1
|
Tang J, Ma M, Liu F, Yin X, Shi H, Li Q, Yang K, Yu M. miR-148a-3p mitigation of coronary artery disease through PCSK9/NF-κB inhibition of vascular endothelial cell injury. J Biochem Mol Toxicol 2024; 38:e70011. [PMID: 39400940 DOI: 10.1002/jbt.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/26/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Coronary artery disease (CAD) causes myocardial ischemia, narrowing or occlusion of the lumen. Although great progress has been made in the treatment of CAD, the existing treatment methods do not meet the clinical needs, so it is urgent to find new treatment methods. The aim of this study was to investigate the mechanism of action of miR-148a-3p in alleviating CAD by inhibiting vascular endothelial cell injury and to provide new ideas for the treatment of CAD. A cell model was constructed by lipopolysaccharide (LPS) induction of vascular endothelial cells, and a CAD rat model was established by a high-fat diet and intraperitoneal injection of posterior pituitary hormone. Relevant indices were detected by RT-qPCR, ELISA, Western blot, MTT, and flow cytometry. The results indicate that in LPS-induced vascular endothelial cell assays, miR-148a-3p inhibited the upregulation of PCSK9, thereby suppressing the NF-κB signaling pathway and promoting vascular endothelial cell proliferation. Overexpression of PCSK9 and the addition of NF-κB signaling pathway activator increased vascular endothelial cell apoptosis. In animal experiments, miR-148a-3p alleviated the symptoms of CAD rats, whereas overexpression of PCSK9 promoted apoptosis and increased atheromatous plaque area in CAD rats. In conclusion, miR-148a-3p inhibits the NF-κB signaling pathway through downregulation of PCSK9, thereby protecting vascular endothelial cells and alleviating CAD.
Collapse
Affiliation(s)
- Jiong Tang
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Menghuai Ma
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Fan Liu
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Xiaomei Yin
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Haotian Shi
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Qing Li
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Kai Yang
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Mengyue Yu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical Colleg, Beijing, China
| |
Collapse
|
2
|
Barbieri L, Tumminello G, Fichtner I, Corsini A, Santos RD, Carugo S, Ruscica M. PCSK9 and Coronary Artery Plaque-New Opportunity or Red Herring? Curr Atheroscler Rep 2024; 26:589-602. [PMID: 39150672 PMCID: PMC11393034 DOI: 10.1007/s11883-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW Although the clinical benefit of reducing low-density lipoprotein cholesterol (LDLc) in patients with coronary artery disease (CAD) is well-established, the impact on plaque composition and stability is less clear. Our narrative review aimed to assess the clinical effects of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors on coronary plaque characteristics specifically focusing from atheroma progression to regression and stabilization. RECENT FINDINGS The combination of statin therapy and PCSK9 inhibitors (evolocumab and alirocumab) promotes plaque stability in patients following an acute coronary syndrome. The GLAGOV study highlighted the relationship between achieved LDLc levels and changes in percentage atheroma volume. Similarly, the PACMAN-AMI study concluded that the qualitative and quantitative changes in coronary plaque were associated with the levels of LDLc. Assessing the severity of coronary artery stenosis and the extent of atherosclerotic burden by means of imaging techniques (e.g., IVUS, OCT and near-infrared spectroscopic) have significantly advanced our understanding of the benefits from promoting plaque regression and achieving to features of plaque stabilization through increasingly intensive lipid-lowering strategies.
Collapse
Affiliation(s)
- Lucia Barbieri
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriele Tumminello
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Isabella Fichtner
- Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Raul D Santos
- Heart Institute (InCor), Lipid Clinic, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
3
|
Cao Zhang AM, Ziogos E, Harb T, Gerstenblith G, Leucker TM. Emerging clinical role of proprotein convertase subtilisin/kexin type 9 inhibition-Part one: Pleiotropic pro-atherosclerotic effects of PCSK9. Eur J Clin Invest 2024; 54:e14273. [PMID: 38922860 DOI: 10.1111/eci.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily recognized for its role in lipid metabolism, but recent evidence suggests that it may have broader implications due to its diverse tissue expression. OBJECTIVE This review aims to explore the multifaceted functions of PCSK9, highlighting its pro-atherosclerotic effects, including its impact on circulating lipoprotein variables, non-low-density lipoprotein receptors, and various cell types involved in atherosclerotic plaque development. CONCLUSIONS PCSK9 exhibits diverse roles beyond lipid metabolism, potentially contributing to atherosclerosis through multiple pathways. Understanding these mechanisms could offer new insights into therapeutic strategies targeting PCSK9 for cardiovascular disease management.
Collapse
Affiliation(s)
- Alexander M Cao Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Efthymios Ziogos
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tarek Harb
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gary Gerstenblith
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thorsten M Leucker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Mullis DM, Padilla-Lopez A, Wang H, Zhu Y, Elde S, Bonham SA, Yajima S, Kocher ON, Krieger M, Woo YJ. Stromal cell-derived factor-1 alpha improves cardiac function in a novel diet-induced coronary atherosclerosis model, the SR-B1ΔCT/LDLR KO mouse. Atherosclerosis 2024; 395:117518. [PMID: 38627162 PMCID: PMC11254567 DOI: 10.1016/j.atherosclerosis.2024.117518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND AIMS There are a limited number of pharmacologic therapies for coronary artery disease, and few rodent models of occlusive coronary atherosclerosis and consequent myocardial infarction with which one can rapidly test new therapeutic approaches. Here, we characterize a novel, fertile, and easy-to-use HDL receptor (SR-B1)-based model of atherogenic diet-inducible, fatal coronary atherosclerosis, the SR-B1ΔCT/LDLR KO mouse. Additionally, we test intramyocardial injection of Stromal Cell-Derived Factor-1 alpha (SDF-1α), a potent angiogenic cytokine, as a possible therapy to rescue cardiac function in this mouse. METHODS SR-B1ΔCT/LDLR KO mice were fed the Paigen diet or standard chow diet, and we determined the effects of the diets on cardiac function, histology, and survival. After two weeks of feeding either the Paigen diet (n = 24) or standard chow diet (n = 20), the mice received an intramyocardial injection of either SDF-1α or phosphate buffered saline (PBS). Cardiac function and angiogenesis were assessed two weeks later. RESULTS When six-week-old mice were fed the Paigen diet, they began to die as early as 19 days later and 50% had died by 38 days. None of the mice maintained on the standard chow diet died by day 72. Hearts from mice on the Paigen diet showed evidence of cardiomegaly, myocardial infarction, and occlusive coronary artery disease. For the five mice that survived until day 28 that underwent an intramyocardial injection of PBS on day 15, the average ejection fraction (EF) decreased significantly from day 14 (the day before injection, 52.1 ± 4.3%) to day 28 (13 days after the injection, 30.6 ± 6.8%) (paired t-test, n = 5, p = 0.0008). Of the 11 mice fed the Paigen diet and injected with SDF-1α on day 15, 8 (72.7%) survived to day 28. The average EF for these 8 mice increased significantly from 48.2 ± 7.2% on day 14 to63.6 ± 6.9% on day 28 (Paired t-test, n = 8, p = 0.003). CONCLUSIONS This new mouse model and treatment with the promising angiogenic cytokine SDF-1α may lead to new therapeutic approaches for ischemic heart disease.
Collapse
MESH Headings
- Animals
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/genetics
- Disease Models, Animal
- Mice, Knockout
- Coronary Artery Disease
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Scavenger Receptors, Class B/genetics
- Male
- Neovascularization, Physiologic/drug effects
- Mice, Inbred C57BL
- Diet, Atherogenic
- Mice
- Ventricular Function, Left
- Myocardium/pathology
- Myocardium/metabolism
- Diet, High-Fat
Collapse
Affiliation(s)
- Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Spencer A Bonham
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Shin Yajima
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Olivier N Kocher
- Department of Pathology, Beth Israel Hospital, Harvard Medical School, Boston, MA, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, MA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Katsuki S, Jha PK, Aikawa E, Aikawa M. The role of proprotein convertase subtilisin/kexin 9 (PCSK9) in macrophage activation: a focus on its LDL receptor-independent mechanisms. Front Cardiovasc Med 2024; 11:1431398. [PMID: 39149582 PMCID: PMC11324467 DOI: 10.3389/fcvm.2024.1431398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Recent clinical trials demonstrated that proprotein convertase subtilisin/kexin 9 (PCSK9) inhibitors reduce cardiovascular events without affecting systemic inflammation in the patients with coronary artery disease, as determined by high sensitivity C-reactive protein (CRP) levels. However, its pro-inflammatory effects in cardiovascular disease in humans and experimental animals beyond the traditional cholesterol receptor-dependent lipid metabolism have also called attention of the scientific community. PCSK9 may target receptors associated with inflammation other than the low-density lipoprotein receptor (LDLR) and members of the LDLR family. Accumulating evidence suggests that PCSK9 promotes macrophage activation not only via lipid-dependent mechanisms, but also lipid-independent and LDLR-dependent or -independent mechanisms. In addition to dyslipidemia, PCSK9 may thus be a potential therapeutic target for various pro-inflammatory diseases.
Collapse
Affiliation(s)
- Shunsuke Katsuki
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine (MA), Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Zhang X, Yu W, Li Y, Wang A, Cao H, Fu Y. Drug development advances in human genetics-based targets. MedComm (Beijing) 2024; 5:e481. [PMID: 38344397 PMCID: PMC10857782 DOI: 10.1002/mco2.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
| | - Haiqiang Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
7
|
Zhou L, Zhang H, Wang S, Zhao H, Li Y, Han J, Zhang H, Li X, Qu Z. PCSK-9 inhibitors: a new direction for the future treatment of ischemic stroke. Front Pharmacol 2024; 14:1327185. [PMID: 38273837 PMCID: PMC10808616 DOI: 10.3389/fphar.2023.1327185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke, the most prevalent and serious manifestation of cerebrovascular disease, is the main cause of neurological problems that require hospitalization, resulting in disability and death worldwide. Currently, clinical practice focuses on the effective management of blood lipids as a crucial approach to preventing and treating ischemic stroke. In recent years, a great breakthrough in ischemic stroke treatment has been witnessed with the emergence and use of a novel lipid-lowering medication, Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitor. And its remarkable potential for reducing the occurrence of ischemic stroke is being acknowledged. This article aims to provide a comprehensive review, encompassing the association between PCSK9 and the heightened risk of ischemic stroke, the mechanisms, and the extensive evidence supporting the proven efficacy of PCSK9 inhibitors in clinical practice. Through this present study, we can gain deeper insights into the utilization and impact of PCSK9 inhibitors in treating ischemic stroke.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuyi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Hong Zhao
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongnan Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Juqian Han
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyuan Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengyi Qu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Jin M, Fang J, Wang JJ, Shao X, Xu SW, Liu PQ, Ye WC, Liu ZP. Regulation of toll-like receptor (TLR) signaling pathways in atherosclerosis: from mechanisms to targeted therapeutics. Acta Pharmacol Sin 2023; 44:2358-2375. [PMID: 37550526 PMCID: PMC10692204 DOI: 10.1038/s41401-023-01123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/04/2023] [Indexed: 08/09/2023] Open
Abstract
Atherosclerosis, one of the life-threatening cardiovascular diseases (CVDs), has been demonstrated to be a chronic inflammatory disease, and inflammatory and immune processes are involved in the origin and development of the disease. Toll-like receptors (TLRs), a class of pattern recognition receptors that trigger innate immune responses by identifying pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), regulate numerous acute and chronic inflammatory diseases. Recent studies reveal that TLRs have a vital role in the occurrence and development of atherosclerosis, including the initiation of endothelial dysfunction, interaction of various immune cells, and activation of a number of other inflammatory pathways. We herein summarize some other inflammatory signaling pathways, protein molecules, and cellular responses associated with TLRs, such as NLRP3, Nrf2, PCSK9, autophagy, pyroptosis and necroptosis, which are also involved in the development of AS. Targeting TLRs and their regulated inflammatory events could be a promising new strategy for the treatment of atherosclerotic CVDs. Novel drugs that exert therapeutic effects on AS through TLRs and their related pathways are increasingly being developed. In this article, we comprehensively review the current knowledge of TLR signaling pathways in atherosclerosis and actively seek potential therapeutic strategies using TLRs as a breakthrough point in the prevention and therapy of atherosclerosis.
Collapse
Affiliation(s)
- Mei Jin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jian Fang
- Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, 510800, China
| | - Jiao-Jiao Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Xin Shao
- Department of Food Science and Engineering, Jinan University, Guangzhou, 511436, China
| | - Suo-Wen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Pei-Qing Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| | - Zhi-Ping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| |
Collapse
|
9
|
Ye X, Wang S, Liu X, Wu Q, Lv Y, Lv Q, Li J, Li L, Yang Y. Effects of PCSK9 inhibitors on coronary microcirculation, inflammation and cardiac function in patients with CHD after PCI: a protocol for systematic review and meta-analysis. BMJ Open 2023; 13:e074067. [PMID: 37723117 PMCID: PMC10510950 DOI: 10.1136/bmjopen-2023-074067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023] Open
Abstract
INTRODUCTION Coronary heart disease (CHD) is one of the common cardiovascular diseases that seriously jeopardise human health, and endothelial inflammation and dyslipidaemia are the initiating links leading to its occurrence. Percutaneous coronary intervention (PCI) is one of the most effective surgical treatments for CHD with narrowed or blocked blood vessels, which can quickly unblock the blocked vessels and restore coronary blood supply. However, most patients may experience coronary microcirculation disorders (CMDs) and decreased cardiac function after PCI treatment, which directly affects the efficacy of PCI and the prognosis of patients. Preprotein converting enzyme subtilisin/Kexin 9 (PCSK9) inhibitors are novel pleiotropy lipid-lowering drug with dual anti-inflammation and lipid-lowering effects, and represent a new clinical pathway for rapid correction of dyslipidaemia. Therefore, we designed this protocol to systematically evaluate the effects of PCSK9 inhibitors on coronary microcirculation and cardiac function in patients with CHD after PCI, and to provide high-quality evidence-based evidence for the clinical application of PCSK9 inhibitors. METHODS AND ANALYSIS This protocol is reported strictly in accordance with the 2020 Preferred Reporting Items for Systematic Reviews and Meta-analyses Protocols Guidelines. We will search PubMed, EMBASE, Web of Science and three Chinese databases (CNKI, Wanfang and VIP database) according to preset search strategies, without language and publication data restrictions. We will work with manual retrieval to screen references that have been included in the literature. Google Scholar will be used to search for grey literature. The final included literature must meet the established inclusion criteria. Titles, abstracts and full text will be extracted independently by two reviewers, and disagreements will be resolved through discussion or the involvement of a third reviewer. Extracted data will be analysed using Review Manager V.5.3. The Cochrane Risk of Bias Tool will be used to evaluate the risk of bias. Publication bias will be assessed by funnel plots. Heterogeneity will be assessed by I2 test and subgroup analyses will be used to further investigate potential sources of heterogeneity. The quality of the literature will be assessed by GRADE score. This protocol will start in January 2026 and end in December 2030. ETHICS AND DISSEMINATION This study is a systematic review of published literature data and no special ethical approval was required. PROSPERO REGISTRATION NUMBER CRD42022346189.
Collapse
Affiliation(s)
- Xuejiao Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shihan Wang
- Department of Cardiology, China Academy of Traditional Chinese Medicine Guang'anmen Hospital, Beijing, China
| | | | - Qian Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Lv
- Shanghai Qianhe Technology Co LTD, Shanghai, China
| | - Qianyu Lv
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junjia Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanlan Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingtian Yang
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Zhang Y, Wang Z, Jia C, Yu W, Li X, Xia N, Nie H, Wikana LP, Chen M, Ni Y, Han S, Pu L. Blockade of Hepatocyte PCSK9 Ameliorates Hepatic Ischemia-Reperfusion Injury by Promoting Pink1-Parkin-Mediated Mitophagy. Cell Mol Gastroenterol Hepatol 2023; 17:149-169. [PMID: 37717824 PMCID: PMC10696400 DOI: 10.1016/j.jcmgh.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND & AIMS Hepatic ischemia-reperfusion injury is a significant complication of partial hepatic resection and liver transplantation, impacting the prognosis of patients undergoing liver surgery. The protein proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily synthesized by hepatocytes and has been implicated in myocardial ischemic diseases. However, the role of PCSK9 in hepatic ischemia-reperfusion injury remains unclear. This study aims to investigate the role and mechanism of PCSK9 in hepatic ischemia-reperfusion injury. METHODS We first examined the expression of PCSK9 in mouse warm ischemia-reperfusion models and AML12 cells subjected to hypoxia/reoxygenation. Subsequently, we explored the impact of PCSK9 on liver ischemia-reperfusion injury by assessing mitochondrial damage and the resulting inflammatory response. RESULTS Our findings reveal that PCSK9 is up-regulated in response to ischemia-reperfusion injury and exacerbates hepatic ischemia-reperfusion injury. Blocking PCSK9 can alleviate hepatocyte mitochondrial damage and the consequent inflammatory response mediated by ischemia-reperfusion. Mechanistically, this protective effect is dependent on mitophagy. CONCLUSIONS Inhibiting PCSK9 in hepatocytes attenuates the inflammatory responses triggered by reactive oxygen species and mitochondrial DNA by promoting PINK1-Parkin-mediated mitophagy. This, in turn, ameliorates hepatic ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yu Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Ziyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Chenyang Jia
- Department of Hepatopancreatobiliary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenjie Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xiangdong Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Nan Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Huiling Nie
- Affiliated Eye Hospital and Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Likalamu Pascalia Wikana
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Minhao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| |
Collapse
|
11
|
Yang J, Ma X, Niu D, Sun Y, Chai X, Deng Y, Wang J, Dong J. PCSK9 inhibitors suppress oxidative stress and inflammation in atherosclerotic development by promoting macrophage autophagy. Am J Transl Res 2023; 15:5129-5144. [PMID: 37692938 PMCID: PMC10492065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVES Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, a novel class of cholesterol-lowering drugs, can reduce atherosclerosis independent of systemic lipid changes. However, the mechanism by which PCSK9 inhibition protects against arteriosclerosis has not been fully elucidated. Recent evidence has demonstrated a correlation between PCSK9 inhibitors and oxidative stress, which accelerates atherosclerotic development. Moreover, an increasing number of studies have shown that autophagy protects the vasculature against atherosclerosis. Therefore, the aims of this study were to investigate the effect of PCSK9 inhibition on oxidative stress and autophagy in atherosclerosis and determine whether autophagy regulates PCSK9 inhibition-mediated oxidative stress and inflammation in macrophages. METHODS Male apolipoprotein E (ApoE)-/- mice were fed a high-fat diet (HFD) for 8 weeks and then received the PCSK9 inhibitor (evolocumab), vehicle, or evolocumab plus chloroquine (CQ) for another 8 weeks. ApoE-/- mice in the control group were fed a regular (i.e., non-high-fat) diet for 16 weeks. Additional in vitro experiments were performed in oxidized low-density lipoprotein (ox-LDL)-treated human acute monocytic leukemia cell line THP-1-derived macrophages to mimic the pathophysiologic process of atherosclerosis. RESULTS PCSK9 inhibitor treatment reduced oxidative stress, lipid deposition, and plaque lesion area and induced autophagy in HFD-fed ApoE-/- mice. Most importantly, the administration of chloroquine (CQ), an autophagy inhibitor, significantly reduced the beneficial effects of PCSK9-inhibitor treatment on oxidative stress, lipid accumulation, inflammation, and atherosclerotic lesions in HFD-fed ApoE-/- mice. The in vitro experiments further showed that the PCSK9 inhibitor enhanced autophagic flux in ox-LDL-treated THP-1-derived macrophages, as indicated by increases in the numbers of autophagosomes and autolysosomes. Moreover, the autophagy inhibitor CQ also reduced PCSK9 inhibition-mediated protection against oxidative stress, generation of reactive oxygen species (ROS) and inflammation in ox-LDL-treated THP-1-derived macrophages. CONCLUSIONS This study reveals a novel protective mechanism by which PCSK9 inhibition enhances autophagy and thereby reduces oxidative stress and inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Jinjing Yang
- Department of Cardiology, Shanxi Cardiovascular HospitalTaiyuan 030024, Shanxi, China
- Shanxi Cardiovascular InstituteTaiyuan 030024, Shanxi, China
| | - Xiurui Ma
- Department of Cardiology, Shanxi Cardiovascular HospitalTaiyuan 030024, Shanxi, China
- Shanxi Cardiovascular InstituteTaiyuan 030024, Shanxi, China
| | - Dan Niu
- Department of Pharmacology, Shanxi Provincial Drug Evaluation CenterTaiyuan 030000, Shanxi, China
| | - Yu Sun
- Department of Cardiology, Shanxi Cardiovascular HospitalTaiyuan 030024, Shanxi, China
- Shanxi Cardiovascular InstituteTaiyuan 030024, Shanxi, China
| | - Xiaohong Chai
- Department of Cardiology, Shanxi Cardiovascular HospitalTaiyuan 030024, Shanxi, China
- Shanxi Cardiovascular InstituteTaiyuan 030024, Shanxi, China
| | - Yongzhi Deng
- Department of Cardiology, Shanxi Cardiovascular HospitalTaiyuan 030024, Shanxi, China
- Department of Cardiovascular Surgery, Shanxi Cardiovascular HospitalTaiyuan 030024, Shanxi, China
| | - Jingping Wang
- Department of Cardiology, Shanxi Cardiovascular HospitalTaiyuan 030024, Shanxi, China
- Shanxi Cardiovascular InstituteTaiyuan 030024, Shanxi, China
| | - Jin Dong
- Department of Cardiology, Shanxi Cardiovascular HospitalTaiyuan 030024, Shanxi, China
- Shanxi Cardiovascular InstituteTaiyuan 030024, Shanxi, China
| |
Collapse
|
12
|
Di Stolfo G, Pacilli MA, Seripa D, De Luca G, Urbano M, Coli C, Gravina C, Greco A, Potenza DR, Salvatori MP, Schernthaner GH, Poredos P, Catalano M, Mastroianno S. Involvement of APOE in Incidence of Revascularization in Patients Affected by Peripheral Arterial Disease: A Prospective Study from Southern Italy. J Clin Med 2023; 12:5178. [PMID: 37629219 PMCID: PMC10455789 DOI: 10.3390/jcm12165178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Atherosclerosis is a complex multifactorial disease and apolipoprotein E (APOE) polymorphism has been associated with cardiovascular events. The APOE gene, located on chromosome 19q13.2, has an important role in lipid metabolism, in particular on circulating cholesterol levels, implying further pleiotropic effects; from its polymorphism are derived three alleles (ε2, ε3 and ε4), which induce different phenotypes, while its impact on carotid and femoral atherosclerosis is still controversial. OBJECTIVES The aim of the study is to investigate the relationship between APOE genotypes and peripheral revascularization in a cohort of patients affected by advanced peripheral arterial disease (PAD) at a prolonged follow-up. MATERIALS AND METHODS Some 332 patients (259 males and 73 females; mean age 70.86 ± 7.95 years) with severe PAD were enrolled in a longitudinal study, with a 90.75 ± 32.25 month follow-up, assessing major adverse cardiovascular events (MACE). RESULTS As compared with ε3/ε3, in ε4 patients we observed a significant higher incidence of carotid (13.2% vs. 5.6%; HR = 2.485, 95% CI 1.062-5.814; p = 0.036) and lower limb (11.8% vs. 4.3%; HR = 2.765, 95% CI 1.091-7.008; p = 0.032) revascularizations and, accordingly, a higher incidence of total peripheral revascularizations (13.5% vs. 9.5%; HR = 2.705, 95% CI 1.420-5.151; p = 0.002). HR remained statistically significant even when adjusted for classic cardiovascular risk factors. CONCLUSIONS In our observational study, we confirm that the ε4 allele is associated with higher total peripheral revascularization in patients with advanced atherosclerotic vascular disease at prolonged follow-up.
Collapse
Affiliation(s)
- Giuseppe Di Stolfo
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Michele Antonio Pacilli
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Davide Seripa
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievodella Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Giovanni De Luca
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Maria Urbano
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievodella Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Carlo Coli
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Carolina Gravina
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievodella Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Antonio Greco
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievodella Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Domenico Rosario Potenza
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Mauro Pellegrino Salvatori
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Gerit-Holger Schernthaner
- Division of Angiology, Department of Internal Medicine 2, Medical University of Vienna, 1090 Vienna, Austria
| | - Pavel Poredos
- Department of Vascular Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
| | - Mariella Catalano
- Research Center on Vascular Diseases and Angiology Unit, University of Milan, L. Sacco Hospital, 20157 Milan, Italy
| | - Sandra Mastroianno
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
13
|
Gogulamudi VR, Durrant JR, Adeyemo AO, Ho HM, Walker AE, Lesniewski LA. Advancing age increases the size and severity of spontaneous atheromas in mouse models of atherosclerosis. GeroScience 2023; 45:1913-1931. [PMID: 37086367 PMCID: PMC10400524 DOI: 10.1007/s11357-023-00776-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/17/2023] [Indexed: 04/23/2023] Open
Abstract
Using multiple mouse models, we explored the impact of aging on the size and severity of atherosclerotic lesions. In young, middle-aged and old apolipoprotein E knockout mice (ApoE-/-) fed an atherogenic diet (AD) for 3-8 weeks, plaque/atheroma formation in the descending aorta and aortic root, and atheroma development in the carotid in response to partial carotid ligation (PCL) were assessed. Total and LDL cholesterol, and triglycerides were higher in old compared to both other age groups, regardless of AD duration. Aortic plaque burden increased with AD duration in all ages. The size and plaque morphology grade of aortic root atheromas was higher with age; however, there was no effect of age on the size or severity of carotid atheromas after PCL. We additionally induced hyperlipidemia in young and old C57BL/6 mice by adeno-associated virus mediated upregulation of LDL receptor regulator, Pcsk9, and 5 weeks of AD. Despite lower cholesterol in old compared to young Pcsk9 mice, there was a greater size and severity of aortic root atheromas in old mice. However, like the ApoE-/- mice, there was no effect of age on size or severity of PCL-induced carotid artery atheromas in Pcsk9 mice. Together, these results suggest that aging increases the size and severity of spontaneous aortic atheromas.
Collapse
Affiliation(s)
- Venkateswara R Gogulamudi
- Internal Medicine-Geriatrics, University of Utah, Salt Lake City, UT, USA
- Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA
| | | | - Adelola O Adeyemo
- Internal Medicine-Geriatrics, University of Utah, Salt Lake City, UT, USA
- Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA
| | - Huynh Mi Ho
- Internal Medicine-Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Lisa A Lesniewski
- Internal Medicine-Geriatrics, University of Utah, Salt Lake City, UT, USA.
- Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA.
- Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Chen C, Chen W, Ding H, Zhang G, Xie K, Zhang T. Integrated Metabolomic and Transcriptomic Analysis Reveals Potential Gut-Liver Crosstalks in the Lipogenesis of Chicken. Animals (Basel) 2023; 13:ani13101659. [PMID: 37238090 DOI: 10.3390/ani13101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Growing evidence has shown the involvement of the gut-liver axis in lipogenesis and fat deposition. However, how the gut crosstalk with the liver and the potential role of gut-liver crosstalk in the lipogenesis of chicken remains largely unknown. In this study, to identify gut-liver crosstalks involved in regulating the lipogenesis of chicken, we first established an HFD-induced obese chicken model. Using this model, we detected the changes in the metabolic profiles of the cecum and liver in response to the HFD-induced excessive lipogenesis using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The changes in the gene expression profiles of the liver were examined by RNA sequencing. The potential gut-liver crosstalks were identified by the correlation analysis of key metabolites and genes. The results showed that a total of 113 and 73 differentially abundant metabolites (DAMs) between NFD and HFD groups were identified in the chicken cecum and liver, respectively. Eleven DAMs overlayed between the two comparisons, in which ten DAMs showed consistent abundance trends in the cecum and liver after HFD feeding, suggesting their potential as signaling molecules between the gut and liver. RNA sequencing identified 271 differentially expressed genes (DEGs) in the liver of chickens fed with NFD vs. HFD. Thirty-five DEGs were involved in the lipid metabolic process, which might be candidate genes regulating the lipogenesis of chicken. Correlation analysis indicated that 5-hydroxyisourate, alpha-linolenic acid, bovinic acid, linoleic acid, and trans-2-octenoic acid might be transported from gut to liver, and thereby up-regulate the expression of ACSS2, PCSK9, and CYP2C18 and down-regulate one or more genes of CDS1, ST8SIA6, LOC415787, MOGAT1, PLIN1, LOC423719, and EDN2 in the liver to enhance the lipogenesis of chicken. Moreover, taurocholic acid might be transported from the gut to the liver and contribute to HFD-induced lipogenesis by regulating the expression of ACACA, FASN, AACS, and LPL in the liver. Our findings contribute to a better understanding of gut-liver crosstalks and their potential roles in regulating chicken lipogenesis.
Collapse
Affiliation(s)
- Can Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Weilin Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hao Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Ma M, Hou C, Liu J. Effect of PCSK9 on atherosclerotic cardiovascular diseases and its mechanisms: Focus on immune regulation. Front Cardiovasc Med 2023; 10:1148486. [PMID: 36970356 PMCID: PMC10036592 DOI: 10.3389/fcvm.2023.1148486] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Atherosclerosis is a basic pathological characteristic of many cardiovascular diseases, and if not effectively treated, patients with such disease may progress to atherosclerotic cardiovascular diseases (ASCVDs) and even heart failure. The level of plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) is significantly higher in patients with ASCVDs than in the healthy population, suggesting that it may be a promising new target for the treatment of ASCVDs. PCSK9 produced by the liver and released into circulation inhibits the clearance of plasma low-density lipoprotein-cholesterol (LDL-C), mainly by downregulating the level of LDL-C receptor (LDLR) on the surface of hepatocytes, leading to upregulated LDL-C in plasma. Numerous studies have revealed that PCSK9 may cause poor prognosis of ASCVDs by activating the inflammatory response and promoting the process of thrombosis and cell death independent of its lipid-regulatory function, yet the underlying mechanisms still need to be further clarified. In patients with ASCVDs who are intolerant to statins or whose plasma LDL-C levels fail to descend to the target value after treatment with high-dose statins, PCSK9 inhibitors often improve their clinical outcomes. Here, we summarize the biological characteristics and functional mechanisms of PCSK9, highlighting its immunoregulatory function. We also discuss the effects of PCSK9 on common ASCVDs.
Collapse
Affiliation(s)
- Minglu Ma
- Department of Cardiology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China
| | - Chang Hou
- Department of Cardiology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China
| | - Jian Liu
- Department of Cardiology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China
- Correspondence: Jian Liu
| |
Collapse
|
16
|
Karpouzas GA, Papotti B, Ormseth SR, Palumbo M, Hernandez E, Marchi C, Zimetti F, Budoff MJ, Ronda N. Serum cholesterol loading capacity of macrophages is regulated by seropositivity and C-reactive protein in rheumatoid arthritis patients. Rheumatology (Oxford) 2023; 62:1254-1263. [PMID: 35809057 DOI: 10.1093/rheumatology/keac394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Excessive cholesterol accumulation in macrophages is the pivotal step underlying atherosclerotic plaque formation. We here explore factors in the serum of patients with RA, and mechanisms through which they interact with and influence cholesterol loading capacity (CLC) of macrophages. METHODS In a cross-sectional observational cohort of 104 patients with RA, CLC was measured as intracellular cholesterol content in human THP-1-derived macrophages after incubation with patient serum. Low-density lipoprotein (LDL) oxidation was measured in terms of oxidized phospholipids on apoB100-containing particles (oxPL-apoB100). Antibodies against oxidized LDL (anti-oxLDL), proprotein convertase subtilisin/Kexin type-9 (PCSK9) and high-sensitivity CRP were also quantified. All analyses adjusted for atherosclerotic cardiovascular disease (ASCVD) risk score, obesity, total LDL, statin use, age at diagnosis, and anti-oxLDL IgM. RESULTS OxPL-apoB100, anti-oxLDL IgG and PCSK9 were positively associated with CLC (all P < 0.020). OxPL-apoB100 directly influenced CLC only in dual RF- and ACPA-positive patients [unstandardized b (95% bootstrap CI)=2.08 (0.38, 3.79)]. An indirect effect of oxPL-apoB100 on CLC through anti-oxLDL IgG increased, along with level of CRP [index of moderated mediation = 0.55 (0.05-1.17)]. CRP also moderated yet another indirect effect of oxPL-apoB100 on CLC through upregulation of PCSK9, but only among dual-seropositive patients [conditional indirect effect = 0.64 (0.13-1.30)]. CONCLUSION Oxidized LDL can directly influence CLC in dual-seropositive RA patients. Two additional and independent pathways-via anti-oxLDL IgG and PCSK9-may mediate the effects of oxPL-apoB100 on CLC, depending on CRP and seropositivity status. If externally validated, these findings may have clinical implications for cardiovascular risk prevention.
Collapse
Affiliation(s)
- George A Karpouzas
- Division of Rheumatology, Harbor-UCLA Medical Center, The Lundquist Institute, Torrance, CA, USA
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Sarah R Ormseth
- Division of Rheumatology, Harbor-UCLA Medical Center, The Lundquist Institute, Torrance, CA, USA
| | | | - Elizabeth Hernandez
- Division of Rheumatology, Harbor-UCLA Medical Center, The Lundquist Institute, Torrance, CA, USA
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Matthew J Budoff
- Division of Cardiology, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA, USA
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
17
|
Poznyak AV, Sukhorukov VN, Eremin II, Nadelyaeva II, Gutyrchik NA, Orekhov AN. Proprotein Convertase Subtilisin/Kexin 9 as a Modifier of Lipid Metabolism in Atherosclerosis. Biomedicines 2023; 11:biomedicines11020503. [PMID: 36831039 PMCID: PMC9953442 DOI: 10.3390/biomedicines11020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Despite being the most common treatment strategy in the management of atherosclerosis and subsequent cardiovascular disease, classical statin therapy has certain disadvantages, including numerous side effects. In addition, a regimen with daily administration of the drug is hard to comply with. Thus, there is a need for modern and more efficient therapeutic strategies in CVD treatment. There is extensive evidence indicating that PCSK9 promotes atherogenesis through a variety of mechanisms. Thus, new treatment methods can be developed that prevent or alleviate atherosclerotic cardiovascular disease by targeting PCSK9. Comprehensive understanding of its atherogenic properties is a necessary precondition for the establishment of new therapeutic strategies. In this review, we will summarize the available data on the role of PCSK9 in the development and progression of atherosclerosis. In the last section, we will consider existing PCSK9 inhibitors.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Ilya I. Eremin
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia
| | - Irina I. Nadelyaeva
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia
| | - Nikita A. Gutyrchik
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia
| | - Alexander N. Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
18
|
Salazar J, Morillo V, Suárez MK, Castro A, Ramírez P, Rojas M, Añez R, D’Marco L, Chacín-González M, Bermudez V. Role of Gut Microbiome in Atherosclerosis: Molecular and Therapeutic Aspects. Curr Cardiol Rev 2023; 19:e020223213408. [PMID: 36733248 PMCID: PMC10494273 DOI: 10.2174/1573403x19666230202164524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis is one of the most relevant and prevalent cardiovascular diseases of our time. It is one of the pathological entities that increases the morbidity and mortality index in the adult population. Pathophysiological connections have been observed between atherosclerosis and the gut microbiome (GM), represented by a group of microorganisms that are present in the gut. These microorganisms are vital for metabolic homeostasis in humans. Recently, direct and indirect mechanisms through which GM can affect the development of atherosclerosis have been studied. This has led to research into the possible modulation of GM and metabolites as a new target in the prevention and treatment of atherosclerosis. The goal of this review is to analyze the physiopathological mechanisms linking GM and atherosclerosis that have been described so far. We also aim to summarize the recent studies that propose GM as a potential target in atherosclerosis management.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Valery Morillo
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María K Suárez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición. Hospital General Universitario Gregorio Marañón, Madrid, España
| | - Luis D’Marco
- Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain
| | | | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
19
|
Wang Y, Fang D, Yang Q, You J, Wang L, Wu J, Zeng M, Luo M. Interactions between PCSK9 and NLRP3 inflammasome signaling in atherosclerosis. Front Immunol 2023; 14:1126823. [PMID: 36911736 PMCID: PMC9992811 DOI: 10.3389/fimmu.2023.1126823] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Atherosclerosis is an early pathological basis of numerous cardiovascular events that result in death or disability. Recent studies have described PCSK9 as a novel target for the treatment of atherosclerosis; PCSK9 is capable of degrading LDLR on the surface of hepatocytes through the regulation of lipid metabolism, and it can function as a novel inflammatory modulator in atherosclerosis. Inflammasomes are important intracellular multiprotein complexes that promote the inflammatory response in atherosclerosis. Among inflammasomes, the NLRP3 inflammasome is particularly notable because of its important role in the development of atherosclerotic disease. After activation, NLRP3 forms a complex with ASC and pro-caspase-1, converting pro-caspase-1 into activated caspase-1, which may trigger the release of IL-1β and IL-18 and contribute to the inflammatory response. Several recent studies have indicated that there may be interactions between PCSK9 and the NLRP3 inflammasome, which may contribute to the inflammatory response that drives atherosclerosis development and progression. On the one hand, the NLRP3 inflammasome plays an important role via IL-1β in regulating PCSK9 secretion. On the other hand, PCSK9 regulates caspase-1-dependent pyroptosis by initiating mtDNA damage and activating NLRP3 inflammasome signaling. This paper reviews the mechanisms underlying PCSK9 and NLRP3 inflammasome activation in the context of atherosclerosis. Furthermore, we describe the current understanding of the specific molecular mechanism underlying the interactions between PCSK9 and NLRP3 inflammasome signaling as well as the drug repositioning events that influence vascular cells and exert beneficial antiatherosclerotic effects. This review may provide a new therapeutic direction for the effective prevention and treatment of atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Qinzhi Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jingcan You
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China.,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
20
|
Momtazi-Borojeni AA, Banach M, Ruscica M, Sahebkar A. The role of PCSK9 in NAFLD/NASH and therapeutic implications of PCSK9 inhibition. Expert Rev Clin Pharmacol 2022; 15:1199-1208. [PMID: 36193738 DOI: 10.1080/17512433.2022.2132229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION There are inconsistent findings regarding the effect of lipid-lowering agents on nonalcoholic fatty liver disease (NAFLD). Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) is an important player in cholesterol homeostasis and intracellular lipogenesis, and PCSK9 inhibitors (PCSK9-i) have been found to be efficient for pharmacological management of hyperlipidemia. AREAS COVERED Whether PCSK9 (itself) or PCSK9-i affects NAFLD is still disputed. To address this question, we review published preclinical and clinical studies providing evidence for the role of PCSK9 in and the effect of PCSK9-I on the development and pathogenesis of NAFLD. EXPERT OPINION The current evidence from a landscape of preclinical and clinical studies examining the role of PCSK9 in NAFLD shows controversial results. Preclinical studies indicate that PCSK9 associates with NAFLD and nonalcoholic steatohepatitis (NASH) progression in opposite directions. In humans, it has been concluded that the severity of hepatic steatosis affects the correlation between circulating PCSK9 and liver fat content in humans, with a possible impact of circulating PCSK9 in the early stages of NAFLD, but not in the late stages. However, data from clinical trials with PCSK9-i reassure to the safety of these agents, although real-life long-term evidence is needed.
Collapse
Affiliation(s)
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz (MUL), Lodz, Poland.,Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Liu C, Chen J, Chen H, Zhang T, He D, Luo Q, Chi J, Hong Z, Liao Y, Zhang S, Wu Q, Cen H, Chen G, Li J, Wang L. PCSK9 Inhibition: From Current Advances to Evolving Future. Cells 2022; 11:cells11192972. [PMID: 36230934 PMCID: PMC9562883 DOI: 10.3390/cells11192972] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine protease synthesized primarily by the liver. It mainly promotes the degradation of low-density lipoprotein receptor (LDL-R) by binding LDL-R, reducing low-density lipoprotein cholesterol (LDL-C) clearance. In addition to regulating LDL-R, PCSK9 inhibitors can also bind Toll-like receptors (TLRs), scavenger receptor B (SR-B/CD36), low-density lipoprotein receptor-related protein 1 (LRP1), apolipoprotein E receptor-2 (ApoER2) and very-low-density lipoprotein receptor (VLDL-R) reducing the lipoprotein concentration and slowing thrombosis. In addition to cardiovascular diseases, PCSK9 is also used in pancreatic cancer, sepsis, and Parkinson’s disease. Currently marketed PCSK9 inhibitors include alirocumab, evolocumab, and inclisiran, as well as small molecules, nucleic acid drugs, and vaccines under development. This review systematically summarized the application, preclinical studies, safety, mechanism of action, and latest research progress of PCSK9 inhibitors, aiming to provide ideas for the drug research and development and the clinical application of PCSK9 in cardiovascular diseases and expand its application in other diseases.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510080, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Correspondence: (C.L.); (L.W.)
| | - Jing Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Tong Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qiyuan Luo
- Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiaxin Chi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Zebin Hong
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Yizhong Liao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Shihui Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qizhe Wu
- Department of Neurosurgery, Institute of Neuroscience, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huan Cen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Guangzhong Chen
- Department of Neurosurgery, Institute of Neuroscience, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jinxin Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Correspondence: (C.L.); (L.W.)
| |
Collapse
|
22
|
Cimaglia P, Fortini F, Vieceli Dalla Sega F, Cardelli LS, Massafra RF, Morelli C, Trichilo M, Ferrari R, Rizzo P, Campo G. Relationship between PCSK9 and endothelial function in patients with acute myocardial infarction. Nutr Metab Cardiovasc Dis 2022; 32:2105-2111. [PMID: 35915019 DOI: 10.1016/j.numecd.2022.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS While the role of PCSK9 in lipid metabolism is well established, its link with endothelial function is less clear. The aim of the present study is to evaluate the relationship between PCSK9 and endothelial dysfunction in the setting of acute myocardial infarction. METHODS AND RESULTS To this purpose, we analyzed the serum of 74 patients with ST-elevation myocardial infarction (STEMI) at the time of admission and after 5 days. Endothelial dysfunction was evaluated as rate of apoptosis (AR) of human umbilical vein endothelial cells incubated with patients' serum. There was a good correlation between PCSK9 and the apoptosis rate values, both at baseline (r = 0.649) and 5-day (r = 0.648). In the 5 days after STEMI, PCSK9 increased significantly (242-327 ng/ml, p < 0.001), while AR did not (p = 0.491). Overall, 21 (28%) patients showed a reduction of PCSK9, and they had a significantly higher decrease of AR as compared to others (-13.87 vs 5.8%, p = 0.002). At the univariable analysis, the 5-day change of PCSK9 resulted to be the only variable associated with the 5-day change of the apoptosis rate (beta 0.217, 95%CI 0.091-0.344, p = 0.001). CONCLUSION The variation of endothelial function and PCKS9 in the first days after an acute myocardial infarction are related. Further validation and research are necessary to confirm our findings. CLINICAL TRIAL NCT02438085.
Collapse
Affiliation(s)
- Paolo Cimaglia
- Maria Cecilia Hospital, GVM Care and Research, via Corriera 1, 48033, Cotignola RA, Italy.
| | - Francesca Fortini
- Maria Cecilia Hospital, GVM Care and Research, via Corriera 1, 48033, Cotignola RA, Italy
| | | | - Laura Sofia Cardelli
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| | | | - Cristina Morelli
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| | - Michele Trichilo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| | - Roberto Ferrari
- Maria Cecilia Hospital, GVM Care and Research, via Corriera 1, 48033, Cotignola RA, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care and Research, via Corriera 1, 48033, Cotignola RA, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| |
Collapse
|
23
|
Durrington PN, Bashir B, Bhatnagar D, Soran H. Lipoprotein (a) in familial hypercholesterolaemia. Curr Opin Lipidol 2022; 33:257-263. [PMID: 35942820 DOI: 10.1097/mol.0000000000000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The role of lipoprotein (a) in atherogenesis has been the subject of argument for many years. Evidence that it is raised in familial hypercholesterolaemia has been disputed not least because a mechanism related to low density lipoprotein (LDL) receptor mediated catabolism has been lacking. Whether lipoprotein (a) increases the already raised atherosclerotic cardiovascular disease (ASCVD) risk in familial hypercholesterolaemia is also more dubious than is often stated. We review the evidence in an attempt to provide greater clarity. RECENT FINDINGS Lipoprotein (a) levels are raised as a consequence of inheriting familial hypercholesterolaemia. The mechanism for this is likely to involve increased hepatic production, probably mediated by PCSK9 augmented by apolipoprotein E. The extent to which raised lipoprotein (a) contributes to the increased ASCVD risk in familial hypercholesterolaemia remains controversial.Unlike, for example, statins which are effective across the whole spectrum of LDL concentrations, drugs in development to specifically lower lipoprotein (a) are likely to be most effective in people with the highest levels of lipoprotein (a). People with familial hypercholesterolaemia may therefore be in the vanguard of those in whom theses agents should be exhibited. SUMMARY Inheritance of familial hypercholesterolaemia undoubtedly increases the likelihood that lipoprotein (a) will be raised. However, in familial hypercholesterolaemia when ASCVD incidence is already greatly increased due to high LDL cholesterol, whether lipoprotein (a) contributes further to this risk cogently needs to be tested with drugs designed to specifically lower lipoprotein (a).
Collapse
Affiliation(s)
- Paul N Durrington
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester
| | - Bilal Bashir
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester
- Manchester National Institute for Health Research/Wellcome Trust Clinical Research Facility, Manchester
| | - Deepak Bhatnagar
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester
| | - Handrean Soran
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester
- Manchester National Institute for Health Research/Wellcome Trust Clinical Research Facility, Manchester
- Department of Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
24
|
Cuomo G, Cioffi G, Di Lorenzo A, Iannone FP, Cudemo G, Iannicelli AM, Pacileo M, D’Andrea A, Vigorito C, Iannuzzo G, Giallauria F. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors Use for Atherogenic Dyslipidemia in Solid Organ Transplant Patients. J Clin Med 2022; 11:jcm11113247. [PMID: 35683632 PMCID: PMC9180971 DOI: 10.3390/jcm11113247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
Dyslipidemia is a widespread risk factor in solid organ transplant patients, due to many reasons, such as the use of immunosuppressive drugs, with a consequent increase in cardiovascular diseases in this population. PCSK9 is an enzyme mainly known for its role in altering LDL levels, consequently increasing cardiovascular risk. Monoclonal antibody PCSK9 inhibitors demonstrated remarkable efficacy in the general population in reducing LDL cholesterol levels and preventing cardiovascular disease. In transplant patients, these drugs are still poorly used, despite having comparable efficacy to the general population and giving fewer drug interactions with immunosuppressants. Furthermore, there is enough evidence that PCSK9 also plays a role in other pathways, such as inflammation, which is particularly dangerous for graft survival. In this review, the current evidence on the function of PCSK9 and the use of its inhibitors will be discussed, particularly in transplant patients, in which they may provide additional benefits.
Collapse
Affiliation(s)
- Gianluigi Cuomo
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Giuseppe Cioffi
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Anna Di Lorenzo
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Francesca Paola Iannone
- Department of Clinical Medicine and Surgery, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (F.P.I.); (G.I.)
| | - Giuseppe Cudemo
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Anna Maria Iannicelli
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Mario Pacileo
- Unit of Cardiology and Intensive Care, Umberto I Hospital, 84014 Nocera Inferiore, Italy; (M.P.); (A.D.)
| | - Antonello D’Andrea
- Unit of Cardiology and Intensive Care, Umberto I Hospital, 84014 Nocera Inferiore, Italy; (M.P.); (A.D.)
| | - Carlo Vigorito
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (F.P.I.); (G.I.)
| | - Francesco Giallauria
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
- Correspondence:
| |
Collapse
|
25
|
Maligłówka M, Kosowski M, Hachuła M, Cyrnek M, Bułdak Ł, Basiak M, Bołdys A, Machnik G, Bułdak RJ, Okopień B. Insight into the Evolving Role of PCSK9. Metabolites 2022; 12:metabo12030256. [PMID: 35323699 PMCID: PMC8951079 DOI: 10.3390/metabo12030256] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is the last discovered member of the family of proprotein convertases (PCs), mainly synthetized in hepatic cells. This serine protease plays a pivotal role in the reduction of the number of low-density lipoprotein receptors (LDLRs) on the surface of hepatocytes, which leads to an increase in the level of cholesterol in the blood. This mechanism and the fact that gain of function (GOF) mutations in PCSK9 are responsible for causing familial hypercholesterolemia whereas loss-of-function (LOF) mutations are associated with hypocholesterolemia, prompted the invention of drugs that block PCSK9 action. The high efficiency of PCSK9 inhibitors (e.g., alirocumab, evolocumab) in decreasing cardiovascular risk, pleiotropic effects of other lipid-lowering drugs (e.g., statins) and the multifunctional character of other proprotein convertases, were the cause for proceeding studies on functions of PCSK9 beyond cholesterol metabolism. In this article, we summarize the current knowledge on the roles that PCSK9 plays in different tissues and perspectives for its clinical use.
Collapse
Affiliation(s)
- Mateusz Maligłówka
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
- Correspondence:
| | - Michał Kosowski
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Marcin Hachuła
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Marcin Cyrnek
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Rafał Jakub Bułdak
- Institute of Medical Sciences, University of Opole, 45-040 Opole, Poland;
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| |
Collapse
|
26
|
Wu NQ, Shi HW, Li JJ. Proprotein Convertase Subtilisin/Kexin Type 9 and Inflammation: An Updated Review. Front Cardiovasc Med 2022; 9:763516. [PMID: 35252378 PMCID: PMC8894439 DOI: 10.3389/fcvm.2022.763516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The function of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9), a novel plasma protein, has mainly been involved in cholesterol metabolism in the liver, while, more interestingly, recent data have shown that PCSK9 also took part in the modulation of inflammation, which appeared to be another explanation for the reduction of cardiovascular risk by PCSK9 inhibition besides its significant effect on lowering lower-density lipoprotein cholesterol (LDL-C) concentration. Overall, a series of previous studies suggested an association of PCSK9 with inflammation. Firstly, PCSK9 is able to induce the secretion of proinflammatory cytokines in macrophages and in other various tissues and elevated serum PCSK9 levels could be observed in pro-inflammatory conditions, such as sepsis, acute coronary syndrome (ACS). Secondly, detailed signaling pathway studies indicated that PCSK9 positively regulated toll-like receptor 4 expression and inflammatory cytokines expression followed by nuclear factor-kappa B (NF-kB) activation, together with apoptosis and autophagy progression. Besides, PCSK9 enhanced and interacted with scavenger receptors (SRs) of inflammatory mediators like lectin-like oxidized-LDL receptor-1 (LOX-1) to promote inflammatory response. Additionally, several studies also suggested that the role of PCSK9 in atherogenesis was intertwined with inflammation and the interacting effect shown between PCSK9 and LOX-1 was involved in the inflammatory response of atherosclerosis. Finally, emerging clinical trials indicated that PCSK9 inhibitors could reduce more events in patients with ACS accompanied by increased inflammatory status, which might be involved in its attenuating impact on arterial plaque. Hence, further understanding of the relationship between PCSK9 and inflammation would be necessary to help prevent and manage the atherosclerotic cardiovascular disease (ASCVD) clinically. This review article will update the recent advances in the link of PCSK9 with inflammation.
Collapse
|
27
|
PCSK9 Imperceptibly Affects Chemokine Receptor Expression In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms222313026. [PMID: 34884827 PMCID: PMC8657700 DOI: 10.3390/ijms222313026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Proprotein convertase subtilin/kexin type 9 (PCSK9) is a protease secreted mainly by hepatocytes and in lesser quantities by intestines, pancreas, and vascular cells. Over the years, this protease has gained importance in the field of cardiovascular biology due to its regulatory action on the low-density lipoprotein receptor (LDLR). However, recently, it has also been shown that PCSK9 acts independent of LDLR to cause vascular inflammation and increase the severity of several cardiovascular disorders. We hypothesized that PCSK9 affects the expression of chemokine receptors, major mediators of inflammation, to influence cardiovascular health. However, using overexpression of PCSK9 in murine models in vivo and PCSK9 stimulation of myeloid and vascular cells in vitro did not reveal influences of PCSK9 on the expression of certain chemokine receptors that are known to be involved in the development and progression of atherosclerosis and vascular inflammation. Hence, we conclude that the inflammatory effects of PCSK9 are not associated with the here investigated chemokine receptors and additional research is required to elucidate which mechanisms mediate PCSK9 effects independent of LDLR.
Collapse
|
28
|
Momtazi-Borojeni AA, Pirro M, Xu S, Sahebkar A. PCSK9 inhibition-based therapeutic approaches: an immunotherapy perspective. Curr Med Chem 2021; 29:980-999. [PMID: 34711156 DOI: 10.2174/0929867328666211027125245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (PCSK9-I) are novel therapeutic tools to decrease cardiovascular risk. These agents work by lowering the low-density lipoprotein cholesterol (LDL-C) in hypercholesterolemic patients who are statin resistant/intolerant. Current clinically approved and investigational PCSK9-I act generally by blocking PCSK9 activity in the plasma or suppressing its expression or secretion by hepatocytes. The most widely investigated method is the disruption of PCSK9/LDL receptor (LDLR) interaction by fully-humanized monoclonal antibodies (mAbs), evolocumab and alirocumab, which have been approved for the therapy of hypercholesterolemia and atherosclerotic cardiovascular disease (CVD). Besides, a small interfering RNA called inclisiran, which specifically suppresses PCSK9 expression in hepatocytes, is as effective as mAbs but with administration twice a year. Because of the high costs of such therapeutic approaches, several other PCSK9-I have been surveyed, including peptide-based anti-PCSK9 vaccines and small oral anti-PCSK9 molecules, which are under investigation in preclinical and phase I clinical studies. Interestingly, anti-PCSK9 vaccination has been found to serve as a more widely feasible and more cost-effective therapeutic tool over mAb PCSK9-I for managing hypercholesterolemia. The present review will discuss LDL-lowering and cardioprotective effects of PCSK9-I, mainly immunotherapy-based inhibitors including mAbs and vaccines, in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, 06129. Italy
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
29
|
Seidah NG. The PCSK9 discovery, an inactive protease with varied functions in hypercholesterolemia, viral infections, and cancer. J Lipid Res 2021; 62:100130. [PMID: 34606887 PMCID: PMC8551645 DOI: 10.1016/j.jlr.2021.100130] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/06/2023] Open
Abstract
In 2003, the sequences of mammalian proprotein convertase subtilisin/kexin type 9 (PCSK9) were reported. Radiolabeling pulse-chase analyses demonstrated that PCSK9 was synthesized as a precursor (proPCSK9) that undergoes autocatalytic cleavage in the endoplasmic reticulum into PCSK9, which is then secreted as an inactive enzyme in complex with its inhibitory prodomain. Its high mRNA expression in liver hepatocytes and its gene localization on chromosome 1p32, a third locus associated with familial hypercholesterolemia, other than LDLR or APOB, led us to identify three patient families expressing the PCSK9 variants S127R or F216L. Although Pcsk9 and Ldlr were downregulated in mice that were fed a cholesterol-rich diet, PCSK9 overexpression led to the degradation of the LDLR. This led to the demonstration that gain-of-function and loss-of-function variations in PCSK9 modulate its bioactivity, whereby PCSK9 binds the LDLR in a nonenzymatic fashion to induce its degradation in endosomes/lysosomes. PCSK9 was also shown to play major roles in targeting other receptors for degradation, thereby regulating various processes, including hypercholesterolemia and associated atherosclerosis, vascular inflammation, viral infections, and immune checkpoint regulation in cancer. Injectable PCSK9 monoclonal antibody or siRNA is currently used in clinics worldwide to treat hypercholesterolemia and could be combined with current therapies in cancer/metastasis. In this review, we present the critical information that led to the discovery of PCSK9 and its implication in LDL-C metabolism. We further analyze the underlying functional mechanism(s) in the regulation of LDL-C, as well as the evolving novel roles of PCSK9 in both health and disease states.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada.
| |
Collapse
|
30
|
Pott J, Gadin J, Theusch E, Kleber ME, Delgado GE, Kirsten H, Hauck SM, Burkhardt R, Scharnagl H, Krauss RM, Loeffler M, März W, Thiery J, Silveira A, Vant Hooft FM, Scholz M. Meta-GWAS of PCSK9 levels detects two novel loci at APOB and TM6SF2. Hum Mol Genet 2021; 31:999-1011. [PMID: 34590679 PMCID: PMC8947322 DOI: 10.1093/hmg/ddab279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key player in lipid metabolism, as it degrades low-density lipoprotein (LDL) receptors from hepatic cell membranes. So far, only variants of the PCSK9 gene locus were found to be associated with PCSK9 levels. Here we aimed to identify novel genetic loci that regulate PCSK9 levels and how they relate to other lipid traits. Additionally, we investigated to what extend the causal effect of PCSK9 on coronary artery disease (CAD) is mediated by low-density lipoprotein–cholesterol (LDL–C). Methods and Results We performed a genome-wide association study meta-analysis of PCSK9 levels in up to 12 721 samples of European ancestry. The estimated heritability was 10.3%, which increased to 12.6% using only samples from patients without statin treatment. We successfully replicated the known PCSK9 hit consisting of three independent signals. Interestingly, in a study of 300 African Americans, we confirmed the locus with a different PCSK9 variant. Beyond PCSK9, our meta-analysis detected three novel loci with genome-wide significance. Co-localization analysis with cis-eQTLs and lipid traits revealed biologically plausible candidate genes at two of them: APOB and TM6SF2. In a bivariate Mendelian Randomization analysis, we detected a strong effect of PCSK9 on LDL-C, but not vice versa. LDL-C mediated 63% of the total causal effect of PCSK9 on CAD. Conclusion Our study identified novel genetic loci with plausible candidate genes affecting PCSK9 levels. Ethnic heterogeneity was observed at the PCSK9 locus itself. Although the causal effect of PCSK9 on CAD is mainly mediated by LDL-C, an independent direct effect also occurs.
Collapse
Affiliation(s)
- Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jesper Gadin
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital Solna, Sweden
| | - Elizabeth Theusch
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core and Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ralph Burkhardt
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig.,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Ronald M Krauss
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA.,Department of Medicine, University of California San Francisco, Oakland, CA, USA
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,SYNLAB Academy, SYNALB Holding Deutschland GmbH, Mannheim, Germany
| | - Joachim Thiery
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig.,Faculty of Medicine, Kiel University, Kiel, Germany
| | - Angela Silveira
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital Solna, Sweden
| | - Ferdinand M Vant Hooft
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital Solna, Sweden
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
31
|
PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines 2021; 9:biomedicines9070793. [PMID: 34356856 PMCID: PMC8301306 DOI: 10.3390/biomedicines9070793] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is secreted mostly by hepatocytes and to a lesser extent by the intestine, pancreas, kidney, adipose tissue, and vascular cells. PCSK9 has been known to interact with the low-density lipoprotein receptor (LDLR) and chaperones the receptor to its degradation. In this manner, targeting PCSK9 is a novel attractive approach to reduce hyperlipidaemia and the risk for cardiovascular diseases. Recently, it has been recognised that the effects of PCSK9 in relation to cardiovascular complications are not only LDLR related, but that various LDLR-independent pathways and processes are also influenced. In this review, the various LDLR dependent and especially independent effects of PCSK9 on the cardiovascular system are discussed, followed by an overview of related PCSK9-polymorphisms and currently available and future therapeutic approaches to manipulate PCSK9 expression.
Collapse
|
32
|
Tam J, Thankam F, Agrawal DK, Radwan MM. Critical Role of LOX-1-PCSK9 Axis in the Pathogenesis of Atheroma Formation and Its Instability. Heart Lung Circ 2021; 30:1456-1466. [PMID: 34092505 DOI: 10.1016/j.hlc.2021.05.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is a major contributor to annual deaths globally. Atherosclerosis is a prominent risk factor for CVD. Although significant developments have been recently made in the prevention and treatment, the molecular pathology of atherosclerosis remains unknown. Interestingly, the recent discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) introduced a new avenue to explore the molecular pathogenesis and novel management strategies for atherosclerosis. Initial research focussed on the PCSK9-mediated degradation of low density lipoprotein receptor (LDLR) and subsequent activation of pro-inflammatory pathways by oxidised low density lipoprotein (ox-LDL). Recently, PCSK9 and lectin-like oxidised low-density lipoprotein receptor-1 (LOX-1) were shown to positively amplify each other pro-inflammatory activity and gene expression in endothelial cells, macrophages and vascular smooth muscle cells. In this literature review, we provide insight into the reciprocal relationship between PCSK9 and LOX-1 in the pathogenesis of atheroma formation and plaque instability in atherosclerosis. Further understanding of the LOX-1-PCSK9 axis possesses tremendous translational potential to design novel management approaches for atherosclerosis.
Collapse
Affiliation(s)
- Jonathan Tam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Finosh Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Mohamed M Radwan
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
33
|
Rogula S, Błażejowska E, Gąsecka A, Szarpak Ł, Jaguszewski MJ, Mazurek T, Filipiak KJ. Inclisiran-Silencing the Cholesterol, Speaking up the Prognosis. J Clin Med 2021; 10:2467. [PMID: 34199468 PMCID: PMC8199585 DOI: 10.3390/jcm10112467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
The reduction of circulating low-density lipoprotein-cholesterol (LDL-C) is a primary target in cardiovascular risk reduction due to its well-established benefits in terms of decreased mortality. Despite the use of statin therapy, 10%-20% of high- and very-high-risk patients do not reach their LDL-C targets. There is an urgent need for improved strategies to manage dyslipidemia, especially among patients with homozygous familial hypercholesterolemia, but also in patients with established cardiovascular disease who fail to achieve LDL goals despite combined statin, ezetimibe, and PCSK9 inhibitor (PCSK9i) therapy. Inclisiran is a disruptive, first-in-class small interfering RNA (siRNA)-based therapeutic developed for the treatment of hypercholesterolemia that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9) synthesis, thereby upregulating the number of LDL receptors on the hepatocytes, thus lowering the plasma LDL-C concentration. Inclisiran decreases the LDL-C levels by over 50% with one dose every 6 months, making it a simple and well-tolerated treatment strategy. In this review, we summarize the general information regarding (i) the role of LDL-C in atherosclerotic cardiovascular disease, (ii) data regarding the role of PCSK9 in cholesterol metabolism, (iii) pleiotropic effects of PCSK9, and (iv) the effects of PCSK9 silencing. In addition, we focus on inclisiran, in terms of its (i) mechanism of action, (ii) biological efficacy and safety, (iii) results from the ORION trials, (iv) benefits of its combination with statins, and (v) its potential future role in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Sylwester Rogula
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (S.R.); (E.B.); (T.M.); (K.J.F.)
| | - Ewelina Błażejowska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (S.R.); (E.B.); (T.M.); (K.J.F.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (S.R.); (E.B.); (T.M.); (K.J.F.)
| | - Łukasz Szarpak
- Maria Sklodowska-Curie Białystok Oncology Centre, Ogrodowa 12, 15-027 Białystok, Poland;
- Maria Sklodowska-Curie Medical Academy in Warsaw, Solidarności 12, 03-411 Warsaw, Poland
| | - Milosz J. Jaguszewski
- 1st Department of Cardiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (S.R.); (E.B.); (T.M.); (K.J.F.)
| | - Krzysztof J. Filipiak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (S.R.); (E.B.); (T.M.); (K.J.F.)
| |
Collapse
|
34
|
Maligłówka M, Bułdak Ł, Okopień B, Bołdys A. The consequences of PCSK9 inhibition in selected tissues. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is one of nine members of the proprotein
convertase family. These serine proteases play a pivotal role in the post-translational
modification of proteins and the activation of hormones, enzymes, transcription factors and
growth factors. As a result, they participate in many physiological processes like embryogenesis,
activity of central nervous system and lipid metabolism. Scientific studies show
that the family of convertases is also involved in the pathogenesis of viral and bacterial
infections, osteoporosis, hyperglycaemia, cardiovascular diseases, neurodegenerative disorders
and cancer. The inhibition of PCSK9 by two currently approved for use monoclonal
antibodies (alirocumab, evolocumab) slows down the degradation of low-density lipoprotein
cholesterol receptors (LDLRs). This leads to increased density of LDLRs on the surface
of hepatocytes, resulting in decreased level of low-density lipoprotein cholesterol (LDL-C)
in the bloodstream, which is connected with the reduction of cardiovascular risk. PCSK9 inhibitors (PCSK9i) were created for the patients who could not achieve appropriate level
of LDL-C using current statin and ezetimibe therapy. It seems that high therapeutic efficacy
of PCSK9i will make them more common in the clinical use. The pleiotropic effects
of previously mentioned lipid-lowering therapies were the reasons for literature review of
possible positive and negative effects of PCSK9 inhibition beyond cholesterol metabolism.
Collapse
Affiliation(s)
- Mateusz Maligłówka
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Łukasz Bułdak
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Bogusław Okopień
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Aleksandra Bołdys
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| |
Collapse
|
35
|
Barale C, Melchionda E, Morotti A, Russo I. PCSK9 Biology and Its Role in Atherothrombosis. Int J Mol Sci 2021; 22:ijms22115880. [PMID: 34070931 PMCID: PMC8198903 DOI: 10.3390/ijms22115880] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
It is now about 20 years since the first case of a gain-of-function mutation involving the as-yet-unknown actor in cholesterol homeostasis, proprotein convertase subtilisin/kexin type 9 (PCSK9), was described. It was soon clear that this protein would have been of huge scientific and clinical value as a therapeutic strategy for dyslipidemia and atherosclerosis-associated cardiovascular disease (CVD) management. Indeed, PCSK9 is a serine protease belonging to the proprotein convertase family, mainly produced by the liver, and essential for metabolism of LDL particles by inhibiting LDL receptor (LDLR) recirculation to the cell surface with the consequent upregulation of LDLR-dependent LDL-C levels. Beyond its effects on LDL metabolism, several studies revealed the existence of additional roles of PCSK9 in different stages of atherosclerosis, also for its ability to target other members of the LDLR family. PCSK9 from plasma and vascular cells can contribute to the development of atherosclerotic plaque and thrombosis by promoting platelet activation, leukocyte recruitment and clot formation, also through mechanisms not related to systemic lipid changes. These results further supported the value for the potential cardiovascular benefits of therapies based on PCSK9 inhibition. Actually, the passive immunization with anti-PCSK9 antibodies, evolocumab and alirocumab, is shown to be effective in dramatically reducing the LDL-C levels and attenuating CVD. While monoclonal antibodies sequester circulating PCSK9, inclisiran, a small interfering RNA, is a new drug that inhibits PCSK9 synthesis with the important advantage, compared with PCSK9 mAbs, to preserve its pharmacodynamic effects when administrated every 6 months. Here, we will focus on the major understandings related to PCSK9, from its discovery to its role in lipoprotein metabolism, involvement in atherothrombosis and a brief excursus on approved current therapies used to inhibit its action.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/therapeutic use
- Atherosclerosis/drug therapy
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Blood Platelets/drug effects
- Blood Platelets/enzymology
- Blood Platelets/pathology
- Cholesterol, LDL/antagonists & inhibitors
- Cholesterol, LDL/metabolism
- Dyslipidemias/drug therapy
- Dyslipidemias/enzymology
- Dyslipidemias/genetics
- Dyslipidemias/pathology
- Fibrinolytic Agents/therapeutic use
- Gene Expression Regulation
- Humans
- Hypolipidemic Agents/therapeutic use
- Lipid Metabolism/drug effects
- Lipid Metabolism/genetics
- PCSK9 Inhibitors
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/enzymology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Platelet Activation/drug effects
- Proprotein Convertase 9/biosynthesis
- Proprotein Convertase 9/genetics
- RNA, Small Interfering/therapeutic use
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction
- Thrombosis/enzymology
- Thrombosis/genetics
- Thrombosis/pathology
- Thrombosis/prevention & control
Collapse
|
36
|
Grimaudo S, Bartesaghi S, Rametta R, Marra F, Margherita Mancina R, Pihlajamäki J, Kakol-Palm D, Andréasson AC, Dongiovanni P, Ludovica Fracanzani A, Lori G, Männistö V, Pellegrini G, Bohlooly-Y M, Pennisi G, Maria Pipitone R, Spagnuolo R, Craxì A, Lindén D, Valenti L, Romeo S, Petta S. PCSK9 rs11591147 R46L loss-of-function variant protects against liver damage in individuals with NAFLD. Liver Int 2021; 41:321-332. [PMID: 33091218 DOI: 10.1111/liv.14711] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS The proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in cholesterol homeostasis, and its inhibition represents an effective therapy to lower low-density lipoprotein cholesterol (LDL-C) levels. In this study, we examined the impact of the PCSK9 rs11591147 loss-of-function (LOF) variant on liver damage in a multicenter collection of patients at risk of nonalcoholic steatohepatitis (NASH), in clinical samples and experimental models. METHODS We considered 1874 consecutive individuals at risk of NASH as determined by histology. The SNP rs11591147, encoding for the p.R46L variant of PCSK9, was genotyped by TaqMan assays. We also evaluated 1) PCSK9 mRNA hepatic expression in human liver, and 2) the impact of a NASH-inducing diet in mice with hepatic overexpression of human PCSK9. RESULTS Carriers of PCSK9 rs11591147 had lower circulating LDL-C levels and were protected against nonalcoholic fatty liver disease (NAFLD) (OR: 0.42; 95% CI: 0.22-0.81; P = .01), NASH (OR: 0.48; 95% CI: 0.26-0.87; P = .01) and more severe fibrosis (OR: 0.55; 95% CI: 0.32-0.94; P = .03) independently of clinical, metabolic and genetic confounding factors. PCSK9 hepatic expression was directly correlated with liver steatosis (P = .03). Finally, liver-specific overexpression of human PCSK9 in male mice drives NAFLD and fibrosis upon a dietary challenge. CONCLUSIONS In individuals at risk of NASH, PCSK9 was induced with hepatic fat accumulation and PCSK9 rs11591147 LOF variant was protective against liver steatosis, NASH and fibrosis, suggesting that PCSK9 inhibition may be a new therapeutic strategy to treat NASH.
Collapse
Affiliation(s)
- Stefania Grimaudo
- Sezione di Gastroenterologia e Epatologia, PROMISE, University of Palermo, Palermo, Italy
| | - Stefano Bartesaghi
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Raffaela Rametta
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy.,Research Center DENOTHE, University of Florence, Florence, Italy
| | - Rosellina Margherita Mancina
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Jussi Pihlajamäki
- Departments of Medicine and Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Dorota Kakol-Palm
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anne-Christine Andréasson
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism, R&D, AstraZeneca, Gothenburg, Sweden
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Departments of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giulia Lori
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy.,Research Center DENOTHE, University of Florence, Florence, Italy
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Giovanni Pellegrini
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Grazia Pennisi
- Sezione di Gastroenterologia e Epatologia, PROMISE, University of Palermo, Palermo, Italy
| | - Rosaria Maria Pipitone
- Sezione di Gastroenterologia e Epatologia, PROMISE, University of Palermo, Palermo, Italy
| | - Rocco Spagnuolo
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Antonio Craxì
- Sezione di Gastroenterologia e Epatologia, PROMISE, University of Palermo, Palermo, Italy
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, and Translational Medicine, Fondazione IRCCS Ca' Granda Pad Marangoni, Milan, Italy
| | - Stefano Romeo
- Research Center DENOTHE, University of Florence, Florence, Italy.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden.,Clinical Nutrition Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, Italy
| | - Salvatore Petta
- Sezione di Gastroenterologia e Epatologia, PROMISE, University of Palermo, Palermo, Italy
| |
Collapse
|
37
|
Ding Z, Pothineni NVK, Goel A, Lüscher TF, Mehta JL. PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc Res 2020; 116:908-915. [PMID: 31746997 DOI: 10.1093/cvr/cvz313] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/06/2019] [Accepted: 11/16/2019] [Indexed: 12/11/2022] Open
Abstract
PCSK9 degrades low-density lipoprotein cholesterol (LDL) receptors and subsequently increases serum LDL cholesterol. Clinical trials show that inhibition of PCSK9 efficiently lowers LDL cholesterol levels and reduces cardiovascular events. PCSK9 inhibitors also reduce the extent of atherosclerosis. Recent studies show that PCSK9 is secreted by vascular endothelial cells, smooth muscle cells, and macrophages. PCSK9 induces secretion of pro-inflammatory cytokines in macrophages, liver cells, and in a variety of tissues. PCSK9 regulates toll-like receptor 4 expression and NF-κB activation as well as development of apoptosis and autophagy. PCSK9 also interacts with oxidized-LDL receptor-1 (LOX-1) in a mutually facilitative fashion. These observations suggest that PCSK9 is inter-twined with inflammation with implications in atherosclerosis and its major consequence-myocardial ischaemia. This relationship provides a basis for the use of PCSK9 inhibitors in prevention of atherosclerosis and related clinical events.
Collapse
Affiliation(s)
- Zufeng Ding
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Naga Venkata K Pothineni
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Akshay Goel
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Jawahar L Mehta
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
38
|
Yurtseven E, Ural D, Baysal K, Tokgözoğlu L. An Update on the Role of PCSK9 in Atherosclerosis. J Atheroscler Thromb 2020; 27:909-918. [PMID: 32713931 PMCID: PMC7508721 DOI: 10.5551/jat.55400] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is initiated by functional changes in the endothelium accompanied by accumulation, oxidation, and glycation of LDL-cholesterol in the inner layer of the arterial wall and continues with the expression of adhesion molecules and release of chemoattractants. PCSK9 is a proprotein convertase that increases circulating LDL levels by directing hepatic LDL receptors into lysosomes for degradation. The effects of PCSK9 on hepatic LDL receptors and contribution to atherosclerosis via the induction of hyperlipidemia are well defined. Monoclonal PCSK9 antibodies that block the effects of PCSK9 on LDL receptors demonstrated beneficial results in cardiovascular outcome trials. In recent years, extrahepatic functions of PCSK9, particularly its direct effects on atherosclerotic plaques have received increasing attention. Experimental trials have revealed that PCSK9 plays a significant role in every step of atherosclerotic plaque formation. It contributes to foam cell formation by increasing the uptake of LDL by macrophages via scavenger receptors and inhibiting cholesterol efflux from macrophages. It induces the expression of inflammatory cytokines, adhesion molecules, and chemoattractants, thereby increasing monocyte recruitment, inflammatory cell adhesion, and inflammation at the atherosclerotic vascular wall. Moreover, low shear stress is associated with increased PCSK9 expression. PCSK9 may induce endothelial cell apoptosis and autophagy and stimulate the differentiation of smooth muscle cells from the contractile phenotype to synthetic phenotype. Increasing evidence indicates that PCSK9 is a molecular target in the development of novel approaches toward the prevention and treatment of atherosclerosis. This review focuses on the molecular roles of PCSK9 in atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Ece Yurtseven
- Department of Cardiology, Koc University School of Medicine, Istanbul, Turkey
| | - Dilek Ural
- Department of Cardiology, Koc University School of Medicine, Istanbul, Turkey
| | - Kemal Baysal
- Department of Biochemistry and Research Center for Translational Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
39
|
Emma MR, Giannitrapani L, Cabibi D, Porcasi R, Pantuso G, Augello G, Giglio RV, Re NL, Capitano AR, Montalto G, Soresi M, Cervello M. Hepatic and circulating levels of PCSK9 in morbidly obese patients: Relation with severity of liver steatosis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158792. [PMID: 32777481 DOI: 10.1016/j.bbalip.2020.158792] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the main cause of liver disease in Western countries, especially in morbidly obese patients (MOPs). The proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recently studied because of its possible involvement in the pathogenesis of NAFLD, but its role, at least in MOPs, is still controversial. The aim of this study was to clarify the correlation between the circulating levels of the PCSK9 protein (cPCSK9) and its hepatic expression with the severity of liver damage in a population of MOPs with NAFLD undergoing bariatric surgery. PCSK9 mRNA was positively correlated with FASN, PPARγ and PPARα mRNAs, while no significant differences were found in PCSK9 mRNA expression in relation to the severity of liver steatosis, lobular inflammation and hepatocellular ballooning. In addition, hepatic PCSK9 protein expression levels were not related to histological parameters of lobular inflammation and hepatocyte ballooning, decreased significantly only in relation to the severity of hepatic steatosis, and were inversely correlated with ALT and AST serum levels. cPCSK9 levels in the whole population were associated with the severity of hepatic steatosis and were positively correlated to total cholesterol levels. In multivariate analysis, cPCSK9 levels were associated with age, total cholesterol and HbA1c. In conclusion, in MOPs our findings support a role for PCSK9 in liver fat accumulation, but not in liver damage progression, and confirm its role in the increase of blood cholesterol, which ultimately may contribute to increased cardiovascular risk in this population.
Collapse
Affiliation(s)
- Maria R Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy; Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Daniela Cabibi
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Rossana Porcasi
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Gianni Pantuso
- Department of Surgical, Oncological and Oral Sciences, Division of General and Oncological Surgery, University of Palermo, Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Rosaria V Giglio
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Noemi Lo Re
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Adele R Capitano
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy; Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maurizio Soresi
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy.
| |
Collapse
|
40
|
Kuo WC, Stevens JM, Ersig AL, Johnson HM, Tung TH, Bratzke LC. Does 24-h Activity Cycle Influence Plasma PCSK9 Concentration? A Systematic Review and Meta-Analysis. Curr Atheroscler Rep 2020; 22:30. [DOI: 10.1007/s11883-020-00843-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
42
|
Tang Y, Li SL, Hu JH, Sun KJ, Liu LL, Xu DY. Research progress on alternative non-classical mechanisms of PCSK9 in atherosclerosis in patients with and without diabetes. Cardiovasc Diabetol 2020; 19:33. [PMID: 32169071 PMCID: PMC7071562 DOI: 10.1186/s12933-020-01009-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
The proprotein convertase subtilisin/kexin type 9 (PCSK9) acts via a canonical pathway to regulate circulating low-density lipoprotein-cholesterol (LDL-C) via degradation of the LDL receptor (LDLR) on the liver cell surface. Published research has shown that PCSK9 is involved in atherosclerosis via a variety of non-classical mechanisms that involve lysosomal, inflammatory, apoptotic, mitochondrial, and immune pathways. In this review paper, we summarized these additional mechanisms and described how anti-PCSK9 therapy exerts effects through these mechanisms. These additional pathways further illustrate the regulatory role of PCSK9 in atherosclerosis and offer an in-depth interpretation of how the PCSK9 inhibitor exerts effects on the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ying Tang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Sheng-Lan Li
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Jia-Hui Hu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Kai-Jun Sun
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Lei-Ling Liu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Dan-Yan Xu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
43
|
Paquette M, Gauthier D, Chamberland A, Prat A, De Lucia Rolfe E, Rasmussen JJ, Kaduka L, Seidah NG, Bernard S, Christensen DL, Baass A. Circulating PCSK9 is associated with liver biomarkers and hepatic steatosis. Clin Biochem 2020; 77:20-25. [PMID: 31972148 PMCID: PMC7614815 DOI: 10.1016/j.clinbiochem.2020.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/02/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND In parallel to the increasing prevalence of metabolic syndrome, the prevalence of hepatic steatosis has also increased dramatically worldwide. Hepatic steatosis is a major risk factor of hepatic cirrhosis, cardiovascular disease and type 2 diabetes. Circulating levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) have been positively associated with the metabolic syndrome. However, the association between PCSK9 and the liver function is still controversial. OBJECTIVE The objective of this study is to investigate the association between circulating PCSK9 levels and the presence of hepatic steatosis, as well as with liver biomarkers in a cohort of healthy individuals. METHODS Total PCSK9 levels were measured by an in-house ELISA using a polyclonal antibody. Plasma albumin, alkaline phosphatase, ALT, AST, total bilirubin and GGT were measured in 698 individuals using the COBAS system. The presence of hepatic steatosis was assessed using ultrasound liver scans. RESULTS In a multiple regression model adjusted for age, sex, insulin resistance, body mass index and alcohol use, circulating PCSK9 level was positively associated with albumin (β = 0.102, P = 0.008), alkaline phosphatase (β = 0.201, P < 0.0001), ALT (β = 0.238, P < 0.0001), AST (β = 0.120, P = 0.003) and GGT (β = 0.103, P = 0.007) and negatively associated with total bilirubin (β = -0.150, P < 0.0001). Tertile of circulating PCSK9 was also associated with hepatic steatosis (OR 1.48, 95% CI 1.05-2.08, P = 0.02). CONCLUSION Our data suggest a strong association between PCSK9 and liver biomarkers as well as hepatic steatosis. Further studies are needed to explore the role of PCSK9 on hepatic function.
Collapse
Affiliation(s)
- Martine Paquette
- Lipids, Nutrition and Cardiovascular Prevention Clinic of the Montreal Clinical Research Institute, Montreal, Canada
| | - Dany Gauthier
- Lipids, Nutrition and Cardiovascular Prevention Clinic of the Montreal Clinical Research Institute, Montreal, Canada
| | - Ann Chamberland
- Laboratory of Biochemical Neuroendocrinology of the Montreal Clinical Research Institute, Montreal, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology of the Montreal Clinical Research Institute, Montreal, Canada
| | - Emanuella De Lucia Rolfe
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jon J Rasmussen
- Centre of Endocrinology and Metabolism, Department of Internal Medicine, Copenhagen University Hospitals, Herlev and Gentofte, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Lydia Kaduka
- Centre for Public Health Research, KEMRI, Nairobi, Kenya
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology of the Montreal Clinical Research Institute, Montreal, Canada
| | - Sophie Bernard
- Lipids, Nutrition and Cardiovascular Prevention Clinic of the Montreal Clinical Research Institute, Montreal, Canada; Department of Medicine, Division of Endocrinology, Université de Montreal, Montreal, Canada
| | - Dirk L Christensen
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Alexis Baass
- Lipids, Nutrition and Cardiovascular Prevention Clinic of the Montreal Clinical Research Institute, Montreal, Canada; Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Montreal, Canada.
| |
Collapse
|
44
|
A small-molecule inhibitor of PCSK9 transcription ameliorates atherosclerosis through the modulation of FoxO1/3 and HNF1α. EBioMedicine 2020; 52:102650. [PMID: 32058941 PMCID: PMC7026728 DOI: 10.1016/j.ebiom.2020.102650] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/26/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that down-regulates hepatic low-density lipoprotein receptor (LDLR) by binding and shuttling LDLR to lysosomes for degradation. The development of therapy that inhibits PCSK9 has attracted considerable attention for the management of cardiovascular disease risk. However, only monoclonal antibodies of PCSK9 have reached the clinic use. Oral administration of small-molecule transcriptional inhibitors has the potential to become a therapeutic option. Methods Here, we developed a cell-based small molecule screening platform to identify transcriptional inhibitors of PCSK9. Through high-throughput screening and a series of evaluation, we found several active compounds. After detailed investigation on the pharmacological effect and molecular mechanistic characterization, 7030B-C5 was identified as a potential small-molecule PCSK9 inhibitor. Findings Our data showed that 7030B-C5 down-regulated PCSK9 expression and increased the total cellular LDLR protein and its mediated LDL-C uptake by HepG2 cells. In both C57BL/6 J and ApoE KO mice, oral administration of 7030B-C5 reduced hepatic and plasma PCSK9 level and increased hepatic LDLR expression. Most importantly, 7030B-C5 inhibited lesions in en face aortas and aortic root in ApoE KO mice with a slight amelioration of lipid profiles. We further provide evidences suggesting that transcriptional regulation of PCSK9 by 7030B-C5 mostly depend on the transcriptional factor HNF1α and FoxO3. Furthermore, FoxO1 was found to play an important role in 7030B-C5 mediated integration of hepatic glucose and lipid metabolism. Interpretation 7030B-C5 with potential suppressive effect of PCSK9 expression may serve as a promising lead compound for drug development of cholesterol/glucose homeostasis and cardiovascular disease therapy. Fund This work was supported by grants from the National Natural Science Foundation of China (81473214, 81402929, and 81621064), the Drug Innovation Major Project of China (2018ZX09711001-003-006, 2018ZX09711001-007 and 2018ZX09735001-002), CAMS Innovation Fund for Medical Sciences (2016-I2M-2-002, 2016-I2M-1-011 and 2017-I2M-1-008), Beijing Natural Science Foundation (7162129).
Collapse
|
45
|
Lee GE, Kim J, Lee JS, Ko J, Lee EJ, Yoon JS. Role of Proprotein Convertase Subtilisin/Kexin Type 9 in the Pathogenesis of Graves' Orbitopathy in Orbital Fibroblasts. Front Endocrinol (Lausanne) 2020; 11:607144. [PMID: 33488522 PMCID: PMC7821242 DOI: 10.3389/fendo.2020.607144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The proprotein convertase subtilisin/kexin type 9 (PCSK9) has been implicated in the pathogenesis of inflammatory diseases. We sought to investigate the role of PCSK9 in the pathogenesis of Graves' orbitopathy (GO) and whether it may be a legitimate target for treatment. METHODS The PCSK9 was compared between GO (n=11) and normal subjects (n=7) in orbital tissue explants using quantitative real-time PCR, and in cultured interleukin-1β (IL-1β)-treated fibroblasts using western blot. Western blot was used to identify the effects of PCSK9 inhibition on IL-1β-induced pro-inflammatory cytokines production and signaling molecules expression as well as levels of adipogenic markers and oxidative stress-related proteins. Adipogenic differentiation was identified using Oil Red O staining. The plasma PCSK9 concentrations were compared between patients with GO (n=44) and healthy subjects (n=26) by ELISA. RESULTS The PCSK9 transcript level was higher in GO tissues. The depletion of PCSK9 blunted IL-1β-induced expression of intercellular adhesion molecule 1 (ICAM-1), IL-6, IL-8, and cyclooxygenase-2 (COX-2) in GO and non-GO fibroblasts. The levels of activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and phosphorylated forms of Akt and p38 were diminished when PCSK9 was suppressed in GO fibroblasts. Decreases in lipid droplets and attenuated levels of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein β (C/EBPβ), and leptin as well as hypoxia-inducible factor 1α (HIF-1α), manganese superoxide dismutase (MnSOD), thioredoxin (Trx), and heme oxygenase-1 (HO-1) were noted when PCSK9 was suppressed during adipocyte differentiation. The plasma PCSK9 level was significantly higher in GO patients and correlated with level of thyrotropin binding inhibitory immunoglobulin (TBII) and the clinical activity score (CAS). CONCLUSIONS PCSK9 plays a significant role in GO. The PCSK9 inhibition attenuated the pro-inflammatory cytokines production, oxidative stress, and fibroblast differentiation into adipocytes. PCSK9 may serve as a therapeutic target and biomarker for GO.
Collapse
Affiliation(s)
- Ga Eun Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Jinjoo Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihei Sara Lee
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jin Sook Yoon,
| |
Collapse
|
46
|
Impact of proprotein convertase subtilisin/kexin type 9 inhibition with evolocumab on the postprandial responses of triglyceride-rich lipoproteins in type II diabetic subjects. J Clin Lipidol 2019; 14:77-87. [PMID: 31917184 DOI: 10.1016/j.jacl.2019.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Monoclonal antibodies to proprotein convertase subtilisin/kexin type 9 (PCSK9) significantly lower the levels of low-density lipoprotein and very-low-density lipoproteins (VLDL), but their effect on postprandial lipoprotein metabolism in dyslipidemic subjects is unclear. OBJECTIVE This study aimed to investigate the effects of evolocumab on postprandial lipid responses, ectopic fat depots, whole-body cholesterol synthesis, hepatic lipogenesis, and fat oxidation in patients with type II diabetes. METHODS The trial was a single-phase, nonrandomized study of 12-week treatment with evolocumab 140 mg subcutaneously every 2 weeks in 15 patients with type II diabetes on background statin therapy. Cardiometabolic responses to a high-fat mixed meal were assessed before and at the end of the intervention period. RESULTS Evolocumab treatment reduced significantly postprandial rises in plasma total triglyceride (by 21%; P < .0001) and VLDL1 triglyceride (by 15%; P = .018), but the increase in chylomicron triglyceride after the meal was not significantly perturbed (P = .053). There were reduced postprandial responses in plasma total apolipoprotein C-III (by 14%; P < .0001) and apolipoprotein B-48 concentration (by 17%; P = .0046) and in "remnant-like particles" cholesterol (by 29%; P < .0001) on the PCSK9 inhibitor. Treatment reduced the steady-state (ie, fasting and postprandial) concentrations of VLDL2 cholesterol by 50% (P < .0001) and VLDL2 triglyceride by 29% (P < .0001), in addition to the 78% reduction of low-density lipoprotein cholesterol (P < .001). The changes in apolipoprotein C-III associated significantly with reduction in postprandial responses of remnant-like particles cholesterol and triglyceride-rich lipoprotein cholesterol. Evolocumab therapy did not influence liver fat accumulation, hepatic de novo lipogenesis, or fasting β-hydroxybutyrate but did increase total body cholesterol synthesis (P < .01). CONCLUSION Evolocumab treatment improved postprandial responses of triglyceride-rich lipoproteins and measures of cholesterol-enriched remnant particles in type II diabetic subjects. These results indicate that postprandial phenomena need to be taken into account in assessing the full range of actions of PCSK9 inhibitors in dyslipidemic individuals.
Collapse
|
47
|
Abstract
Loss-of-function variants in PCSK9 (proprotein convertase subtilisin-kexin type 9) are associated with lower lifetime risk of atherosclerotic cardiovascular disease) events. Confirmation of these genetic observations in large, prospective clinical trials in participants with atherosclerotic cardiovascular disease has provided guidance on risk stratification and enhanced our knowledge on hitherto unresolved and contentious issues concerning the efficacy and safety of markedly lowering LDL-C (low-density lipoprotein cholesterol). PCSK9 has a broad repertoire of molecular effects. Furthermore, clinical trials with PCSK9 inhibitors demonstrate that reductions in atherosclerotic cardiovascular disease events are more effective in patients with recent myocardial infarction, multiple myocardial infarctions, multivessel coronary artery disease, and lower extremity arterial disease. The potent LDL-C lowering efficacy of PCSK9 inhibitors provides the opportunity for more aggressive LDL-lowering strategies in high-risk patients with atherosclerotic cardiovascular disease and supports the notion that there is no lower limit for LDL-C. Aggressive LDL-C lowering with fully human PCSK9 monoclonal antibodies has been associated by a safety profile superior to that of other classes of LDL-lowering agents. These clinical trials provide evidence that LDL lowering with PCSK9 inhibitors is an effective therapy for lowering cardiovascular events in high-risk patients with LDL-C levels ≥70 mg/dL on maximally tolerated oral therapies, including statins and ezetimibe.
Collapse
Affiliation(s)
- Robert S Rosenson
- From the Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY (R.S.R.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (W.K.).,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (W.K.).,Institute of Epidemiology and Biostatistics, University of Ulm, Germany (W.K.)
| |
Collapse
|
48
|
Han Z, Guan Y, Liu B, Lin Y, Yan Y, Wang H, Wang H, Jing B. MicroRNA-99a-5p alleviates atherosclerosis via regulating Homeobox A1. Life Sci 2019; 232:116664. [DOI: 10.1016/j.lfs.2019.116664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
49
|
Ding Z, Liu S, Wang X, Theus S, Deng X, Fan Y, Zhou S, Mehta JL. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc Res 2019; 114:1145-1153. [PMID: 29617722 DOI: 10.1093/cvr/cvy079] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/28/2018] [Indexed: 12/15/2022] Open
Abstract
Aims Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been shown to influence macrophage biology and modulate atherogenesis. We conducted this study to examine the regulation of scavenger receptors (SRs) (LOX-1, SRA, and CD36) and oxidized liporoptein cholesterol (ox-LDL) uptake in macrophages by PCSK9. Methods and results Treatment of mouse peritoneal macrophages with tumour necrosis factor alpha (TNF-α) resulted in concentration-dependent modest, but significant, increase in PCSK9 expression. Importantly, treatment of TNF-α primed macrophages with recombinant murine PCSK9 increased the expression of LOX-1, SRA, and CD36 2-5 fold, and enhanced ox-LDL uptake by ≈five-fold. The increase in LOX-1 was much greater than in SRA or CD36. PCSK9 inhibition (by siRNA transfection or use of macrophages from PCSK9-/- mice) reduced the expression of SRs (LOX-1 ≫ SRA or CD36). Ox-LDL uptake in response to PCSK9 was also inhibited in macrophages from LOX-1-/- mice (P < 0.05 vs. macrophages from SRA-/- and CD36-/- mice). Upregulation of PCSK9 by cDNA transfection induced intense ox-LDL uptake which was inhibited by co-transfection of cells with siRNA LOX-1 (P < 0.05 vs. siRNA SRA or siRNA CD36). Further, TNF-α-mediated PCSK9 upregulation and subsequent expression of SRs and ox-LDL uptake were reduced in macrophages from gp91phox-/-, p47phox-/- and p22phox-/- mice (vs. macrophages from wild-type mice). Conclusions This study shows that in an inflammatory milieu, elevated levels of PCSK9 potently stimulate the expression of SRs (principally LOX-1) and ox-LDL uptake in macrophages, and thus contribute to the process of atherogenesis.
Collapse
Affiliation(s)
- Zufeng Ding
- Central Arkansas Veterans Healthcare System and Division of Cardiology of the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Shijie Liu
- Central Arkansas Veterans Healthcare System and Division of Cardiology of the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Sue Theus
- Central Arkansas Veterans Healthcare System and Division of Cardiology of the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Sichang Zhou
- Department of Neurological Surgery, Weill Cornell Medicine, New York 10065, NY, USA
| | - Jawahar L Mehta
- Central Arkansas Veterans Healthcare System and Division of Cardiology of the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
50
|
Ruscica M, Tokgözoğlu L, Corsini A, Sirtori CR. PCSK9 inhibition and inflammation: A narrative review. Atherosclerosis 2019; 288:146-155. [PMID: 31404822 DOI: 10.1016/j.atherosclerosis.2019.07.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and mortality despite excellent pharmacological and revascularization approaches. Low-density lipoproteins (LDL) are undoubtedly the most significant biochemical variables associated with atheroma, however, compelling data identify inflammation as critical for the maintenance of the atherosclerotic process, underlying some of the most feared vascular complications. Although its causal role is questionable, high-sensitivity C-reactive protein (hs-CRP) represents a major biomarker of inflammation and associated risk in CVD. While statin-associated reduced risk may be related to the lowering of both LDL-C and hs-CRP, PCSK9 inhibitors leading to dramatic LDL-C reductions do no alter hs-CRP levels. On the other hand, hs-CRP levels identify groups of patients with a high risk of CV disease achieving better ASCVD prevention in response to PCSK9 inhibition. In the FOURIER study, even in patients with extremely low levels of LDL-C, there was a stepwise risk increment according to the values of hs-CRP: +9% (<1 mg/L), +10.8% (1-3 mg/L) and +13.1% (>3 mg/L). Likewise, in the SPIRE-1 and -2 studies, bococizumab patients with hs-CRP> 3 mg/L had a 60% greater risk of future CV events. Most of the patients enrolled in the PCSK9 trials were on maximally tolerated statin therapy at baseline, and an elevated hs-CRP may reflect residual inflammatory risk after standard LDL-C lowering therapy. Moreover, data on changes in inflammation markers in carriers of PCSK9 loss-of-function mutations are scanty and not conclusive, thus, evidence from the effects of anti-inflammatory molecules on PCSK9 levels might help unravel this hitherto complex tangle.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University, Ankara, Turkey
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; Multimedica IRCCS, Milan, Italy
| | - Cesare R Sirtori
- Centro Dislipidemie, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|