Vascular Permeability. Arterioscler Thromb Vasc Biol 2019; 38:1821-1836. [PMID: 29880487 DOI: 10.1161/atvbaha.118.310733] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective- Diabetic macular edema is a major cause of visual impairment. It is caused by blood-retinal barrier breakdown that leads to vascular hyperpermeability. Current therapeutic approaches consist of retinal photocoagulation or targeting VEGF (vascular endothelial growth factor) to limit vascular leakage. However, long-term intravitreal use of anti-VEGFs is associated with potential safety issues, and the identification of alternative regulators of vascular permeability may provide safer therapeutic options. The vascular specific BMP (bone morphogenetic protein) receptor ALK1 (activin-like kinase receptor type I) and its circulating ligand BMP9 have been shown to be potent vascular quiescence factors, but their role in the context of microvascular permeability associated with hyperglycemia has not been evaluated. Approach and Results- We investigated Alk1 signaling in hyperglycemic endothelial cells and assessed whether BMP9/Alk1 signaling could modulate vascular permeability. We show that high glucose concentrations impair Alk1 signaling, both in cultured endothelial cells and in a streptozotocin model of mouse diabetes mellitus. We observed that Alk1 signaling participates in the maintenance of vascular barrier function, as Alk1 haploinsufficiency worsens the vascular leakage observed in diabetic mice. Conversely, sustained delivery of BMP9 by adenoviral vectors significantly decreased the loss of retinal barrier function in diabetic mice. Mechanistically, we demonstrate that Alk1 signaling prevents VEGF-induced phosphorylation of VE-cadherin and induces the expression of occludin, thus strengthening vascular barrier functions. Conclusions- From these data, we suggest that by preventing retinal vascular permeability, BMP9 could serve as a novel therapeutic agent for diabetic macular edema.
Collapse
Affiliation(s)
- Naoufal Akla
- From the Department of Biochemistry (N.A., P.S.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Claire Viallard
- Department of Molecular Biology (C.V., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Natalija Popovic
- Department of Biomedical Sciences (N.P., C.L.G., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Cindy Lora Gil
- Department of Biomedical Sciences (N.P., C.L.G., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Przemyslaw Sapieha
- From the Department of Biochemistry (N.A., P.S.).,Department of Ophthalmology (P.S., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Bruno Larrivée
- Department of Molecular Biology (C.V., B.L.).,Department of Biomedical Sciences (N.P., C.L.G., B.L.).,Department of Ophthalmology (P.S., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| |
Collapse
|
27
|
Jung SH, Lee JY, Lee SH, Kwon MH, Han ET, Park WS, Hong SH, Kim YM, Ha KS. Preventive Effects of Thermosensitive Biopolymer-Conjugated C-Peptide against High Glucose-Induced Endothelial Cell Dysfunction. Macromol Biosci 2019; 19:e1900129. [PMID: 31310433 DOI: 10.1002/mabi.201900129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/31/2019] [Indexed: 11/08/2022]
Abstract
C-peptide has emerged as a potential drug for treating diabetic complications. However, clinical application of C-peptide is limited by its short half-life during circulation and costly synthesis methods. To overcome these limitations, a biocompatible and thermosensitive biopolymer-C-peptide conjugate composed of human C-peptide genetically conjugated at the C-terminus of nine repeats of lysine-containing elastin-like polypeptide (K9-C-peptide) is generated. K9-C-peptide exhibits reversible thermal phase behavior with a transition temperature dependent on polypeptide concentration. Degradation of K9-C-peptide hydrogel depends on the concentration of four cleavage enzymes as well as the reaction time and frequency of treatments with elastase-2. The preventive effect of K9-C-peptide against high glucose-induced human aortic endothelial cell dysfunction is further investigated. K9-C-peptide inhibits high glucose-induced intracellular reactive oxygen species generation, transglutaminase 2 activation, and apoptosis, similar to the inhibitory effects of human C-peptide. Thus, K9-C-peptide is a potential drug depot for the sustained delivery of C-peptide to treat diabetic complications.
Collapse
Affiliation(s)
- Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Jee-Yeon Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Seong-Hyeon Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Mi-Hye Kwon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| |
Collapse
|
28
|
Cheng Y, Yu X, Zhang J, Chang Y, Xue M, Li X, Lu Y, Li T, Meng Z, Su L, Sun B, Chen L. Pancreatic kallikrein protects against diabetic retinopathy in KK Cg-A y/J and high-fat diet/streptozotocin-induced mouse models of type 2 diabetes. Diabetologia 2019; 62:1074-1086. [PMID: 30838453 PMCID: PMC6509079 DOI: 10.1007/s00125-019-4838-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Many studies have shown that tissue kallikrein has effects on diabetic vascular complications such as nephropathy, cardiomyopathy and neuropathy, but its effects on diabetic retinopathy are not fully understood. Here, we investigated the retinoprotective role of exogenous pancreatic kallikrein and studied potential mechanisms of action. METHODS We used KK Cg-Ay/J (KKAy) mice (a mouse model of spontaneous type 2 diabetes) and mice with high-fat diet/streptozotocin (STZ)-induced type 2 diabetes as our models. After the onset of diabetes, both types of mice were injected intraperitoneally with either pancreatic kallikrein (KKAy + pancreatic kallikrein and STZ + pancreatic kallikrein groups) or saline (KKAy + saline and STZ + saline groups) for 12 weeks. C57BL/6J mice were used as non-diabetic controls for both models. We analysed pathological changes in the retina; evaluated the effects of pancreatic kallikrein on retinal oxidative stress, inflammation and apoptosis; and measured the levels of bradykinin and B1 and B2 receptors in both models. RESULTS In both models, pancreatic kallikrein improved pathological structural features of the retina, increasing the thickness of retinal layers, and attenuated retinal acellular capillary formation and vascular leakage (p < 0.05). Furthermore, pancreatic kallikrein ameliorated retinal oxidative stress, inflammation and apoptosis in both models (p < 0.05). We also found that the levels of bradykinin and B1 and B2 receptors were increased after pancreatic kallikrein in both models (p < 0.05). CONCLUSIONS/INTERPRETATION Pancreatic kallikrein can protect against diabetic retinopathy by activating B1 and B2 receptors and inhibiting oxidative stress, inflammation and apoptosis. Thus, pancreatic kallikrein may represent a new therapeutic agent for diabetic retinopathy.
Collapse
Affiliation(s)
- Ying Cheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaochen Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Zhang
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yunpeng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Mei Xue
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Yunhong Lu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Long Su
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
29
|
Wang Y, Wan H, Chen Y, Xia F, Zhang W, Wang C, Fang S, Zhang K, Li Q, Wang N, Lu Y. Association of C-peptide with diabetic vascular complications in type 2 diabetes. DIABETES & METABOLISM 2019; 46:33-40. [PMID: 31026551 DOI: 10.1016/j.diabet.2019.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 12/11/2022]
Abstract
AIM Fasting serum C-peptide is a biomarker of insulin production and insulin resistance, but its association with vascular complications in type 2 diabetes mellitus (T2DM) has never been fully elucidated. This study aimed to investigate whether C-peptide is associated with cardiovascular disease (CVD) and diabetic retinopathy (DR). METHODS A total of 4793 diabetes patients were enrolled from seven communities in Shanghai, China, in 2018. CVD was defined as a self-reported combination of previous diagnoses, including coronary heart disease, myocardial infarction and stroke. DR was examined using fundus photographs. Logistic regression analyses were performed, and multiple imputed data were used to obtain stabilized estimates. RESULTS Prevalence of CVD increased with increasing C-peptide levels (Q1, Q2, Q3 and Q4: 33%, 34%, 37% and 44%, respectively; Pfor trend < 0.001), whereas DR prevalence decreased with increasing C-peptide quartiles (Q1, Q2, Q3 and Q4: 21%, 19%, 15% and 12%, respectively; Pfor trend < 0.001). On logistic regression analysis, C-peptide levels were significantly associated with CVD prevalence (1.27, 95% CI: 1.13-1.42; P < 0.001) and C-peptide quartiles (Q1: reference; Q2: 1.31, 95% CI: 1.00-1.70; Q3: 1.53, 95% CI: 1.16-2.01; Q4: 1.76, 95% CI: 1.32-2.34; Pfor trend < 0.001). Given the interaction between C-peptide and BMI and the association between C-peptide and CVD (Pfor interaction = 0.015), study participants were divided into two subgroups based on BMI which revealed that the association persisted despite different BMI statuses. However, DR prevalence decreased with increasing C-peptide levels (0.73, 95% CI: 0.62-0.86; P < 0.001) and quartiles (Q1: reference; Q2: 1.00, 95% CI: 0.76-1.33; Q3: 0.69, 95% CI: 0.50-0.94; Q4: 0.51, 95% CI: 0.36-0.72; Pfor trend < 0.001). CONCLUSION C-peptide was positively associated with CVD, but inversely associated with DR progression. The association between C-peptide and CVD could be due to associated metabolic risk factors.
Collapse
Affiliation(s)
- Y Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - H Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Y Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - F Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - W Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - C Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - S Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - K Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Q Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - N Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Y Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
30
|
Jeon HY, Lee YJ, Kim YS, Kim SY, Han ET, Park WS, Hong SH, Kim YM, Ha KS. Proinsulin C‐peptide prevents hyperglycemia‐induced vascular leakage and metastasis of melanoma cells in the lungs of diabetic mice. FASEB J 2019; 33:750-762. [DOI: 10.1096/fj.201800723r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Hye-Yoon Jeon
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| | - You-Sun Kim
- Department of BiochemistryAjou University School of Medicine Suwon Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology BranchNational Cancer Center Goyang Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical MedicineKangwon National University School of Medicine Chuncheon Korea
| | - Won Sun Park
- Department of PhysiologyKangwon National University School of Medicine Chuncheon Korea
| | - Seok-Ho Hong
- Department of Internal MedicineKangwon National University School of Medicine Chuncheon Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| |
Collapse
|
31
|
Alves MT, Ortiz MMO, Dos Reis GVOP, Dusse LMS, Carvalho MDG, Fernandes AP, Gomes KB. The dual effect of C-peptide on cellular activation and atherosclerosis: Protective or not? Diabetes Metab Res Rev 2019; 35:e3071. [PMID: 30160822 DOI: 10.1002/dmrr.3071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
C-peptide is a cleavage product of proinsulin that acts on different type of cells, such as blood and endothelial cells. C-peptide biological effects may be different in type 1 and type 2 diabetes. Besides, there are further evidence for a functional interaction between C-peptide and insulin. In this way, C-peptide has ambiguous effects, acting as an antithrombotic or thrombotic molecule, depending on the physiological environment and disease conditions. Moreover, C-peptide regulates interaction of leucocytes, erythrocytes, and platelets with the endothelium. The beneficial effects include stimulation of nitric oxide production with its subsequent release by platelets and endothelium, the interaction with erythrocytes leading to the generation of adenosine triphosphate, and inhibition of atherogenic cytokine release. The undesirable action of C-peptide includes the chemotaxis of monocytes, lymphocytes, and smooth muscle cells. Also, C-peptide was related with increased lipid deposits and elevated smooth muscle cells proliferation in the vessel wall, contributing to atherosclerosis. Purpose of this review is to explore these dual roles of C-peptide on the blood, contributing at one side to haemostasis and the other to atherosclerotic process.
Collapse
Affiliation(s)
- Michelle Teodoro Alves
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mylena Maira Oliveira Ortiz
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luci Maria Sant'Ana Dusse
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karina Braga Gomes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
32
|
FTY720 restores endothelial cell permeability induced by malaria sera. Sci Rep 2018; 8:10959. [PMID: 30026484 PMCID: PMC6053398 DOI: 10.1038/s41598-018-28536-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Increased endothelial cell (EC) permeability in severe Plasmodium falciparum malaria contributes to major complications of severe malaria. This study explored EC permeability in malaria, and evaluated the potential use of FTY720 to restore EC permeability. ECs were incubated with sera from malaria patients (P. vivax, uncomplicated and complicated P. falciparum malaria). Cellular permeability was investigated using a fluorescein isothiocyanate (FITC)-dextran permeability assay. FTY720, an analogue of sphingosine-1-phosphate (S1P), was tested for its potential action in maintaining EC integrity. ECs incubated with sera from malaria patients with complicated P. falciparum showed higher fluorescein leakage compared with ECs incubated with sera from P. vivax (p < 0.001) and uncomplicated P. falciparum (p < 0.001). ECs pretreated with FTY720 before incubation with malaria sera had significantly decreased fluorescein leakage compared with no FTY720 treatment. In addition, FTY720 treatment significantly reduced fluorescein leakage for both uncomplicated (at 45 min) (p = 0.015), and complicated P. falciparum malaria (15 min) (p = 0.043). The permeability increase induced by complicated P. falciparum sera was significantly reversed and prevented by FTY720 in vitro. FTY720 may have clinical applications to protect against endothelial barrier dysfunction in severe P. falciparum malaria.
Collapse
|
33
|
Lee YJ, Kim M, Lee JY, Jung SH, Jeon HY, Lee SA, Kang S, Han ET, Park WS, Hong SH, Kim YM, Ha KS. The benzodiazepine anesthetic midazolam prevents hyperglycemia-induced microvascular leakage in the retinas of diabetic mice. FASEB J 2018; 32:fj201800014RR. [PMID: 29782207 DOI: 10.1096/fj.201800014rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the beneficial effects of midazolam against vascular endothelial growth factor (VEGF)-induced vascular leakage and its molecular mechanism of action in human retinal endothelial cells (HRECs) and the retinas of diabetic mice. Midazolam inhibited VEGF-induced elevation of intracellular Ca2+, generation of reactive oxygen species (ROS), and transglutaminase activation in HRECs; these effects were reversed by the GABA, type A (GABAA) receptor antagonist flumazenil but not by the translocator protein antagonist PK11195. Midazolam also prevented VEGF-induced disassembly of adherens junctions and in vitro permeability. Intravitreal injection of midazolam prevented hyperglycemia-induced ROS generation, transglutaminase activation, and subsequent vascular leakage in the retinas of diabetic mice, and those effects were reversed by flumazenil. The roles of flumazenil were further supported by identifying GABAA receptors in mouse retinas. Thus, midazolam prevents hyperglycemia-induced vascular leakage by inhibiting VEGF-induced intracellular events in the retinas of diabetic mice.-Lee, Y.-J., Kim, M., Lee, J.-Y., Jung, S.-H., Jeon, H.-Y., Lee, S.-A., Kang, S., Han, E.-T., Park, W. S., Hong, S.-H., Kim, Y.-M., Ha, K.-S. The benzodiazepine anesthetic midazolam prevents hyperglycemia-induced microvascular leakage in the retinas of diabetic mice.
Collapse
Affiliation(s)
- Yeon-Ju Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Minsoo Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Korea
- Department of Anesthesiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jee-Yeon Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seung Ah Lee
- Department of Anesthesiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seongsik Kang
- Department of Anesthesiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Korea; and
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
34
|
Li Y, Li X, He K, Li B, Liu K, Qi J, Wang H, Wang Y, Luo W. C-peptide prevents NF-κB from recruiting p300 and binding to the inos promoter in diabetic nephropathy. FASEB J 2018; 32:2269-2279. [PMID: 29229684 DOI: 10.1096/fj.201700891r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
C-peptide (CP) has demonstrated unique beneficial effects in diabetic nephropathy (DN), but whether and how CP regulates NF-κB and its coactivator, p300, to suppress inducible iNOS and antagonize DN are unknown. iNOS expression, NF-κB nuclear translocation, colocalization and binding of NF-κB to p300, binding of NF-κB to the inos promoter, and the bound NF-κB, p300, and histone 3 lysine 9 acetylation (H3K9ac) at binding sites were measured in high glucose-stimulated mesangial cells. We evaluated pathologic changes, iNOS expression, NF-κB, and p300 contents in diabetic rats. We found that CP inhibited iNOS expression and notably prevented colocalization and binding of NF-κB and p300. CP prevented NF-κB from binding to the inos promoter, especially at the distal site, and reduced bound NF-κB, p300, and H3K9ac. N-terminal plus middle fragment could mostly mimic the antagonizing effects of CP against the pathologic changes of DN and equally suppresses renal iNOS expression as CP. In conclusion, CP prevented NF-κB from recruiting p300 and binding to the inos promoter, and decreased H3K9ac at the binding sites to suppress iNOS expression and antagonize DN, with the effect region identified as N-terminal plus middle fragment.-Li, Y., Li, X., He, K., Li, B., Liu, K., Qi, J., Wang, H., Wang, Y., Luo, W. C-peptide prevents NF-κB from recruiting p300 and binding to the inos promoter in diabetic nephropathy.
Collapse
Affiliation(s)
- Yanning Li
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Xiaoping Li
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Kunyu He
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Jinsheng Qi
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yu Wang
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Weigang Luo
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
35
|
Lee YJ, Jung SH, Hwang J, Jeon S, Han ET, Park WS, Hong SH, Kim YM, Ha KS. Cysteamine prevents vascular leakage through inhibiting transglutaminase in diabetic retina. J Endocrinol 2017; 235:39-48. [PMID: 28751454 DOI: 10.1530/joe-17-0109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
Cysteamine (an aminothiol), which is derived from coenzyme A degradation and metabolized into taurine, has beneficial effects against cystinosis and neurodegenerative diseases; however, its role in diabetic complications is unknown. Thus, we sought to determine the preventive effect of cysteamine against hyperglycemia-induced vascular leakage in the retinas of diabetic mice. Cysteamine and ethanolamine, the sulfhydryl group-free cysteamine analogue, inhibited vascular endothelial growth factor (VEGF)-induced stress fiber formation and vascular endothelial (VE)-cadherin disruption in endothelial cells, which play a critical role in modulating endothelial permeability. Intravitreal injection of the amine compounds prevented hyperglycemia-induced vascular leakage in the retinas of streptozotocin-induced diabetic mice. We then investigated the potential roles of reactive oxygen species (ROS) and transglutaminase (TGase) in the cysteamine prevention of VEGF-induced vascular leakage. Cysteamine, but not ethanolamine, inhibited VEGF-induced ROS generation in endothelial cells and diabetic retinas. In contrast, VEGF-induced TGase activation was prevented by both cysteamine and ethanolamine. Our findings suggest that cysteamine protects against vascular leakage through inhibiting VEGF-induced TGase activation rather than ROS generation in diabetic retinas.
Collapse
Affiliation(s)
- Yeon-Ju Lee
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Se-Hui Jung
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - JongYun Hwang
- Department of Obstetrics and GynecologyKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Sohee Jeon
- Department of OphthalmologySeoul St. Mary's Hospital, Catholic University, Seoul, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical MedicineKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Won Sun Park
- Department of PhysiologyKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Seok-Ho Hong
- Department of Internal MedicineKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| |
Collapse
|
36
|
Shpakov AO. Mechanisms of action and therapeutic potential of proinsulin C-peptide. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017030024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Kolar GR, Grote SM, Yosten GLC. Targeting orphan G protein-coupled receptors for the treatment of diabetes and its complications: C-peptide and GPR146. J Intern Med 2017; 281:25-40. [PMID: 27306986 PMCID: PMC6092955 DOI: 10.1111/joim.12528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptors (GPCRs) are the most abundant receptor family encoded by the human genome and are the targets of a high percentage of drugs currently in use or in clinical trials for the treatment of diseases such as diabetes and its associated complications. Thus, orphan GPCRs, for which the ligand is unknown, represent an important untapped source of therapeutic potential for the treatment of many diseases. We have identified the previously orphan GPCR, GPR146, as the putative receptor of proinsulin C-peptide, which may prove to be an effective treatment for diabetes-associated complications. For example, we have found a potential role of C-peptide and GPR146 in regulating the function of the retinal pigment epithelium, a monolayer of cells in the retina that serves as part of the blood-retinal barrier and is disrupted in diabetic macular oedema. However, C-peptide signalling in this cell type appears to depend at least in part on extracellular glucose concentration and its interaction with insulin. In this review, we discuss the therapeutic potential of orphan GPCRs with a special focus on C-peptide and GPR146, including past and current strategies used to 'deorphanize' this diverse family of receptors, past successes and the inherent difficulties of this process.
Collapse
Affiliation(s)
- G R Kolar
- Department of Pathology, St Louis University School of Medicine, St Louis, MO, USA
| | - S M Grote
- Department of Pharmacology and Physiology, St Louis University School of Medicine, St Louis, MO, USA
| | - G L C Yosten
- Department of Pharmacology and Physiology, St Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
38
|
Abstract
Kidney disease is a serious development in diabetes mellitus and poses an increasing clinical problem. Despite increasing incidence and prevalence of diabetic kidney disease, there have been no new therapies for this condition in the last 20 years. Mounting evidence supports a biological role for C-peptide, and findings from multiple studies now suggest that C-peptide may beneficially affect the disturbed metabolic and pathophysiological pathways leading to the development of diabetic nephropathy. Studies of C-peptide in animal models and in humans with type 1 diabetes all suggest a renoprotective effect for this peptide. In diabetic rodents, C-peptide reduces glomerular hyperfiltration and albuminuria. Cohort studies of diabetic patients with combined islet and kidney transplants suggest that maintained C-peptide secretion is protective of renal graft function. Further, in short-term studies of patients with type 1 diabetes, administration of C-peptide is also associated with a lowered hyperfiltration rate and reduced microalbuminuria. Thus, the available information suggests that type 1 diabetes should be regarded as a dual hormone deficiency disease and that clinical trials of C-peptide in diabetic nephropathy are both justified and urgently required.
Collapse
Affiliation(s)
- N J Brunskill
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
39
|
Bhatt MP, Lee YJ, Jung SH, Kim YH, Hwang JY, Han ET, Park WS, Hong SH, Kim YM, Ha KS. C-peptide protects against hyperglycemic memory and vascular endothelial cell apoptosis. J Endocrinol 2016; 231:97-108. [PMID: 27554111 DOI: 10.1530/joe-16-0349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022]
Abstract
C-peptide exerts protective effects against diabetic complications; however, its role in inhibiting hyperglycemic memory (HGM) has not been elucidated. We investigated the beneficial effect of C-peptide on HGM-induced vascular damage in vitro and in vivo using human umbilical vein endothelial cells and diabetic mice. HGM induced apoptosis by persistent generation of intracellular ROS and sustained formation of ONOO(-) and nitrotyrosine. These HGM-induced intracellular events were normalized by treatment with C-peptide, but not insulin, in endothelial cells. C-peptide also inhibited persistent upregulation of p53 and activation of mitochondrial adaptor p66(shc) after glucose normalization. Further, C-peptide replacement therapy prevented persistent generation of ROS and ONOO(-) in the aorta of diabetic mice whose glucose levels were normalized by the administration of insulin. C-peptide, but not insulin, also prevented HGM-induced endothelial apoptosis in the murine diabetic aorta. This study highlights a promising role for C-peptide in preventing HGM-induced intracellular events and diabetic vascular damage.
Collapse
Affiliation(s)
- Mahendra Prasad Bhatt
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Se-Hui Jung
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology and Department of ChemistrySungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jong Yun Hwang
- Department of Obstetrics and GynecologyKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical MedicineKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Won Sun Park
- Department of PhysiologyKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Seok-Ho Hong
- Department of Internal MedicineKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| |
Collapse
|
40
|
Lee YJ, Jung SH, Kim SH, Kim MS, Lee S, Hwang J, Kim SY, Kim YM, Ha KS. Essential Role of Transglutaminase 2 in Vascular Endothelial Growth Factor-Induced Vascular Leakage in the Retina of Diabetic Mice. Diabetes 2016; 65:2414-28. [PMID: 27207524 DOI: 10.2337/db15-1594] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/21/2016] [Indexed: 11/13/2022]
Abstract
Diabetic retinopathy is predominantly caused by vascular endothelial growth factor (VEGF)-induced vascular leakage; however, the underlying mechanism is unclear. Here we designed an in vivo transglutaminase (TGase) activity assay in mouse retina and demonstrated that hyperglycemia induced vascular leakage by activating TGase2 in diabetic retina. VEGF elevated TGase2 activity through sequential elevation of intracellular Ca(2+) and reactive oxygen species (ROS) concentrations in endothelial cells. The TGase inhibitors cystamine and monodansylcadaverin or TGase2 small interfering RNA (siRNA) prevented VEGF-induced stress fiber formation and vascular endothelial (VE)-cadherin disruption, which play a critical role in modulating endothelial permeability. Intravitreal injection of two TGase inhibitors or TGase2 siRNA successfully inhibited hyperglycemia-induced TGase activation and microvascular leakage in the retinas of diabetic mice. C-peptide or ROS scavengers also inhibited TGase activation in diabetic mouse retinas. The role of TGase2 in VEGF-induced vascular leakage was further supported using diabetic TGase2(-/-) mice. Thus, our findings suggest that ROS-mediated activation of TGase2 plays a key role in VEGF-induced vascular leakage by stimulating stress fiber formation and VE-cadherin disruption.
Collapse
Affiliation(s)
- Yeon-Ju Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Su-Hyeon Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Min-Soo Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea Department of Anesthesiology, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Sungeun Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - JongYun Hwang
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| |
Collapse
|
41
|
Jeon HY, Jung SH, Jung YM, Kim YM, Ghandehari H, Ha KS. Array-Based High-Throughput Analysis of Silk-Elastinlike Protein Polymer Degradation and C-Peptide Release by Proteases. Anal Chem 2016; 88:5398-405. [PMID: 27109435 DOI: 10.1021/acs.analchem.6b00739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The objective of this study was to utilize an on-chip degradation assay to evaluate polymer depots and the predicted drug release from the depots. We conjugated four silk-elastinlike protein (SELP) polymers including SELP-815K, SELP-815K-RS1, SELP-815K-RS2, and SELP-815K-RS5 with a Cy5-NHS ester and fabricated SELP arrays by immobilizing the conjugated polymers onto well-type amine arrays. SELP polymer degradation rates were investigated by calculating the half-maximal effective concentration (EC50). Eight cleavage enzymes were applied, all of which exhibited distinctive EC50 values for SELP-815K and its three analogues. We successfully utilized this assay to study the in vitro release of the Cy5-conjugated C-peptide from SELP-815K hydrogel arrays. Additionally, cumulative C-peptide release from the SELP-815K depots was also demonstrated using repetitive elastase treatments. Therefore, this array-based on-chip degradation assay could potentially be used for evaluating depot degradation and controlled drug release from polymer depots at the molecular level.
Collapse
Affiliation(s)
- Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine , Chuncheon, Kangwon-Do 200-701, Korea
| | - Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine , Chuncheon, Kangwon-Do 200-701, Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University , Chuncheon, Kangwon-Do 200-701, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine , Chuncheon, Kangwon-Do 200-701, Korea
| | - Hamidreza Ghandehari
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology , Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Korea.,Departments of Phamaceutics and Pharmaceutical Chemistry, and Bioengineering, Center for Nanomedicine, Nano Institute of Utah, University of Utah , Salt Lake City, Utah 84112, United States
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine , Chuncheon, Kangwon-Do 200-701, Korea
| |
Collapse
|
42
|
Masuda T, Shimazawa M, Takata S, Nakamura S, Tsuruma K, Hara H. Edaravone is a free radical scavenger that protects against laser-induced choroidal neovascularization in mice and common marmosets. Exp Eye Res 2016; 146:196-205. [PMID: 27018216 DOI: 10.1016/j.exer.2016.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022]
Abstract
Choroidal neovascularization (CNV) is a main characteristic in exudative type of age-related macular degeneration (AMD). Our study aimed to evaluate the effects of edaravone, a free radical scavenger on laser-induced CNV. CNV was induced by laser photocoagulation to the subretinal choroidal area of mice and common marmosets. Edaravone was administered either intraperitoneally twice a day for 2 weeks or intravenously just once after laser photocoagulation. The effects of edaravone on laser-induced CNV were evaluated by fundus fluorescein angiography, CNV area measurements, and the expression of 4-hydroxy-2-nonenal (4-HNE) modified proteins, a marker of oxidative stress. Furthermore, the effects of edaravone on the production of H2O2-induced reactive oxygen species (ROS) and vascular endothelial growth factor (VEGF)-induced cell proliferation were evaluated using human retinal pigment epithelium cells (ARPE-19) and human retinal microvascular endothelial cells, respectively. CNV areas in the edaravone-treated group were significantly smaller in mice and common marmosets. The expression of 4-HNE modified proteins was upregulated 3 h after laser photocoagulation, and intravenously administered edaravone decreased it. In in vitro studies, edaravone inhibited H2O2-induced ROS production and VEGF-induced cell proliferation. These findings suggest that edaravone may protect against laser-induced CNV by inhibiting oxidative stress and endothelial cell proliferation.
Collapse
Affiliation(s)
- Tomomi Masuda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| | - Shinsuke Takata
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
43
|
Janowska J, Chudek J, Olszanecka-Glinianowicz M, Semik-Grabarczyk E, Zahorska-Markiewicz B. Interdependencies among Selected Pro-Inflammatory Markers of Endothelial Dysfunction, C-Peptide, Anti-Inflammatory Interleukin-10 and Glucose Metabolism Disturbance in Obese Women. Int J Med Sci 2016; 13:490-9. [PMID: 27429585 PMCID: PMC4946119 DOI: 10.7150/ijms.14110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/02/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Currently increasing importance is attributed to the inflammatory process as a crucial factor responsible for the progressive damage to vascular walls and progression of atherosclerosis in obese people. We have studied the relationship between clinical and biochemical parameters and C-peptide and anti-inflammatory IL-10, as well as selected markers of inflammation and endothelial dysfunction such as: CCL2, CRP, sICAM-1, sVCAM-1 and E-selectin in obese women with various degree of glucose metabolism disturbance. MATERIAL AND METHODS The studied group consisted of 61 obese women, and 20 normal weight, healthy volunteers. Obese patients were spited in subgroups based on the degree of glucose metabolism disorder. Serum samples were analyzed using ELISA kits. RESULTS Increased concentrations of sICAM-1, sVCAM-1, E-selectin, CCL2 and CRP were found in all obese groups compared to the normal weight subjects. In patients with Type 2 diabetes mellitus (T2DM) parameters characterizing the degree of obesity significantly positively correlated with levels of CRP and CCL2. Significant relationships were found between levels of glucose and sICAM-1and also E-selectin and HOMA-IR. C-peptide levels are positively associated with CCL2, E-selectin, triglycerides levels, and inversely with IL-10 levels in newly diagnosed T2DM group (p<0.05). Concentrations of IL-10 correlated negatively with E-selectin, CCL2, C-peptide levels, and HOMA-IR in T2DM group (p<0.05). CONCLUSION Disturbed lipid and carbohydrate metabolism are manifested by enhanced inflammation and endothelial dysfunction in patients with simply obesity. These disturbances are associates with an increase of adhesion molecules. The results suggest the probable active participation of higher concentrations of C-peptide in the intensification of inflammatory and atherogenic processes in obese patients with type 2 diabetes. In patients with obesity and type 2 diabetes, altered serum concentrations of Il-10 seems to be dependent on the degree of insulin resistance and proinflammatory status.
Collapse
Affiliation(s)
- Joanna Janowska
- 1. Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, Katowice, Poland
| | - Jerzy Chudek
- 1. Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- 2. Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, Katowice, Poland
| | - Elżbieta Semik-Grabarczyk
- 3. Department of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia, Poland
| | | |
Collapse
|
44
|
Kim SH, Jung SH, Lee YJ, Han JY, Choi YE, Hong HD, Jeon HY, Hwang J, Na S, Kim YM, Ha KS. Dammarenediol-II Prevents VEGF-Mediated Microvascular Permeability in Diabetic Mice. Phytother Res 2015; 29:1910-6. [PMID: 26400610 DOI: 10.1002/ptr.5480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/04/2015] [Accepted: 09/02/2015] [Indexed: 11/11/2022]
Abstract
Diabetic retinopathy is a major diabetic complication predominantly caused by vascular endothelial growth factor (VEGF)-induced vascular permeability in the retina; however, treatments targeting glycemic control have not been successful. Here, we investigated the protective effect of dammarenediol-II, a precursor of triterpenoid saponin biosynthesis, on VEGF-induced vascular leakage using human umbilical vein endothelial cells (HUVECs) and diabetic mice. We overproduced the compound in transgenic tobacco expressing Panax ginseng dammarenediol-II synthase gene and purified using column chromatography. Analysis of the purified compound using a gas chromatography-mass spectrometry system revealed identical retention time and fragmentation pattern to those of authentic standard dammarenediol-II. Dammarenediol-II inhibited VEGF-induced intracellular reactive oxygen species generation, but it had no effect on the levels of intracellular Ca(2+) in HUVECs. We also found that dammarenediol-II inhibited VEGF-induced stress fiber formation and vascular endothelial-cadherin disruption, both of which play critical roles in modulating endothelial permeability. Notably, microvascular leakage in the retina of diabetic mice was successfully inhibited by intravitreal dammarenediol-II injection. Our results suggest that the natural drug dammarenediol-II may have the ability to prevent diabetic microvascular complications, including diabetic retinopathy.
Collapse
Affiliation(s)
- Su-Hyeon Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Jung Yeon Han
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Yong-Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Hae-Deun Hong
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - JongYun Hwang
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - SungHun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do, 200-701, Korea
| |
Collapse
|
45
|
Yosten GLC, Kolar GR. The Physiology of Proinsulin C-Peptide: Unanswered Questions and a Proposed Model. Physiology (Bethesda) 2015; 30:327-32. [DOI: 10.1152/physiol.00008.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
C-peptide is produced, processed, and secreted with insulin, and appears to exert separate but intimately related effects. In this review, we address the existence of the C-peptide receptor, the interaction between C-peptide and insulin, and the potential physiological significance of proinsulin C-peptide.
Collapse
Affiliation(s)
- Gina L. C. Yosten
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri; and
| | - Grant R. Kolar
- Department of Pathology, St. Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
46
|
C-peptide ameliorates renal injury in type 2 diabetic rats through protein kinase A-mediated inhibition of fibronectin synthesis. Biochem Biophys Res Commun 2015; 458:674-680. [DOI: 10.1016/j.bbrc.2015.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 12/16/2022]
|
47
|
Wahren J, Larsson C. C-peptide: new findings and therapeutic possibilities. Diabetes Res Clin Pract 2015; 107:309-19. [PMID: 25648391 DOI: 10.1016/j.diabres.2015.01.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/15/2015] [Indexed: 12/18/2022]
Abstract
Much new information on C-peptide physiology has appeared during the past 20 years. It has been shown that C-peptide binds specifically to cell membranes, elicits intracellular signaling via G-protein and Ca2+ -dependent pathways, resulting in activation and increased expression of endothelial nitric oxide synthase, Na+, K+ -ATPase and several transcription factors of importance for anti-inflammatory, anti-oxidant and cell protective mechanisms. Studies in animal models of diabetes and early clinical trials in patients with type 1 diabetes demonstrate that C-peptide in replacement doses elicits beneficial effects on early stages of diabetes-induced functional and structural abnormalities of the peripheral nerves, the kidneys and the retina. Much remains to be learned about C-peptide's mechanism of action and long-term clinical trials in type 1 diabetes subjects will be required to determine C-peptide's clinical utility. Nevertheless, even a cautious evaluation of the available evidence presents the picture of a bioactive endogenous peptide with therapeutic potential.
Collapse
Affiliation(s)
- John Wahren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Cebix AB, Stockholm, Sweden.
| | | |
Collapse
|
48
|
Bhatt MP, Lim YC, Ha KS. C-peptide replacement therapy as an emerging strategy for preventing diabetic vasculopathy. Cardiovasc Res 2014; 104:234-44. [PMID: 25239825 DOI: 10.1093/cvr/cvu211] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lack of C-peptide, along with insulin, is the main feature of Type 1 diabetes mellitus (DM) and is also observed in progressive β-cell loss in later stage of Type 2 DM. Therapeutic approaches to hyperglycaemic control have been ineffective in preventing diabetic vasculopathy, and alternative therapeutic strategies are necessary to target both hyperglycaemia and diabetic complications. End-stage organ failure in DM seems to develop primarily due to vascular dysfunction and damage, leading to two types of organ-specific diseases, such as micro- and macrovascular complications. Numerous studies in diabetic patients and animals demonstrate that C-peptide treatment alone or in combination with insulin has physiological functions and might be beneficial in preventing diabetic complications. Current evidence suggests that C-peptide replacement therapy might prevent and ameliorate diabetic vasculopathy and organ-specific complications through conservation of vascular function, as well as prevention of endothelial cell death, microvascular permeability, vascular inflammation, and neointima formation. In this review, we describe recent advances on the beneficial role of C-peptide replacement therapy for preventing diabetic complications, such as retinopathy, nephropathy, neuropathy, impaired wound healing, and inflammation, and further discuss potential beneficial effects of combined C-peptide and insulin supplement therapy to control hyperglycaemia and to prevent organ-specific complications.
Collapse
Affiliation(s)
- Mahendra Prasad Bhatt
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwondaehak-gil 1, Chuncheon, Kangwon-do 200-701, Republic of Korea
| | - Young-Cheol Lim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwondaehak-gil 1, Chuncheon, Kangwon-do 200-701, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwondaehak-gil 1, Chuncheon, Kangwon-do 200-701, Republic of Korea
| |
Collapse
|
49
|
Comparative evaluation of torasemide and furosemide on rats with streptozotocin-induced diabetic nephropathy. Exp Mol Pathol 2014; 97:137-43. [DOI: 10.1016/j.yexmp.2014.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 11/18/2022]
|
50
|
Lim YC, Bhatt MP, Kwon MH, Park D, Na S, Kim YM, Ha KS. Proinsulin C-peptide prevents impaired wound healing by activating angiogenesis in diabetes. J Invest Dermatol 2014; 135:269-278. [PMID: 25007043 DOI: 10.1038/jid.2014.285] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 06/05/2014] [Accepted: 06/13/2014] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus disrupts wound repair and leads to the development of chronic wounds, likely due to impaired angiogenesis. We previously demonstrated that human proinsulin C-peptide can protect against vasculopathy in diabetes; however, its role in impaired wound healing in diabetes has not been studied. We investigated the potential roles of C-peptide in protecting against impaired wound healing by inducing angiogenesis using streptozotocin-induced diabetic mice and human umbilical vein endothelial cells. Diabetes delayed wound healing in mouse skin, and C-peptide supplement using osmotic pumps significantly increased the rate of skin wound closure in diabetic mice. Furthermore, C-peptide induced endothelial cell migration and tube formation in dose-dependent manners, with maximal effect at 0.5 nM. These effects were mediated through activation of extracellular signal-regulated kinase 1/2 and Akt, as well as nitric oxide formation. C-peptide-enhanced angiogenesis in vivo was demonstrated by immunohistochemistry and Matrigel plug assays. Our findings highlight an angiogenic role of C-peptide and its ability to protect against impaired wound healing, which may have significant implications in reparative and therapeutic angiogenesis in diabetes. Thus, C-peptide replacement is a promising therapy for impaired angiogenesis and delayed wound healing in diabetes.
Collapse
Affiliation(s)
- Young-Cheol Lim
- Department of Molecular and Cellular Biochemistry and Institute of Medical Science, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Mahendra Prasad Bhatt
- Department of Molecular and Cellular Biochemistry and Institute of Medical Science, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Mi-Hye Kwon
- Department of Molecular and Cellular Biochemistry and Institute of Medical Science, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Donghyun Park
- Department of Molecular and Cellular Biochemistry and Institute of Medical Science, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - SungHun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry and Institute of Medical Science, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry and Institute of Medical Science, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea.
| |
Collapse
|