1
|
Baker LA, Minor KM, Tate N, Furrow E. Whole blood gene expression analysis of spontaneous hypertriglyceridemia in dogs suggests an underlying pro-thrombotic process. PLoS One 2024; 19:e0313343. [PMID: 39531449 PMCID: PMC11556679 DOI: 10.1371/journal.pone.0313343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertriglyceridemia (HTG) is influenced by multiple genetic and environmental factors. Spontaneous, idiopathic HTG is common in the Miniature Schnauzer dog and presumed to have a strong genetic influence in this breed. To define genes that are differentially expressed in dogs with HTG, we performed RNA sequencing on peripheral blood of 13 Miniature Schnauzers with HTG and 18 controls. We identified 110 differentially expressed genes (DEGs). Pathway analysis suggests an ongoing pro-thrombotic, endothelial activation process in dogs with HTG. The gene with the largest fold change (5.4 ± 1.4, Padj = 4.4E-04), SERPINE1, encodes plasminogen activator inhibitor 1 (PAI-1), a known risk factor for atherosclerosis and thrombosis. Other top DEGs, including SHANK3, MMRN1, and FZD7, are involved in endothelial activation. Two of the top DEGs, ARHGAP29 and ARHGAP21, inhibit pro-thrombotic pathways and are potentially protective of disease sequelae. Top DEGs, including SERPINE1 and ARHGAP21, have also been linked to metabolic syndrome or its features (e.g. insulin resistance) in humans and animal models. Our findings indicate that HTG in the Miniature Schnauzer dog has similar features to HTG and metabolic syndrome in humans, highlighting the potential use of the dog as a spontaneous model for further research into the etiology and effects of HTG.
Collapse
Affiliation(s)
- Lauren A. Baker
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Katie M. Minor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nicole Tate
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eva Furrow
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
2
|
Vachon L, Jean G, Milasan A, Babran S, Lacroix E, Guadarrama Bello D, Villeneuve L, Rak J, Nanci A, Mihalache-Avram T, Tardif JC, Finnerty V, Ruiz M, Boilard E, Tessier N, Martel C. Platelet extracellular vesicles preserve lymphatic endothelial cell integrity and enhance lymphatic vessel function. Commun Biol 2024; 7:975. [PMID: 39128945 PMCID: PMC11317532 DOI: 10.1038/s42003-024-06675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
Lymphatic vessels are essential for preventing the accumulation of harmful components within peripheral tissues, including the artery wall. Various endogenous mechanisms maintain adequate lymphatic function throughout life, with platelets being essential for preserving lymphatic vessel integrity. However, since lymph lacks platelets, their impact on the lymphatic system has long been viewed as restricted to areas where lymphatics intersect with blood vessels. Nevertheless, platelets can also exert long range effects through the release of extracellular vesicles (EVs) upon activation. We observed that platelet EVs (PEVs) are present in lymph, a compartment to which they could transfer regulatory effects of platelets. Here, we report that PEVs in lymph exhibit a distinct signature enabling them to interact with lymphatic endothelial cells (LECs). In vitro experiments show that the internalization of PEVs by LECs maintains their functional integrity. Treatment with PEVs improves lymphatic contraction capacity in atherosclerosis-prone mice. We suggest that boosting lymphatic pumping with exogenous PEVs offers a novel therapeutic approach for chronic inflammatory diseases characterized by defective lymphatics.
Collapse
Affiliation(s)
- Laurent Vachon
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Gabriel Jean
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Andreea Milasan
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Sara Babran
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Elizabeth Lacroix
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | | | | | - Janusz Rak
- McGill University and Research, Institute of the McGill University Health Centre, Montreal, Canada
- Department of Experimental Medicine, McGill University, Montreal, Canada
| | - Antonio Nanci
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | | | - Jean-Claude Tardif
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | | | - Matthieu Ruiz
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Metabolomics platform, Montreal, Canada
| | - Eric Boilard
- Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, Québec, Canada
- Infectious and Immune Diseases Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada
| | - Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada.
- Montreal Heart Institute, Montreal, Canada.
| |
Collapse
|
3
|
Yan Y, Qin X, Zheng Y, Jin T, Hu Y, An Q, Leng B. Decreased PDLIM1 expression in endothelial cells contributes to the development of intracranial aneurysm. Vasc Med 2024; 29:5-16. [PMID: 38334094 DOI: 10.1177/1358863x231218210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Intracranial aneurysm (IA) is a common vascular enlargement that occurs in the wall of cerebral vessels and frequently leads to fatal subarachnoid hemorrhage. PDZ and LIM domain protein 1 (PDLIM1) is a cytoskeletal protein that functions as a platform for multiple protein complex formation. However, whether PDLIM is involved in the pathogenesis of IA remains poorly understood. METHODS Loss-of-function and gain-of-function strategies were employed to determine the in vitro roles of PDLIM1 in vascular endothelial cells (VECs). A rat model of IA was generated to study the role of PDLIM1 in vivo. Gene expression profiling, Western blotting, and dual luciferase reporter assays were performed to uncover the underlying cellular mechanism. Clinical IA samples were used to determine the expression of PDLIM1 and its downstream signaling molecules. RESULTS PDLIM1 expression was reduced in the endothelial cells of IA and was regulated by Yes-associated protein 1 (YAP1). Genetic silencing of PDLIM1 inhibited the viability, migratory ability, and tube formation ability of VECs. Opposite results were obtained by ectopic expression of PDLIM1. Additionally, PDLIM1 overexpression mitigated IA in vivo. Mechanistic investigations revealed that PDLIM1 promoted the transcriptional activity of β-catenin and induced the expression of v-myc myelocytomatosis viral oncogene homolog (MYC) and cyclin D1 (CCND1). In clinical settings, reduced expression of PDLIM1 and β-catenin downstream target genes was observed in human IA samples. CONCLUSION Our study indicates that YAP1-dependent expression of PDLIM1 can inhibit IA development by modulating the activity of the Wnt/β-catenin signaling pathway and that PDLIM1 deficiency in VECs may represent a potential marker of aggressive disease.
Collapse
Affiliation(s)
- Yan Yan
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanfeng Qin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Jin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bing Leng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Yang K, Xu C, Sun H, Xuan Z, Liu Y, Li J, Bai Y, Zheng Z, Zhao Y, Shi Z, Zheng J, Shao C. Branched-chain keto-acid dehydrogenase kinase regulates vascular permeability and angiogenesis to facilitate tumor metastasis in renal cell carcinoma. Cancer Sci 2023; 114:4270-4285. [PMID: 37715534 PMCID: PMC10637060 DOI: 10.1111/cas.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
Branched-chain keto-acid dehydrogenase kinase (BCKDK) is the rate-limiting enzyme of branched-chain amino acid (BCAA) metabolism. In the last six years, BCKDK has been used as a kinase to promote tumor proliferation and metastasis. Renal cell carcinoma (RCC) is a highly vascularized tumor. A high degree of vascularization promotes tumor metastasis. Our objective is to explore the relationship between BCKDK and RCC metastasis and its specific mechanism. In our study, BCKDK is highly expressed in renal clear cell carcinoma and promotes the migration of clear cell renal cell carcinoma (ccRCC). Exosomes from ccRCC cells can promote vascular permeability and angiogenesis, especially when BCKDK is overexpressed in ccRCC cells. BCKDK can also augment the miR-125a-5p expression in ccRCC cells and derived exosomes, thereby decreasing the downstream target protein VE-cadherin level, weakening adhesion junction expression, increasing vascular permeability, and promoting angiogenesis in HUVECs. The novel BCKDK/Exosome-miR-125a-5p/VE-cadherin axis regulates intercellular communication between ccRCC cells and HUVECs. BCKDK plays a critical role in renal cancer metastasis, may be used as a molecular marker of metastatic ccRCC, and even may become a potential target of clinical anti-vascular therapy for ccRCC.
Collapse
Affiliation(s)
- Kunao Yang
- Department of Urology, Xiang’an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Chunlan Xu
- Department of Tumor, Xiang’an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Huimin Sun
- Central Laboratory, Xiang’an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Zuodong Xuan
- Department of Urology, Xiang’an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Yankuo Liu
- Department of Urology, Xiang’an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Jinxin Li
- Department of Urology, Xiang’an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Yang Bai
- Department of Urology, Xiang’an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Zeyuan Zheng
- Department of Urology, Xiang’an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Yue Zhao
- Department of Urology, Xiang’an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Zhiyuan Shi
- Department of Urology, Xiang’an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Jianzhong Zheng
- Department of Urology, Xiang’an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Chen Shao
- Department of Urology, Xiang’an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| |
Collapse
|
5
|
Abstract
Most colorectal cancers (CRC) are associated with activated Wnt signaling, making it the fourth most prevalent type of cancer globally. To function properly, the Wnt signaling pathway requires secreted glycoproteins known as Wnt ligands (Wnts). Humans have 19 Wnts, which suggest a complicated signaling and biological process, and we still know little about their functions in developing CRC. This review aims to describe the canonical Wnt signaling in CRC, particularly the Wnt3a expression pattern, and their association with the angiogenesis and progression of CRC. This review also sheds light on the inhibition of Wnt3a signaling in CRC. Despite some obstacles, a thorough understanding of Wnts is essential for effectively managing CRC.
Collapse
|
6
|
Xu F, Wang Y, Gao H, Zhang X, Hu Y, Han T, Shen B, Zhang L, Wu Q. X-Ray Causes mRNA Transcripts Change to Enhance Orai2-Mediated Ca 2+ Influx in Rat Brain Microvascular Endothelial Cells. Front Mol Biosci 2021; 8:646730. [PMID: 34595206 PMCID: PMC8477418 DOI: 10.3389/fmolb.2021.646730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Radiation-induced brain injury is a serious and treatment-limiting complication of brain radiation therapy. Although endothelial cell dysfunction plays a critical role in the development of this pathogenesis, the underlying molecular mechanisms remain elusive. Methods: Primary cultured rat brain microvascular endothelial cells (BMECs) were divided into five groups without or with exposure of x-rays delivered at 5 Gy or 20 Gy. For the irradiated groups, cells were continued to cultivate for 12 or 24 h after being irradiated. Then the mRNA libraries of each group were established and applied for next-generation sequencing. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted to analyze the sequencing results. Quantitative polymerase chain reaction, western blotting, cck8 assay and intracellular calcium concentration assays were conducted to analyze the role of Orai2-associated SOCE in x-ray induced cellular injury. Results: In total, 3,005 transcripts in all the four x-ray-exposed groups of BMECs showed expression level changes compared with controls. With the dose of x-ray augment and the following cultured time extension, the numbers of differentially expressed genes (DEGs) increased significantly in BMECs. Venn diagrams identified 40 DEGs common to all four exposure groups. Functional pathway enrichment analyses indicated that those 40 DEGs were enriched in the calcium signaling pathway. Among those 40 DEGs, mRNA and protein expression levels of Orai2 were significantly upregulated for 24 h. Similarly, calcium influx via store-operated calcium entry, which is modulated by Orai2, was also significantly increased for 24 h in x-ray-exposed BMECs. Moreover, the change in SOCE was suppressed by btp-2, which is a non-selective inhibitor of Orai. Additionally, x-ray exposure induced a significant decrease of proliferation in BMECs in the dose- and time-dependent manner. Conclusion: These findings provide evidence for molecular mechanisms underlying BMECs dysfunction in development of radiation-induced brain injury and suggest new approaches for therapeutic targets.
Collapse
Affiliation(s)
- Fangfang Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yang Wang
- Department of Otolaryngology-Head and Neck Surgery, Lu'an People's Hospital, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Huiwen Gao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinchen Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Hu
- Department of Otolaryngology-Head and Neck Surgery, Lu'an People's Hospital, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, China
| | - Tingting Han
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lesha Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qibing Wu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Activation of Frizzled-7 attenuates blood-brain barrier disruption through Dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS 2021; 18:44. [PMID: 34565396 PMCID: PMC8474841 DOI: 10.1186/s12987-021-00278-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Destruction of blood-brain barrier (BBB) is one of the main mechanisms of secondary brain injury following intracerebral hemorrhage (ICH). Frizzled-7 is a key protein expressed on the surface of endothelial cells that controls vascular permeability through the Wnt-canonical pathway involving WNT1-inducible signaling pathway protein 1 (WISPI). This study aimed to investigate the role of Frizzled-7 signaling in BBB preservation after ICH in mice. METHODS Adult CD1 mice were subjected to sham surgery or collagenase-induced ICH. Frizzled-7 activation or knockdown was performed by administration of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) by intracerebroventricular injection at 48 h before ICH induction. WISP1 activation or WISP1 knockdown was performed to evaluate the underlying signaling pathway. Post-ICH assessments included neurobehavior, brain edema, BBB permeability, hemoglobin level, western blot and immunofluorescence. RESULTS The brain expressions of Frizzled-7 and WISP1 significantly increased post-ICH. Frizzled-7 was expressed in endothelial cells, astrocytes, and neurons after ICH. Activation of Frizzled-7 significantly improved neurological function, reduced brain water content and attenuated BBB permeability to large molecular weight substances after ICH. Whereas, knockdown of Frizzled-7 worsened neurological function and brain edema after ICH. Activation of Frizzled-7 significantly increased the expressions of Dvl, β-Catenin, WISP1, VE-Cadherin, Claudin-5, ZO-1 and reduced the expression of phospho-β-Catenin. WISP1 knockdown abolished the effects of Frizzled-7 activation on the expressions of VE-Cadherin, Claudin-5 and ZO-1 at 24 h after ICH. CONCLUSIONS Frizzled-7 activation potentially attenuated BBB permeability and improved neurological deficits after ICH through Dvl/β-Catenin/WISP1 pathway. Frizzled-7 may be a potential target for the development of ICH therapeutic drugs.
Collapse
|
8
|
Li Y, Baccouche B, Olayinka O, Serikbaeva A, Kazlauskas A. The Role of the Wnt Pathway in VEGF/Anti-VEGF-Dependent Control of the Endothelial Cell Barrier. Invest Ophthalmol Vis Sci 2021; 62:17. [PMID: 34542556 PMCID: PMC8458780 DOI: 10.1167/iovs.62.12.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Investigate the contribution of the Wnt pathway to vascular endothelial growth factor (VEGF)/anti-VEGF-mediated control of endothelial cell permeability. Methods High glucose-treated primary human retinal endothelial cells (HRECs) were exposed to either VEGF, or VEGF and then anti-VEGF. Changes in gene expression were assayed by RNAseq and qRT-PCR. Permeability was monitored by electrical cell-substrate impedance sensing (ECIS). Approaches to activate the Wnt pathway included treatment with LiCl and overexpression of constitutively activated β-catenin. β-catenin-dependent transcriptional activity was monitored in HRECs stably expressing a TCF/LEF-driven reporter. Results VEGF/anti-VEGF altered expression of genes encoding many members of the Wnt pathway. A subset of these genes was regulated in a way that is likely to contribute to control of the endothelial cell barrier. Namely, the VEGF-induced alteration of expression of such genes was reversed by anti-VEGF, and such adjustments occurred at times corresponding to changes in barrier function. While pharmacological and molecular approaches to activate the Wnt pathway had no effect on basal permeability, they suppressed VEGF-induced relaxation. Furthermore, anti-VEGF-mediated restoration of barrier function was unaffected by activation of the Wnt pathway. Conclusions VEGF/anti-VEGF engages multiple members of the Wnt pathway, and activating this pathway enforces the endothelial barrier by attenuating VEGF-induced relaxation. These data suggest that FDA-approved agents such as LiCl may be an adjuvant to anti-VEGF therapy for patients afflicted with blinding conditions including diabetic retinopathy.
Collapse
Affiliation(s)
- Yueru Li
- University of Illinois at Chicago, Department of Ophthalmology & Visual Sciences, Chicago, IL, United States
| | - Basma Baccouche
- University of Illinois at Chicago, Department of Ophthalmology & Visual Sciences, Chicago, IL, United States
| | - Olamide Olayinka
- Department of Physiology and Biophysics, Chicago, IL, United States
| | - Anara Serikbaeva
- Department of Physiology and Biophysics, Chicago, IL, United States
| | - Andrius Kazlauskas
- University of Illinois at Chicago, Department of Ophthalmology & Visual Sciences, Chicago, IL, United States.,Department of Physiology and Biophysics, Chicago, IL, United States
| |
Collapse
|
9
|
Jun JH, Park SY, Park S, Park HJ, Kim JY, Park GT, Bae SH, Kim JH, Kim GJ. Formyl Peptide Receptor 2 Alleviates Hepatic Fibrosis in Liver Cirrhosis by Vascular Remodeling. Int J Mol Sci 2021; 22:2107. [PMID: 33672682 PMCID: PMC7924385 DOI: 10.3390/ijms22042107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Hexapeptide WKYMVm (Trp-Lys-Tyr-Met-Val-D-Met), a ligand of formyl peptide receptor 2, exhibits anti-inflammatory and angiogenic properties in disease models. However, the therapeutic effects of WKYMVm on hepatic fibrosis have not been evaluated to date. Therefore, we investigated whether WKYMVm exerts antifibrotic effects and induces vascular regeneration in a rat model of bile duct ligation (BDL). The antifibrotic and angiogenic effects of WKYMVm on liver regeneration in the BDL rat model were analyzed using biochemical assays, qRT-PCR, western blotting, immunofluorescence, and immunohistochemistry. To determine the effects of WKYMVm on hepatic fibrosis and angiogenesis in vitro, we measured the expression levels of fibrotic factors in hepatic stellate cells (HSCs) and angiogenic factors in human umbilical vein endothelial cells (HUVECs). WKYMVm attenuated the expression of collagen type I (Col I) and α-smooth muscle actin (α-SMA) and significantly increased the levels of angiogenetic factors in the BDL model (p < 0.05). WKYMVm reduced fibrotic marker expression in transforming growth factor (TGF)-β-induced HSCs and promoted angiogenic activity through tube formation in 5-Fluorouracil (FU)-treated HUVECs (p < 0.05). Also, WKYMVm administration enhanced hepatocyte proliferation in BDL rats (p < 0.05). The WKYMVm alleviates hepatic fibrosis by inhibiting HSC activation and promotes hepatic regeneration via vascular remodeling. These data suggest that the WKYMVm may be a new therapeutic agent for liver fibrosis.
Collapse
Affiliation(s)
- Ji Hye Jun
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (S.Y.P.); (S.P.); (H.J.P.); (J.Y.K.)
| | - Soo Young Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (S.Y.P.); (S.P.); (H.J.P.); (J.Y.K.)
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (S.Y.P.); (S.P.); (H.J.P.); (J.Y.K.)
| | - Hee Jung Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (S.Y.P.); (S.P.); (H.J.P.); (J.Y.K.)
| | - Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (S.Y.P.); (S.P.); (H.J.P.); (J.Y.K.)
| | - Gyu Tae Park
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea;
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul 03312, Korea;
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea;
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (S.Y.P.); (S.P.); (H.J.P.); (J.Y.K.)
| |
Collapse
|
10
|
Ruan Y, Ogana H, Gang E, Kim HN, Kim YM. Wnt Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:107-121. [PMID: 33123996 DOI: 10.1007/978-3-030-47189-7_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dysregulated Wnt signaling plays a central role in initiation, progression, and metastasis in many types of human cancers. Cancer development and resistance to conventional cancer therapies are highly associated with the tumor microenvironment (TME), which is composed of numerous stable non-cancer cells, including immune cells, extracellular matrix (ECM), fibroblasts, endothelial cells (ECs), and stromal cells. Recently, increasing evidence suggests that the relationship between Wnt signaling and the TME promotes the proliferation and maintenance of tumor cells, including leukemia. Here, we review the Wnt pathway, the role of Wnt signaling in different components of the TME, and therapeutic strategies for targeting Wnt signaling.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Eunji Gang
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Macrophage-derived Wnt signaling increases endothelial permeability during skeletal muscle injury. Inflamm Res 2020; 69:1235-1244. [PMID: 32909096 DOI: 10.1007/s00011-020-01397-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/04/2020] [Accepted: 08/23/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The inflammatory response and the presence of macrophages are reported to be necessary for proper muscle regeneration. However, our understanding of the molecular mechanisms governing how macrophages signal to promote muscle regeneration is incomplete. METHODS AND RESULTS Here we conditionally deleted Wls, which is required for Wnt secretion, from macrophages and examined the impact on endothelial permeability following muscle injury. The expression of Wnt ligands and Wls was increased in the tibialis anterior (TA) of mice 2 days following BaCl2 injury. Loss of macrophage Wls inhibited the loss of endothelial barrier function, as measured by transendothelial resistance and Evans blue dye permeability assays. Interestingly, the blockade in endothelial permeability correlated with reduced VEGF levels and pretreatment of wild type endothelial cells with a VEGFR2 blocking antibody was sufficient to reduce endothelial permeability induced by stimulated macrophage supernatant. We also found that macrophage Wls-null TAs had myocytes with reduced cross-sectional area 7 day post-injury suggesting a delay in muscle regeneration. CONCLUSION Our results indicate that macrophage-derived Wnt signaling increases endothelial permeability in a VEGF-dependent fashion following muscle injury. Our findings implicate macrophages as a primary source of Wnt ligands following muscle injury and highlight the Wnt pathway as a therapeutic target following injury.
Collapse
|
12
|
Abstract
Cardiovascular disease (CVD) is still a factor of mortality in the whole world. Through canonical and noncanonical pathways and with different receptors, the Wnt/β-catenin signaling pathway plays an essential role in response to heart injuries. Wnt regulates the mobilization and proliferation of cells in endothelium and epicardium in an infarcted heart. Therefore, with its profibrotic effects as well as its antagonism with other proteins, Wnt/β-catenin signaling pathway leads to beneficial effects on fibrosis and cardiac remodeling in myocardium. In addition, Wnt increases the proliferation and differentiation of cardiac progenitors in an ischemic heart. Complex interactions and dual activity of Wnt, the changes in its expression, and mutations that can change its activity during heart development have an adverse effect on cardiac myocardium after injury. However, targeting the Wnt in myocardium with cellular and molecular pathways can be suggested to improve and repair ischemic heart. Given these challenges, in this review article, we deal with the role of Wnt/β-catenin signaling pathway as well as its interactions with other cells and molecules in an ischemic myocardium.
Collapse
|
13
|
Bats ML, Bougaran P, Peghaire C, Gueniot F, Abelanet A, Chan H, Séguy C, Jeanningros S, Jaspard-Vinassa B, Couffinhal T, Duplàa C, Dufourcq P. Therapies targeting Frizzled-7/β-catenin pathway prevent the development of pathological angiogenesis in an ischemic retinopathy model. FASEB J 2019; 34:1288-1303. [PMID: 31914666 DOI: 10.1096/fj.201901886r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022]
Abstract
Retinopathies remain major causes of visual impairment in diabetic patients and premature infants. Introduction of anti-angiogenic drugs targeting vascular endothelial growth factor (VEGF) has transformed therapy for these proliferative retinopathies. However, limitations associated with anti-VEGF medications require to unravel new pathways of vessel growth to identify potential drug targets. Here, we investigated the role of Wnt/Frizzled-7 (Fzd7) pathway in a mouse model of oxygen-induced retinopathy (OIR). Using transgenic mice, which enabled endothelium-specific and time-specific Fzd7 deletion, we demonstrated that Fzd7 controls both vaso-obliteration and neovascular phases (NV). Deletion of Fzd7 at P12, after the ischemic phase of OIR, prevented formation of aberrant neovessels into the vitreous by suppressing proliferation of endothelial cells (EC) in tufts. Next we validated in vitro two Frd7 blocking strategies: a monoclonal antibody (mAbFzd7) against Fzd7 and a soluble Fzd7 receptor (CRD). In vivo a single intravitreal microinjection of mAbFzd7 or CRD significantly attenuated retinal neovascularization (NV) in mice with OIR. Molecular analysis revealed that Fzd7 may act through the activation of Wnt/β-catenin and Jagged1 expression to control EC proliferation in extra-retinal neovessels. We identified Fzd7/β-catenin signaling as new regulator of pathological retinal NV. Fzd7 appears to be a potent pharmacological target to prevent or treat aberrant angiogenesis of ischemic retinopathies.
Collapse
Affiliation(s)
- Marie-Lise Bats
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service de Biochimie clinique, CHU de Bordeaux, Bordeaux, France
| | - Pauline Bougaran
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Claire Peghaire
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,NHLI-Vascular Science, Imperial College London, London, UK
| | - Florian Gueniot
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Alice Abelanet
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Hélène Chan
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France
| | - Camille Séguy
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France
| | | | - Béatrice Jaspard-Vinassa
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Thierry Couffinhal
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service des Maladies cardiaques et vasculaires, CHU de Bordeaux, Bordeaux, France
| | - Cécile Duplàa
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Pascale Dufourcq
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| |
Collapse
|
14
|
Debreczeni ML, Németh Z, Kajdácsi E, Schwaner E, Makó V, Masszi A, Doleschall Z, Rigó J, Walter FR, Deli MA, Pál G, Dobó J, Gál P, Cervenak L. MASP-1 Increases Endothelial Permeability. Front Immunol 2019; 10:991. [PMID: 31130964 PMCID: PMC6509239 DOI: 10.3389/fimmu.2019.00991] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/17/2019] [Indexed: 01/13/2023] Open
Abstract
Pathologically increased vascular permeability is an important dysfunction in the pathomechanism of life-threatening conditions, such as sepsis, ischemia/reperfusion, or hereditary angioedema (HAE), diseases accompanied by uncontrolled activation of the complement system. HAE for example is caused by the deficiency of C1-inhibitor (the main regulator of early complement activation), which leads to edematous attacks threatening with circulatory collapse. We have previously reported that endothelial cells become activated during HAE attacks. A natural target of C1-inhibitor is mannan-binding lectin-associated serine protease-1 (MASP-1), a multifunctional serine protease, which plays a key role in the activation of complement lectin pathway. We have previously shown that MASP-1 induces the pro-inflammatory activation of endothelial cells and in this study we investigated whether MASP-1 can directly affect endothelial permeability. All experiments were performed on human umbilical vein endothelial cells (HUVECs). Real-time micro electric sensing revealed that MASP-1 decreases the impedance of HUVEC monolayers and in a recently developed permeability test (XperT), MASP-1 dose-dependently increased endothelial paracellular transport. We show that protease activated receptor-1 mediated intracellular Ca2+-mobilization, Rho-kinase activation dependent myosin light chain (MLC) phosphorylation, cytoskeletal actin rearrangement, and disruption of interendothelial junctions are underlying this phenomenon. Furthermore, in a whole-transcriptome microarray analysis MASP-1 significantly changed the expression of 25 permeability-related genes in HUVECs-for example it up-regulated bradykinin B2 receptor expression. According to our results, MASP-1 has potent permeability increasing effects. During infections or injuries MASP-1 may help eliminate the microbes and/or tissue debris by enhancing the extravasation of soluble and cellular components of the immune system, however, it may also play a role in the pathomechanism of diseases, where edema formation and complement lectin pathway activation are simultaneously present. Our findings also raise the possibility that MASP-1 may be a promising target of anti-edema drug development.
Collapse
Affiliation(s)
- Márta L. Debreczeni
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Németh
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Erika Kajdácsi
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Endre Schwaner
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Veronika Makó
- MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - András Masszi
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Doleschall
- Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
| | - János Rigó
- First Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Fruzsina R. Walter
- Biological Research Centre, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária A. Deli
- Biological Research Centre, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - József Dobó
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Cervenak
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Meyer IS, Leuschner F. The role of Wnt signaling in the healing myocardium: a focus on cell specificity. Basic Res Cardiol 2018; 113:44. [PMID: 30327885 DOI: 10.1007/s00395-018-0705-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Various cell types are involved in the healing process after myocardial infarction (MI). Besides cardiac resident cells (such as cardiomyocytes, fibroblasts and endothelial cells) already present at the lesion site, a massive influx of leukocytes (mainly monocytes and neutrophils) is observed within hours after the ischemic event. So far, little is known about modes of interaction of these cells. Wnt signaling is an evolutionary conserved signaling cassette known to play an important role in cell-cell communication. While the overall reactivation of Wnt signaling upon ischemic injury is well described, the precise expression pattern of Wnt proteins, however, is far from understood. We here describe known Wnt components that partake in MI healing and differentiate cell-specific aspects. The secretion of Wnt proteins and their antagonists in the context of cardiac inflammation after MI appear to be tightly regulated in a spatial-temporal manner. Overall, we aim to stress the importance of elucidating not only Wnt component-specific aspects, but also their sometimes contradicting effects in different target cells. A better understanding of Wnt signaling in MI healing may eventually lead to the development of successful therapeutic approaches in an often considered "un-druggable" pathway.
Collapse
Affiliation(s)
- Ingmar Sören Meyer
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Florian Leuschner
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
16
|
Moreau N, Mauborgne A, Couraud PO, Romero IA, Weksler BB, Villanueva L, Pohl M, Boucher Y. Could an endoneurial endothelial crosstalk between Wnt/β-catenin and Sonic Hedgehog pathways underlie the early disruption of the infra-orbital blood-nerve barrier following chronic constriction injury? Mol Pain 2018; 13:1744806917727625. [PMID: 28814148 PMCID: PMC5574482 DOI: 10.1177/1744806917727625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Blood–nerve barrier disruption is pivotal in the development of neuroinflammation, peripheral sensitization, and neuropathic pain after peripheral nerve injury. Activation of toll-like receptor 4 and inactivation of Sonic Hedgehog signaling pathways within the endoneurial endothelial cells are key events, resulting in the infiltration of harmful molecules and immunocytes within the nerve parenchyma. However, we showed in a previous study that preemptive inactivation of toll-like receptor 4 signaling or sustained activation of Sonic Hedgehog signaling did not prevent the local alterations observed following peripheral nerve injury, suggesting the implication of another signaling pathway. Methods Using a classical neuropathic pain model, the infraorbital nerve chronic constriction injury (IoN-CCI), we investigated the role of the Wnt/β-catenin pathway in chronic constriction injury-mediated blood–nerve barrier disruption and in its interactions with the toll-like receptor 4 and Sonic Hedgehog pathways. In the IoN-CCI model versus control, mRNA expression levels and/or immunochemical detection of major Wnt/Sonic Hedgehog pathway (Frizzled-7, vascular endothelial-cadherin, Patched-1 and Gli-1) and/or tight junction proteins (Claudin-1, Claudin-5, and Occludin) readouts were assessed. Vascular permeability was assessed by sodium fluorescein extravasation. Results IoN-CCI induced early alterations in the vascular endothelial-cadherin/β-catenin/Frizzled-7 complex, shown to participate in local blood–nerve barrier disruption via a β-catenin-dependent tight junction protein downregulation. Wnt pathway also mediated a crosstalk between toll-like receptor 4 and Sonic Hedgehog signaling within endoneurial endothelial cells. Nevertheless, preemptive inhibition of Wnt/β-catenin signaling before IoN-CCI could not prevent the downregulation of key Sonic Hedgehog pathway readouts or the disruption of the infraorbital blood–nerve barrier, suggesting that Sonic Hedgehog pathway inhibition observed following IoN-CCI is an independent event responsible for blood–nerve barrier disruption. Conclusion A crosstalk between Wnt/β-catenin- and Sonic Hedgehog-mediated signaling pathways within endoneurial endothelial cells could mediate the chronic disruption of the blood–nerve barrier following IoN-CCI, resulting in increased irreversible endoneurial vascular permeability and neuropathic pain development.
Collapse
Affiliation(s)
- Nathan Moreau
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
| | - Annie Mauborgne
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
| | | | - Ignacio A Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes MK7 6BJ, UK
| | - Babette B Weksler
- Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Luis Villanueva
- 1Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
| | - Michel Pohl
- 1Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
| | | |
Collapse
|
17
|
Ribecco-Lutkiewicz M, Sodja C, Haukenfrers J, Haqqani AS, Ly D, Zachar P, Baumann E, Ball M, Huang J, Rukhlova M, Martina M, Liu Q, Stanimirovic D, Jezierski A, Bani-Yaghoub M. A novel human induced pluripotent stem cell blood-brain barrier model: Applicability to study antibody-triggered receptor-mediated transcytosis. Sci Rep 2018; 8:1873. [PMID: 29382846 PMCID: PMC5789839 DOI: 10.1038/s41598-018-19522-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022] Open
Abstract
We have developed a renewable, scalable and transgene free human blood-brain barrier model, composed of brain endothelial cells (BECs), generated from human amniotic fluid derived induced pluripotent stem cells (AF-iPSC), which can also give rise to syngeneic neural cells of the neurovascular unit. These AF-iPSC-derived BECs (i-BEC) exhibited high transendothelial electrical resistance (up to 1500 Ω cm2) inducible by astrocyte-derived molecular cues and retinoic acid treatment, polarized expression of functional efflux transporters and receptor mediated transcytosis triggered by antibodies against specific receptors. In vitro human BBB models enable pre-clinical screening of central nervous system (CNS)-targeting drugs and are of particular importance for assessing species-specific/selective transport mechanisms. This i-BEC human BBB model discriminates species-selective antibody- mediated transcytosis mechanisms, is predictive of in vivo CNS exposure of rodent cross-reactive antibodies and can be implemented into pre-clinical CNS drug discovery and development processes.
Collapse
Affiliation(s)
- Maria Ribecco-Lutkiewicz
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Caroline Sodja
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Julie Haukenfrers
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Dao Ly
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Peter Zachar
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Ewa Baumann
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Marguerite Ball
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Jez Huang
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Marina Rukhlova
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Marzia Martina
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Qing Liu
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Danica Stanimirovic
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Anna Jezierski
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada.
| | - Mahmud Bani-Yaghoub
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
18
|
Katoh M, Katoh M. Molecular genetics and targeted therapy of WNT-related human diseases (Review). Int J Mol Med 2017; 40:587-606. [PMID: 28731148 PMCID: PMC5547940 DOI: 10.3892/ijmm.2017.3071] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
Canonical WNT signaling through Frizzled and LRP5/6 receptors is transduced to the WNT/β-catenin and WNT/stabilization of proteins (STOP) signaling cascades to regulate cell fate and proliferation, whereas non-canonical WNT signaling through Frizzled or ROR receptors is transduced to the WNT/planar cell polarity (PCP), WNT/G protein-coupled receptor (GPCR) and WNT/receptor tyrosine kinase (RTK) signaling cascades to regulate cytoskeletal dynamics and directional cell movement. WNT/β-catenin signaling cascade crosstalks with RTK/SRK and GPCR-cAMP-PKA signaling cascades to regulate β-catenin phosphorylation and β-catenin-dependent transcription. Germline mutations in WNT signaling molecules cause hereditary colorectal cancer, bone diseases, exudative vitreoretinopathy, intellectual disability syndrome and PCP-related diseases. APC or CTNNB1 mutations in colorectal, endometrial and prostate cancers activate the WNT/β-catenin signaling cascade. RNF43, ZNRF3, RSPO2 or RSPO3 alterations in breast, colorectal, gastric, pancreatic and other cancers activate the WNT/β-catenin, WNT/STOP and other WNT signaling cascades. ROR1 upregulation in B-cell leukemia and solid tumors and ROR2 upregulation in melanoma induce invasion, metastasis and therapeutic resistance through Rho-ROCK, Rac-JNK, PI3K-AKT and YAP signaling activation. WNT signaling in cancer, stromal and immune cells dynamically orchestrate immune evasion and antitumor immunity in a cell context-dependent manner. Porcupine (PORCN), RSPO3, WNT2B, FZD5, FZD10, ROR1, tankyrase and β-catenin are targets of anti-WNT signaling therapy, and ETC-159, LGK974, OMP-18R5 (vantictumab), OMP-54F28 (ipafricept), OMP-131R10 (rosmantuzumab), PRI-724 and UC-961 (cirmtuzumab) are in clinical trials for cancer patients. Different classes of anti-WNT signaling therapeutics are necessary for the treatment of APC/CTNNB1-, RNF43/ZNRF3/RSPO2/RSPO3- and ROR1-types of human cancers. By contrast, Dickkopf-related protein 1 (DKK1), SOST and glycogen synthase kinase 3β (GSK3β) are targets of pro-WNT signaling therapy, and anti-DKK1 (BHQ880 and DKN-01) and anti-SOST (blosozumab, BPS804 and romosozumab) monoclonal antibodies are being tested in clinical trials for cancer patients and osteoporotic post-menopausal women. WNT-targeting therapeutics have also been applied as reagents for in vitro stem-cell processing in the field of regenerative medicine.
Collapse
Affiliation(s)
| | - Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan
| |
Collapse
|
19
|
Cui YL, Zhang S, Tian ZT, Lin ZF, Chen DC. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability. Chin Med J (Engl) 2017; 129:1737-43. [PMID: 27411464 PMCID: PMC4960966 DOI: 10.4103/0366-6999.185859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein, at a low concentration, antagonized the MMP9-induced HUVEC monolayer permeability by promoting HUVEC proliferation and reducing extracellular VE-cadherin concentrations.
Collapse
Affiliation(s)
- Yun-Liang Cui
- Department of Critical Care Medicine, Jinan Military General Hospital, Jinan, Shandong 250031, China
| | - Sheng Zhang
- Department of Emergency Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhao-Tao Tian
- Department of Critical Care Medicine, Jinan Military General Hospital, Jinan, Shandong 250031, China
| | - Zhao-Fen Lin
- Department of Emergency Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - De-Chang Chen
- Department of Emergency Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
20
|
Sewduth RN, Kovacic H, Jaspard-Vinassa B, Jecko V, Wavasseur T, Fritsch N, Pernot M, Jeaningros S, Roux E, Dufourcq P, Couffinhal T, Duplàa C. PDZRN3 destabilizes endothelial cell-cell junctions through a PKCζ-containing polarity complex to increase vascular permeability. Sci Signal 2017; 10:10/464/eaag3209. [DOI: 10.1126/scisignal.aag3209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Cai YD, Zhang Q, Zhang YH, Chen L, Huang T. Identification of Genes Associated with Breast Cancer Metastasis to Bone on a Protein–Protein Interaction Network with a Shortest Path Algorithm. J Proteome Res 2017; 16:1027-1038. [DOI: 10.1021/acs.jproteome.6b00950] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yu-Dong Cai
- School
of Life Sciences, Shanghai University, Shanghai 200444 People’s Republic of China
| | - Qing Zhang
- School
of Life Sciences, Shanghai University, Shanghai 200444 People’s Republic of China
| | - Yu-Hang Zhang
- Institute
of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| | - Lei Chen
- College
of Information Engineering, Shanghai Maritime University, Shanghai 201306, People’s Republic of China
| | - Tao Huang
- Institute
of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| |
Collapse
|
22
|
D'Asti E, Rak J. Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy. Thromb Res 2017; 140 Suppl 1:S37-43. [PMID: 27067976 DOI: 10.1016/s0049-3848(16)30096-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Activation of stromal response pathways in cancer is increasingly viewed as both a local and systemic extension of molecular alterations driving malignant transformation. Rather than reflecting passive and unspecific responses to anatomical abnormalities, the coagulation system is a target of oncogenic deregulation, impacting the role of clotting and fibrinolytic proteins, and integrating hemostasis, inflammation, angiogenesis and cellular growth effects in cancer. These processes signify, but do not depend on, the clinically manifest coagulopathy and thrombosis. In this regard, the role of driver mutations affecting oncoprotein coding genes such as RAS, EGFR or MET and tumour suppressors (PTEN, TP53) are well described as regulators of tissue factor (TF), protease activated receptors (PAR-1/2) and ectopic coagulation factors (FVII). Indeed, in both adult and pediatric brain tumours the expression patterns of coagulation and angiogenesis regulators (coagulome and angiome, respectively) reflect the molecular subtypes of the underlying diseases (glioblastoma or medulloblastoma) as defined by their oncogenic classifiers and clinical course. This emerging understanding is still poorly established in relation to the transforming effects of non-coding genes, including those responsible for the expression of microRNA (miR). Indeed, several miRs have been recently found to regulate TF and other effectors. We recently documented that in the context of the aggressive embryonal tumour with multilayered rosettes (ETMR) the oncogenic driver miR (miR-520g) suppresses the expression of TF and correlates with hypocoagulant tumour characteristics. Unlike in adult cancers, the growth of pediatric embryonal brain tumour cells as spheres (to maintain stem cell properties) results in upregulation of miR-520g and downregulation of TF expression and activity. We postulate that oncogenic protein and miR coding genes form alternative pathways of coagulation system regulation in different tumour settings, a property necessitating more personalised and biologically-based approaches to anticoagulation.
Collapse
Affiliation(s)
- Esterina D'Asti
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | - Janusz Rak
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Peghaire C, Bats ML, Sewduth R, Jeanningros S, Jaspard B, Couffinhal T, Duplàa C, Dufourcq P. Fzd7 (Frizzled-7) Expressed by Endothelial Cells Controls Blood Vessel Formation Through Wnt/β-Catenin Canonical Signaling. Arterioscler Thromb Vasc Biol 2016; 36:2369-2380. [PMID: 27758766 DOI: 10.1161/atvbaha.116.307926] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vessel formation requires precise orchestration of a series of morphometric and molecular events controlled by a multitude of angiogenic factors and morphogens. Wnt/frizzled signaling is required for proper vascular formation. In this study, we investigated the role of the Fzd7 (frizzled-7) receptor in retinal vascular development and its relationship with the Wnt/β-catenin canonical pathway and Notch signaling. APPROACH AND RESULTS Using transgenic mice, we demonstrated that Fzd7 is required for postnatal vascular formation. Endothelial cell (EC) deletion of fzd7 (fzd7ECKO) delayed retinal plexus formation because of an impairment in tip cell phenotype and a decrease in stalk cell proliferation. Dvl (dishevelled) proteins are a main component of Wnt signaling and play a functionally redundant role. We found that Dvl3 depletion in dvl1-/- mice mimicked the fzd7ECKO vascular phenotype and demonstrated that Fzd7 acted via β-catenin activation by showing that LiCl treatment rescued impairment in tip and stalk cell phenotypes induced in fzd7 mutants. Deletion of fzd7 or Dvl1/3 induced a strong decrease in Wnt canonical genes and Notch partners' expression. Genetic and pharmacological rescue strategies demonstrated that Fzd7 acted via β-catenin activation, upstream of Notch signaling to control Dll4 and Jagged1 EC expression. CONCLUSIONS Fzd7 expressed by EC drives postnatal angiogenesis via activation of Dvl/β-catenin signaling and can control the integrative interaction of Wnt and Notch signaling during postnatal angiogenesis.
Collapse
Affiliation(s)
- Claire Peghaire
- From the Biology of Cardiovascular Diseases, INSERM U1034, Pessac, France (M.L.B., S.J., B.J., T.C., C.D., P.D.); Biology of Cardiovascular Diseases, University of Bordeaux, U1034, France (M.L.B., B.J., T.C., C.D., P.D.); Service des Maladies cardiaques et vasculaires (T.C.) and Service de Biochimie clinique (M.L.B.), CHU de Bordeaux, France; National Heart and Lung Institute, Vascular Science, Imperial Center for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (C.P.); and Laboratorium voor Endotheliale Moleculaire Biologie, Vesalius Research Center, Leuven, Belgium (R.S.)
| | - Marie Lise Bats
- From the Biology of Cardiovascular Diseases, INSERM U1034, Pessac, France (M.L.B., S.J., B.J., T.C., C.D., P.D.); Biology of Cardiovascular Diseases, University of Bordeaux, U1034, France (M.L.B., B.J., T.C., C.D., P.D.); Service des Maladies cardiaques et vasculaires (T.C.) and Service de Biochimie clinique (M.L.B.), CHU de Bordeaux, France; National Heart and Lung Institute, Vascular Science, Imperial Center for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (C.P.); and Laboratorium voor Endotheliale Moleculaire Biologie, Vesalius Research Center, Leuven, Belgium (R.S.)
| | - Raj Sewduth
- From the Biology of Cardiovascular Diseases, INSERM U1034, Pessac, France (M.L.B., S.J., B.J., T.C., C.D., P.D.); Biology of Cardiovascular Diseases, University of Bordeaux, U1034, France (M.L.B., B.J., T.C., C.D., P.D.); Service des Maladies cardiaques et vasculaires (T.C.) and Service de Biochimie clinique (M.L.B.), CHU de Bordeaux, France; National Heart and Lung Institute, Vascular Science, Imperial Center for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (C.P.); and Laboratorium voor Endotheliale Moleculaire Biologie, Vesalius Research Center, Leuven, Belgium (R.S.)
| | - Sylvie Jeanningros
- From the Biology of Cardiovascular Diseases, INSERM U1034, Pessac, France (M.L.B., S.J., B.J., T.C., C.D., P.D.); Biology of Cardiovascular Diseases, University of Bordeaux, U1034, France (M.L.B., B.J., T.C., C.D., P.D.); Service des Maladies cardiaques et vasculaires (T.C.) and Service de Biochimie clinique (M.L.B.), CHU de Bordeaux, France; National Heart and Lung Institute, Vascular Science, Imperial Center for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (C.P.); and Laboratorium voor Endotheliale Moleculaire Biologie, Vesalius Research Center, Leuven, Belgium (R.S.)
| | - Beatrice Jaspard
- From the Biology of Cardiovascular Diseases, INSERM U1034, Pessac, France (M.L.B., S.J., B.J., T.C., C.D., P.D.); Biology of Cardiovascular Diseases, University of Bordeaux, U1034, France (M.L.B., B.J., T.C., C.D., P.D.); Service des Maladies cardiaques et vasculaires (T.C.) and Service de Biochimie clinique (M.L.B.), CHU de Bordeaux, France; National Heart and Lung Institute, Vascular Science, Imperial Center for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (C.P.); and Laboratorium voor Endotheliale Moleculaire Biologie, Vesalius Research Center, Leuven, Belgium (R.S.)
| | - Thierry Couffinhal
- From the Biology of Cardiovascular Diseases, INSERM U1034, Pessac, France (M.L.B., S.J., B.J., T.C., C.D., P.D.); Biology of Cardiovascular Diseases, University of Bordeaux, U1034, France (M.L.B., B.J., T.C., C.D., P.D.); Service des Maladies cardiaques et vasculaires (T.C.) and Service de Biochimie clinique (M.L.B.), CHU de Bordeaux, France; National Heart and Lung Institute, Vascular Science, Imperial Center for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (C.P.); and Laboratorium voor Endotheliale Moleculaire Biologie, Vesalius Research Center, Leuven, Belgium (R.S.)
| | - Cécile Duplàa
- From the Biology of Cardiovascular Diseases, INSERM U1034, Pessac, France (M.L.B., S.J., B.J., T.C., C.D., P.D.); Biology of Cardiovascular Diseases, University of Bordeaux, U1034, France (M.L.B., B.J., T.C., C.D., P.D.); Service des Maladies cardiaques et vasculaires (T.C.) and Service de Biochimie clinique (M.L.B.), CHU de Bordeaux, France; National Heart and Lung Institute, Vascular Science, Imperial Center for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (C.P.); and Laboratorium voor Endotheliale Moleculaire Biologie, Vesalius Research Center, Leuven, Belgium (R.S.)
| | - Pascale Dufourcq
- From the Biology of Cardiovascular Diseases, INSERM U1034, Pessac, France (M.L.B., S.J., B.J., T.C., C.D., P.D.); Biology of Cardiovascular Diseases, University of Bordeaux, U1034, France (M.L.B., B.J., T.C., C.D., P.D.); Service des Maladies cardiaques et vasculaires (T.C.) and Service de Biochimie clinique (M.L.B.), CHU de Bordeaux, France; National Heart and Lung Institute, Vascular Science, Imperial Center for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (C.P.); and Laboratorium voor Endotheliale Moleculaire Biologie, Vesalius Research Center, Leuven, Belgium (R.S.).
| |
Collapse
|
24
|
Pan F, You J, Liu Y, Qiu X, Yu W, Ma J, Pan L, Zhang A, Zhang Q. Differentially expressed microRNAs in the corpus cavernosum from a murine model with type 2 diabetes mellitus-associated erectile dysfunction. Mol Genet Genomics 2016; 291:2215-2224. [PMID: 27681254 DOI: 10.1007/s00438-016-1250-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 09/19/2016] [Indexed: 01/14/2023]
Abstract
To better understand the molecular aetiology of type 2 diabetes mellitus-associated erectile dysfunction (T2DMED) and to provide candidates for further study of its diagnosis and treatment, this study was designed to investigate differentially expressed microRNAs (miRNAs) in the corpus cavernosum (CC) of mice with T2DMED using GeneChip array techniques (Affymetrix miRNA 4.0 Array) and to predict target genes and signalling pathways regulated by these miRNAs based on bioinformatic analysis using TargetScan, the DAIAN web platform and DAVID. In the initial screening, 21 miRNAs appeared distinctly expressed in the T2DMED group (fold change ≥3, p ≤ 0.01). Among them, the differential expression of miR-18a, miR-206, miR-122, and miR-133 were confirmed by qRT-PCR (p < 0.05 and FDR <5 %). According to bioinformatic analysis, the four miRNAs were speculated to play potential roles in the mechanisms of T2DMED via regulating 28 different genes and several pathways, including apoptosis, fibrosis, eNOS/cGMP/PKG, and vascular smooth muscle contraction processes, which mainly focused on influencing the functions of the endothelium and smooth muscle in the CC. IGF-1, as one of the target genes, was verified to decrease in the CCs of T2DMED animals via ELISA and was confirmed as the target of miR-18a or miR-206 via luciferase assay. Finally, these four miRNAs deserve further confirmation as biomarkers of T2DMED in larger studies. Additionally, miR-18a and/or miR-206 may provide new preventive/therapeutic targets for ED management by targeting IGF-1.
Collapse
Affiliation(s)
- Feng Pan
- State Key Laboratory of Reproductive Medicine, Department of Andrology, Maternity Hospital Affiliated to Nanjing Medical University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Jinwei You
- State Key Laboratory of Reproductive Medicine, Department of Andrology, Maternity Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Department of Comparative Medicine, Jinling Hospital, School of Clinical Medicine, Nanjing University, Nanjing, China
| | - Yuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Xuefeng Qiu
- Department of Andrology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wen Yu
- Department of Andrology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jiehua Ma
- State Key Laboratory of Reproductive Medicine, Department of Andrology, Maternity Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lianjun Pan
- State Key Laboratory of Reproductive Medicine, Department of Andrology, Maternity Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Aixia Zhang
- State Key Laboratory of Reproductive Medicine, Department of Andrology, Maternity Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
25
|
Li J, Zhao Y, Lu Y, Ritchie W, Grau G, Vadas MA, Gamble JR. The Poly-cistronic miR-23-27-24 Complexes Target Endothelial Cell Junctions: Differential Functional and Molecular Effects of miR-23a and miR-23b. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e354. [PMID: 27741223 PMCID: PMC5023406 DOI: 10.1038/mtna.2016.62] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023]
Abstract
The regulation of function of endothelial cell-cell junctions is fundamental in sustaining vascular integrity. The polycistronic microRNA (miR) complexes containing miR-23a-27a-24-2, and 23b-27b-24-1 are predicted to target the majority of major endothelial junctional proteins. We focus on miR-23a and miR-23b, and investigate the functional effects of these miRs on junctions. While miR-23a and 23b only differ by 1 nucleotide (g19) outside the seed region and thus are predicted to have the same targets, they function differently with miR-23a inhibiting permeability and miR-23b inhibiting angiogenesis. Both miRs target the junctional attractive molecule (tight junction protein 2) ZO-2 and the repulsive molecule junctional adhesion molecule C (JAM-C), although the inhibition of JAM-C by miR-23a is more profound than by miR-23b. The difference in potency is attributable to differences at g19 since a mutation of the t17, the g19 binding site of miR-23b in the 3'UTR of JAM-C restores identity. We also show that the pattern of expression of miR-23a and miR-23b and their targets are different. Thus, the paralogues miR-23a and miR-23b can have profoundly different effects on endothelial cell function due at least partially to selective effects on target proteins and differences in expression patterns of the miRs. This work exposes a hitherto unappreciated complexity in therapeutically targeting miRs.
Collapse
Affiliation(s)
- Jia Li
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, University of Sydney, Sydney, Australia
| | - Yang Zhao
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, University of Sydney, Sydney, Australia
| | - Ying Lu
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, University of Sydney, Sydney, Australia
| | - William Ritchie
- Bioinformatics Laboratory, Centenary Institute, University of Sydney, Sydney, Australia
| | - Georges Grau
- Department of Pathology, Faculty of Medicine, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Mathew A Vadas
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, University of Sydney, Sydney, Australia
| | - Jennifer R Gamble
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
26
|
Andersson L, Scharin Täng M, Lundqvist A, Lindbom M, Mardani I, Fogelstrand P, Shahrouki P, Redfors B, Omerovic E, Levin M, Borén J, Levin MC. Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. Cardiovasc Res 2015; 107:478-86. [DOI: 10.1093/cvr/cvv186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/12/2015] [Indexed: 01/04/2023] Open
|
27
|
Kása A, Csortos C, Verin AD. Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury. Tissue Barriers 2015; 3:e974448. [PMID: 25838980 DOI: 10.4161/21688370.2014.974448] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/04/2014] [Indexed: 01/11/2023] Open
Abstract
Endothelial cells (EC) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. In acute lung injury (ALI) the EC barrier is weakened leading to increased vascular permeability. It is widely accepted that EC barrier integrity is critically dependent upon intact cytoskeletal structure and cell junctions. Edemagenic agonists, like thrombin or endotoxin lipopolysaccharide (LPS), induced cytoskeletal rearrangement, and EC contractile responses leading to disruption of intercellular contacts and EC permeability increase. The highly clinically-relevant cytoskeletal mechanisms of EC barrier dysfunction are currently under intense investigation and will be described and discussed in the current review.
Collapse
Key Words
- AJ, adherens junction
- ALI, Acute Lung Injury
- ARDS, Acute Respiratory Distress Syndrome
- CPI-17, PKC potentiated inhibitory protein of 17 kDa
- CaD, caldesmon
- EC, endothelial cells
- GJ, gap junction
- HSP-27, small heat shock actin-capping protein of 27 kDa
- IL, interleukin
- LPS, lipopolysaccharide
- MLC, myosin light chain
- MLCK, Ca2+/calmodulin (CaM) dependent MLC kinase
- MLCP, myosin light chain phosphatase
- MT, microtubules
- MYPT1, myosin phosphatase targeting subunit 1
- PKA, protein kinase A
- PKC, protein kinase C
- SM, smooth muscle
- TJ, tight junction
- TLR4, toll-like receptor 4
- TNFα, tumor necrosis factor α
- acute lung injury
- barrier function
- cytoskeleton
- endothelial junctions
- pulmonary endothelium
- thrombin
Collapse
Affiliation(s)
- Anita Kása
- Vascular Biology Center; Georgia Regents University ; Augusta, GA USA
| | - Csilla Csortos
- Department of Medical Chemistry; Faculty of Medicine; University of Debrecen ; Debrecen, Hungary
| | - Alexander D Verin
- Vascular Biology Center; Georgia Regents University ; Augusta, GA USA ; Division of Pulmonary; Medicine Medical College of Georgia; Georgia Regents University; Augusta, GA USA
| |
Collapse
|