1
|
Hachmann M, Gülcan G, Rajendran R, Höring M, Liebisch G, Bachhuka A, Kohlhaas M, Maack C, Ergün S, Dudek J, Karnati S. Tafazzin deficiency causes substantial remodeling in the lipidome of a mouse model of Barth Syndrome cardiomyopathy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1389456. [PMID: 39086433 PMCID: PMC11285559 DOI: 10.3389/fmmed.2024.1389456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 08/02/2024]
Abstract
Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.
Collapse
Affiliation(s)
- Malte Hachmann
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Güntas Gülcan
- Department of Medical Biochemistry, Faculty of Medicine, Atlas University, Istanbul, Turkey
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University, Tarragona, Spain
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Medical Clinic 1, University Hospital Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Torp MK, Stensløkken KO, Vaage J. When Our Best Friend Becomes Our Worst Enemy: The Mitochondrion in Trauma, Surgery, and Critical Illness. J Intensive Care Med 2024:8850666241237715. [PMID: 38505947 DOI: 10.1177/08850666241237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Common for major surgery, multitrauma, sepsis, and critical illness, is a whole-body inflammation. Tissue injury is able to trigger a generalized inflammatory reaction. Cell death causes release of endogenous structures termed damage associated molecular patterns (DAMPs) that initiate a sterile inflammation. Mitochondria are evolutionary endosymbionts originating from bacteria, containing molecular patterns similar to bacteria. These molecular patterns are termed mitochondrial DAMPs (mDAMPs). Mitochondrial debris released into the extracellular space or into the circulation is immunogenic and damaging secondary to activation of the innate immune system. In the circulation, released mDAMPS are either free or exist in extracellular vesicles, being able to act on every organ and cell in the body. However, the role of mDAMPs in trauma and critical care is not fully clarified. There is a complete lack of knowledge how they may be counteracted in patients. Among mDAMPs are mitochondrial DNA, cardiolipin, N-formyl peptides, cytochrome C, adenosine triphosphate, reactive oxygen species, succinate, and mitochondrial transcription factor A. In this overview, we present the different mDAMPs, their function, release, targets, and inflammatory potential. In light of present knowledge, the role of mDAMPs in the pathophysiology of major surgery and trauma as well as sepsis, and critical care is discussed.
Collapse
Affiliation(s)
- May-Kristin Torp
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research, Østfold Hospital Trust, Grålum, Norway
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Janz A, Walz K, Cirnu A, Surjanto J, Urlaub D, Leskien M, Kohlhaas M, Nickel A, Brand T, Nose N, Wörsdörfer P, Wagner N, Higuchi T, Maack C, Dudek J, Lorenz K, Klopocki E, Ergün S, Duff HJ, Gerull B. Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes. Mol Metab 2024; 79:101859. [PMID: 38142971 PMCID: PMC10792641 DOI: 10.1016/j.molmet.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. METHODS We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca2+ kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tvHeLa). RESULTS Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca2+ concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. CONCLUSIONS Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca2+ kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.
Collapse
Affiliation(s)
- Anna Janz
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Walz
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Alexandra Cirnu
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Jessica Surjanto
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Urlaub
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Miriam Leskien
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Naoko Nose
- Comprehensive Heart Failure Center, Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center, Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany; Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Eva Klopocki
- Institute for Human Genetics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Henry J Duff
- Department of Cardiac Sciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Brenda Gerull
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany; Department of Medicine I, University Hospital Würzburg, Würzburg, Germany; Department of Cardiac Sciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
4
|
Chowdhury A, Boshnakovska A, Aich A, Methi A, Vergel Leon AM, Silbern I, Lüchtenborg C, Cyganek L, Prochazka J, Sedlacek R, Lindovsky J, Wachs D, Nichtova Z, Zudova D, Koubkova G, Fischer A, Urlaub H, Brügger B, Katschinski DM, Dudek J, Rehling P. Metabolic switch from fatty acid oxidation to glycolysis in knock-in mouse model of Barth syndrome. EMBO Mol Med 2023; 15:e17399. [PMID: 37533404 PMCID: PMC10493589 DOI: 10.15252/emmm.202317399] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Mitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane proteins such as transporters and the oxidative phosphorylation (OXPHOS) system. Here, we describe a mouse model that carries a G197V exchange in tafazzin, corresponding to BTHS patients. TAZG197V mice recapitulate disease-specific pathology including cardiac dysfunction and reduced oxidative phosphorylation. We show that mutant mitochondria display defective fatty acid-driven oxidative phosphorylation due to reduced levels of carnitine palmitoyl transferases. A metabolic switch in ATP production from OXPHOS to glycolysis is apparent in mouse heart and patient iPSC cell-derived cardiomyocytes. An increase in glycolytic ATP production inactivates AMPK causing altered metabolic signaling in TAZG197V . Treatment of mutant cells with AMPK activator reestablishes fatty acid-driven OXPHOS and protects mice against cardiac dysfunction.
Collapse
Affiliation(s)
- Arpita Chowdhury
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
- Present address:
Dewpoint Therapeutics GmbHDresdenGermany
| | - Angela Boshnakovska
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Abhishek Aich
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
| | - Aditi Methi
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Ana Maria Vergel Leon
- Department of Cardiovascular PhysiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Ivan Silbern
- The Bioanalytical Mass Spectrometry GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Institute for Clinical Chemistry, University Medical Center GöttingenGöttingenGermany
| | | | - Lukas Cyganek
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
- DZHK (German Center for Cardiovascular Research) partner site GöttingenGöttingenGermany
- Stem Cell Unit, Clinic for Cardiology and PneumologyUniversity Medical Center Göttingen, Georg‐August University GöttingenGöttingenGermany
| | - Jan Prochazka
- Czech Centre for PhenogenomicsInstitute of Molecular Genetics of the CASPragueCzech Republic
| | - Radislav Sedlacek
- Czech Centre for PhenogenomicsInstitute of Molecular Genetics of the CASPragueCzech Republic
| | - Jiri Lindovsky
- Czech Centre for PhenogenomicsInstitute of Molecular Genetics of the CASPragueCzech Republic
| | - Dominic Wachs
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Zuzana Nichtova
- Czech Centre for PhenogenomicsInstitute of Molecular Genetics of the CASPragueCzech Republic
| | - Dagmar Zudova
- Czech Centre for PhenogenomicsInstitute of Molecular Genetics of the CASPragueCzech Republic
| | - Gizela Koubkova
- Czech Centre for PhenogenomicsInstitute of Molecular Genetics of the CASPragueCzech Republic
| | - André Fischer
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Henning Urlaub
- The Bioanalytical Mass Spectrometry GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Institute for Clinical Chemistry, University Medical Center GöttingenGöttingenGermany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Dörthe M Katschinski
- Department of Cardiovascular PhysiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Jan Dudek
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Peter Rehling
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
- Max Planck Institute for Multidisciplinary ScienceGöttingenGermany
| |
Collapse
|
5
|
Rebs S, Streckfuss-Bömeke K. How can we use stem cell-derived cardiomyocytes to understand the involvement of energetic metabolism in alterations of cardiac function? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1222986. [PMID: 39086669 PMCID: PMC11285589 DOI: 10.3389/fmmed.2023.1222986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/15/2023] [Indexed: 08/02/2024]
Abstract
Mutations in the mitochondrial-DNA or mitochondria related nuclear-encoded-DNA lead to various multisystemic disorders collectively termed mitochondrial diseases. One in three cases of mitochondrial disease affects the heart muscle, which is called mitochondrial cardiomyopathy (MCM) and is associated with hypertrophic, dilated, and noncompact cardiomyopathy. The heart is an organ with high energy demand, and mitochondria occupy 30%-40% of its cardiomyocyte-cell volume. Mitochondrial dysfunction leads to energy depletion and has detrimental effects on cardiac performance. However, disease development and progression in the context of mitochondrial and nuclear DNA mutations, remains incompletely understood. The system of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) is an excellent platform to study MCM since the unique genetic identity to their donors enables a robust recapitulation of the predicted phenotypes in a dish on a patient-specific level. Here, we focus on recent insights into MCM studied by patient-specific iPSC-CM and further discuss research gaps and advances in metabolic maturation of iPSC-CM, which is crucial for the study of mitochondrial dysfunction and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Sabine Rebs
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen and DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen and DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Huang Y, Zhou B. Mitochondrial Dysfunction in Cardiac Diseases and Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11051500. [PMID: 37239170 DOI: 10.3390/biomedicines11051500] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria are the main site of intracellular synthesis of ATP, which provides energy for various physiological activities of the cell. Cardiomyocytes have a high density of mitochondria and mitochondrial damage is present in a variety of cardiovascular diseases. In this paper, we describe mitochondrial damage in mitochondrial cardiomyopathy, congenital heart disease, coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and drug-induced cardiotoxicity, in the context of the key roles of mitochondria in cardiac development and homeostasis. Finally, we discuss the main current therapeutic strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction, including pharmacological strategies, gene therapy, mitochondrial replacement therapy, and mitochondrial transplantation. It is hoped that this will provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| |
Collapse
|
7
|
Sabbah HN, Taylor C, Vernon HJ. Temporal evolution of the heart failure phenotype in Barth syndrome and treatment with elamipretide. Future Cardiol 2023; 19:211-225. [PMID: 37325898 DOI: 10.2217/fca-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/19/2023] [Indexed: 06/17/2023] Open
Abstract
Barth syndrome (BTHS) is a rare genetic disorder caused by pathogenic variants in TAFAZZIN leading to reduced remodeled cardiolipin (CL), a phospholipid essential to mitochondrial function and structure. Cardiomyopathy presents in most patients with BTHS, typically appearing as dilated cardiomyopathy (DCM) in infancy and evolving to hypertrophic cardiomyopathy (HCM) resembling heart failure (HF) with preserved ejection fraction (HFpEF) in some patients ≥12 years. Elamipretide localizes to the inner mitochondrial membrane where it associates with CL, improving mitochondrial function, structure and bioenergetics, including ATP synthesis. Numerous preclinical and clinical studies in BTHS and other forms of HF have demonstrated that elamipretide improves left ventricular relaxation by ameliorating mitochondrial dysfunction, making it well suited for therapeutic use in adolescent and adult patients with BTHS.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Carolyn Taylor
- Department of Pediatrics, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hilary J Vernon
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Genome Editing and Myocardial Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1396:53-73. [PMID: 36454459 DOI: 10.1007/978-981-19-5642-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Congenital heart disease (CHD) has a strong genetic etiology, making it a likely candidate for therapeutic intervention using genetic editing. Complex genetics involving an orchestrated series of genetic events and over 400 genes are responsible for myocardial development. Cooperation is required from a vast series of genetic networks, and mutations in such can lead to CHD and cardiovascular abnormalities, affecting up to 1% of all live births. Genome editing technologies are becoming better studied and with time and improved logistics, CHD could be a prime therapeutic target. Syndromic, nonsyndromic, and cases of familial inheritance all involve identifiable causative mutations and thus have the potential for genome editing therapy. Mouse models are well-suited to study and predict clinical outcome. This review summarizes the anatomical and genetic timeline of myocardial development in both mice and humans, the potential of gene editing in typical CHD categories, as well as the use of mice thus far in reproducing models of human CHD and correcting the mutations that create them.
Collapse
|
9
|
Russo S, De Rasmo D, Signorile A, Corcelli A, Lobasso S. Beneficial effects of SS-31 peptide on cardiac mitochondrial dysfunction in tafazzin knockdown mice. Sci Rep 2022; 12:19847. [PMID: 36400945 PMCID: PMC9674582 DOI: 10.1038/s41598-022-24231-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Barth Syndrome (BTHS), a genetic disease associated with early-onset cardioskeletal myopathy, is caused by loss-of-function mutations of the TAFAZZIN gene, which is responsible for remodeling the mitochondrial phospholipid cardiolipin (CL). Deregulation of CL biosynthesis and maturation in BTHS mitochondria result in a dramatically increased monolysocardiolipin (MLCL)/CL ratio associated with bioenergetic dysfunction. One of the most promising therapeutic approaches for BTHS includes the mitochondria-targeted tetrapeptide SS-31, which interacts with CL. Here, we used TAFAZZIN knockdown (TazKD) mice to investigate for the first time whether in vivo administration of SS-31 could affect phospholipid profiles and mitochondrial dysfunction. The CL fingerprinting of TazKD cardiac mitochondria obtained by MALDI-TOF/MS revealed the typical lipid changes associated with BTHS. TazKD mitochondria showed lower respiratory rates in state 3 and 4 together with a decreased in maximal respiratory rates. Treatment of TazKD mice with SS-31 improved mitochondrial respiratory capacity and promoted supercomplex organization, without affecting the MLCL/CL ratio. We hypothesize that SS-31 exerts its effect by influencing the function of the respiratory chain rather than affecting CL directly. In conclusion, our results indicate that SS-31 have beneficial effects on improving cardiac mitochondrial dysfunction in a BTHS animal model, suggesting the peptide as future pharmacologic agent for therapy.
Collapse
Affiliation(s)
- Silvia Russo
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Domenico De Rasmo
- grid.503043.1CNR-Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Anna Signorile
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Angela Corcelli
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Simona Lobasso
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
10
|
Hornby B, Thompson WR, Almuqbil M, Manuel R, Abbruscato A, Carr J, Vernon HJ. Natural history comparison study to assess the efficacy of elamipretide in patients with Barth syndrome. Orphanet J Rare Dis 2022; 17:336. [PMID: 36056411 PMCID: PMC9438322 DOI: 10.1186/s13023-022-02469-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Natural history studies are increasingly recognized as having an important role in drug development for rare diseases. A phase 3, observational, retrospective, and non-interventional study was designed to establish a natural history control (NHC) cohort of patients with Barth syndrome (BTHS) to provide further analysis of the efficacy of elamipretide observed in an open-label extension (OLE) phase of the TAZPOWER trial, a clinical trial that tested the efficacy of 40 mg daily of elamipretide in patients with BTHS. Methods This was a retrospective, non-interventional study. A propensity score model was used to compare elamipretide-treated patients and NHCs. The analysis included 8 patients from the TAZPOWER OLE and 19 untreated NHCs (including 12 with serial echocardiographic assessments). Results For the 6-min walk test (6MWT, primary endpoint), the least squares (LS) mean difference between groups was 79.7 m (P = 0.0004) at week 64 and 91.0 m (P = 0.0005) at week 76 in favor of elamipretide. Significant improvements in muscle strength (secondary endpoint), as assessed by handheld dynamometry (HHD) were also observed with elamipretide, with LS mean differences of 40.8 Newtons at 64 weeks (P = 0.0002) and 56.7 Newtons at 76 weeks (P = 0.0005). Patients continuously treated with elamipretide also experienced statistically significant improvements in other secondary endpoints (i.e., 5 times sit-to-stand [5XSST], multi-domain responder index [MDRI]). The functional improvements were robust to sensitivity analyses. Left ventricular stroke volume increased from baseline in patients with elamipretide but decreased in NHCs.
Conclusions Overall, the study established a NHC for use in assessing the efficacy of therapeutic interventions in patients with BTHS and the results suggest that elamipretide may improve natural history of BTHS at least in part by attenuating the natural decline in heart function and provide meaningful improvements in heart function and functional capacity in patients with BTHS compared to NHCs. Highlights A matched Natural History Control (NHC) was used to evaluate elamipretide in BTHS Elamipretide may improve natural history of BTHS by attenuating natural decline in heart function Elamipretide was associated with meaningful clinical improvements in skeletal muscle and cardiovascular parameters that were not observed in NHCs The study established a NHC for use in assessing the efficacy of therapeutic interventions in BTHS
Collapse
Affiliation(s)
- Brittany Hornby
- Department of Physical Therapy, Kennedy Krieger, Baltimore, MD, USA
| | - William Reid Thompson
- Department of Pediatric Cardiology, Taussig Heart Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mohammed Almuqbil
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS); King Abdullah Specialized Children's Hospital (KASCH), Riyadh, Saudi Arabia
| | - Ryan Manuel
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, MRB 512, Baltimore, Maryland, 21205, USA
| | | | - Jim Carr
- Stealth BioTherapeutics, Inc, Needham, MA, USA
| | - Hilary J Vernon
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, MRB 512, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
11
|
Zegallai HM, Abu-El-Rub E, Olayinka-Adefemi F, Cole LK, Sparagna GC, Marshall AJ, Hatch GM. Tafazzin deficiency in mouse mesenchymal stem cells promote reprogramming of activated B lymphocytes toward immunosuppressive phenotypes. FASEB J 2022; 36:e22443. [PMID: 35816277 DOI: 10.1096/fj.202200145r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/20/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022]
Abstract
Barth Syndrome (BTHS) is a rare X-linked genetic disorder caused by mutation in the TAFAZZIN gene. Tafazzin (Taz) deficiency in BTHS patients results in an increased risk of infections. Mesenchymal stem cells (MSCs) are well known for their immune-inhibitory function. We examined how Taz-deficiency in murine MSCs impact their ability to modulate the function of lipopolysaccharide (LPS)-activated wild type (WT) B lymphocytes. MSCs from tafazzin knockdown (TazKD) mice exhibited a reduction in mitochondrial cardiolipin compared to wild type (WT) MSCs. However, mitochondrial bioenergetics and membrane potential were unaltered. In contrast, TazKD MSCs exhibited increased reactive oxygen species generation and increased glycolysis. The increased glycolysis was associated with an elevated proliferation, phosphatidylinositol-3-kinase expression and expression of the immunosuppressive markers indoleamine-2,3-dioxygenase, cytotoxic T-lymphocyte-associated protein 4, interleukin-10, and cluster of differentiation 59 compared to controls. Inhibition of glycolysis with 2-deoxyglucose attenuated the TazKD-mediated increased expression of cytotoxic T-lymphocyte-associated protein 4 and interleukin-10. When co-cultured with LPS-activated WT B cells, TazKD MSCs inhibited B cell proliferation and growth rate and reduced B cell secretion of immunoglobulin M compared to controls. In addition, co-culture of LPS-activated WT B cells with TazKD MSCs promoted B cell differentiation toward interleukin-10 secreting plasma cells and B regulatory cells compared to controls. The results indicate that Taz deficiency in MSCs promote reprogramming of activated B lymphocytes toward immunosuppressive phenotypes.
Collapse
Affiliation(s)
- Hana M Zegallai
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ejlal Abu-El-Rub
- Physiology and Pathophysiology, Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan.,Physiology and Pathophysiology, Regenerative Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Folayemi Olayinka-Adefemi
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Laura K Cole
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Genevieve C Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Aaron J Marshall
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Grant M Hatch
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
N-oleoylethanolamide treatment of lymphoblasts deficient in Tafazzin improves cell growth and mitochondrial morphology and dynamics. Sci Rep 2022; 12:9466. [PMID: 35676289 PMCID: PMC9178007 DOI: 10.1038/s41598-022-13463-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Barth syndrome (BTHS) is caused by mutations in the TAZ gene encoding the cardiolipin remodeling enzyme, Tafazzin. The study objective was to quantitatively examine growth characteristics and mitochondrial morphology of transformed lymphoblast cell lines derived from five patients with BTHS relative to five healthy controls, as well as the therapeutic potential of oleoylethanolamide (OEA) and linoleoylethanolamide (LEA). These bioactive lipids both activate PPARα, which may be therapeutic. BTHS lymphoblasts grew more slowly than controls, suggesting lymphopenia merits clinical investigation. Treatment of BTHS lymphoblasts with OEA, but not LEA, significantly restored mitochondrial membrane potential, as well as colony growth in all BTHS lymphoblast lines, although a full growth rescue was not achieved. Quantification analysis of electron micrographs from three BTHS and healthy lymphoblast donors indicated similar numbers of mitochondria per cell, but lower average cristae length per mitochondrion, and higher mitochondrial density. Additionally, BTHS lymphoblasts had larger mitochondria, and a higher percentage of abnormally large mitochondria (> 1 μm2) than healthy controls. Notably, OEA treatment significantly restored mitochondrial size, without affecting density or cristae lengths. Cardiolipin total content, relative linoleic acid content and monolysocardiolipin:cardiolipin ratios were not improved by OEA, indicating that effects on growth, and mitochondrial morphology and function, occurred without resolving this deficit. However, immunoblotting showed higher levels of OPA1, a biomarker for mitochondrial fusion, in BTHS lymphoblasts, which was attenuated by OEA treatment, implicating altered mitochondrial dynamics in the pathology and treatment of BTHS.
Collapse
|
13
|
Pang J, Bao Y, Mitchell-Silbaugh K, Veevers J, Fang X. Barth Syndrome Cardiomyopathy: An Update. Genes (Basel) 2022; 13:genes13040656. [PMID: 35456462 PMCID: PMC9030331 DOI: 10.3390/genes13040656] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 12/28/2022] Open
Abstract
Barth syndrome (BTHS) is an X-linked mitochondrial lipid disorder caused by mutations in the TAFAZZIN (TAZ) gene, which encodes a mitochondrial acyltransferase/transacylase required for cardiolipin (CL) biosynthesis. Cardiomyopathy is a major clinical feature of BTHS. During the past four decades, we have witnessed many landmark discoveries that have led to a greater understanding of clinical features of BTHS cardiomyopathy and their molecular basis, as well as the therapeutic targets for this disease. Recently published Taz knockout mouse models provide useful experimental models for studying BTHS cardiomyopathy and testing potential therapeutic approaches. This review aims to summarize key findings of the clinical features, molecular mechanisms, and potential therapeutic approaches for BTHS cardiomyopathy, with particular emphasis on the most recent studies.
Collapse
Affiliation(s)
- Jing Pang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (J.P.); (Y.B.); (K.M.-S.); (J.V.)
- Department of Biological Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Yutong Bao
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (J.P.); (Y.B.); (K.M.-S.); (J.V.)
- Department of Biological Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Kalia Mitchell-Silbaugh
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (J.P.); (Y.B.); (K.M.-S.); (J.V.)
| | - Jennifer Veevers
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (J.P.); (Y.B.); (K.M.-S.); (J.V.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (J.P.); (Y.B.); (K.M.-S.); (J.V.)
- Correspondence: ; Tel.: +1-858-246-4637
| |
Collapse
|
14
|
da Rosa-Junior NT, Parmeggiani B, Glänzel NM, de Moura Alvorcem L, Brondani M, Britto R, Grings M, Ortiz VD, Turck P, da Rosa Araujo AS, Wajner M, Leipnitz G. Antioxidant system disturbances and mitochondrial dysfunction induced by 3-methyglutaric acid in rat heart are prevented by bezafibrate. Eur J Pharmacol 2022; 924:174950. [DOI: 10.1016/j.ejphar.2022.174950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
|
15
|
Wachoski-Dark E, Zhao T, Khan A, Shutt TE, Greenway SC. Mitochondrial Protein Homeostasis and Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23063353. [PMID: 35328774 PMCID: PMC8953902 DOI: 10.3390/ijms23063353] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/06/2022] Open
Abstract
Human mitochondrial disorders impact tissues with high energetic demands and can be associated with cardiac muscle disease (cardiomyopathy) and early mortality. However, the mechanistic link between mitochondrial disease and the development of cardiomyopathy is frequently unclear. In addition, there is often marked phenotypic heterogeneity between patients, even between those with the same genetic variant, which is also not well understood. Several of the mitochondrial cardiomyopathies are related to defects in the maintenance of mitochondrial protein homeostasis, or proteostasis. This essential process involves the importing, sorting, folding and degradation of preproteins into fully functional mature structures inside mitochondria. Disrupted mitochondrial proteostasis interferes with mitochondrial energetics and ATP production, which can directly impact cardiac function. An inability to maintain proteostasis can result in mitochondrial dysfunction and subsequent mitophagy or even apoptosis. We review the known mitochondrial diseases that have been associated with cardiomyopathy and which arise from mutations in genes that are important for mitochondrial proteostasis. Genes discussed include DnaJ heat shock protein family member C19 (DNAJC19), mitochondrial import inner membrane translocase subunit TIM16 (MAGMAS), translocase of the inner mitochondrial membrane 50 (TIMM50), mitochondrial intermediate peptidase (MIPEP), X-prolyl-aminopeptidase 3 (XPNPEP3), HtraA serine peptidase 2 (HTRA2), caseinolytic mitochondrial peptidase chaperone subunit B (CLPB) and heat shock 60-kD protein 1 (HSPD1). The identification and description of disorders with a shared mechanism of disease may provide further insights into the disease process and assist with the identification of potential therapeutics.
Collapse
Affiliation(s)
- Emily Wachoski-Dark
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tian Zhao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- M.A.G.I.C. Inc., Calgary, AB T2E 7Z4, Canada
| | - Timothy E. Shutt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: (T.E.S.); (S.C.G.)
| | - Steven C. Greenway
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: (T.E.S.); (S.C.G.)
| |
Collapse
|
16
|
Yester J, Feingold B. Extended recovery of cardiac function after severe infantile cardiomyopathy presentation of Barth syndrome. JIMD Rep 2022; 63:114-122. [PMID: 35281665 PMCID: PMC8898717 DOI: 10.1002/jmd2.12264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
Cardiomyopathy is the most common presenting feature of Barth syndrome, often presenting in infancy with severe heart failure and cardiac dysfunction. Historically, affected infants commonly died early after presentation, sometimes before a diagnosis of Barth syndrome was made. With increases in awareness of Barth syndrome and in the care of infants with severe heart failure, survival of children with Barth syndrome and severe heart failure has improved. We describe our experience caring for five unrelated boys with Barth syndrome who presented with severe cardiomyopathy and heart failure prior to age 2 who have had marked improvement with long-term response to medical heart failure therapy.
Collapse
Affiliation(s)
- Jessie Yester
- Heart InstituteUPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Brian Feingold
- Heart InstituteUPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
- Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Clinical and Translational ScienceUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
17
|
An echocardiographic finding mimicking tricuspid atresia in a neonate with dilated cardiomyopathy. Cardiol Young 2022; 32:497-499. [PMID: 34350823 DOI: 10.1017/s104795112100322x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report a neonate with dilated cardiomyopathy and have echocardiographic findings consistent with "functional" tricuspid atresia. There was an echo-bright, plate-like tissue at the tricuspid valve position with no forward flow across it. This report underscores the role of right ventricle intracavitary haemodynamic influence on the tricuspid valve leaflet excursion and demonstrates a phenomenon of "pseudo or functional tricuspid atresia" mimicking tricuspid atresia in a patient with acute presentation of cardiomyopathy.
Collapse
|
18
|
Lodato V, Parlapiano G, Calì F, Silvetti MS, Adorisio R, Armando M, El Hachem M, Romanzo A, Dionisi-Vici C, Digilio MC, Novelli A, Drago F, Raponi M, Baban A. Cardiomyopathies in Children and Systemic Disorders When Is It Useful to Look beyond the Heart? J Cardiovasc Dev Dis 2022; 9:47. [PMID: 35200700 PMCID: PMC8877723 DOI: 10.3390/jcdd9020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiomyopathy (CMP) is a rare disease in the pediatric population, with a high risk of morbidity and mortality. The genetic etiology of CMPs in children is extremely heterogenous. These two factors play a major role in the difficulties of establishing standard diagnostic and therapeutic protocols. Isolated CMP in children is a frequent finding, mainly caused by sarcomeric gene variants with a detection rate that can reach up to 50% of analyzed cohorts. Complex multisystemic forms of pediatric CMP are even more heterogenous. Few studies in literature take into consideration this topic as the main core since it represents a rarity (systemic CMP) within a rarity (pediatric population CMP). Identifying etiology in this cohort is essential for understanding prognosis, risk stratification, eligibility to heart transplantation and/or mechanical-assisted procedures, preventing multiorgan complications, and relatives' recurrence risk calculation. The previous points represent a cornerstone in patients' empowerment and personalized medical care approach. The aim of this work is to propose a new approach for an algorithm in the setting of the diagnostic framework of systemic pediatric CMP. On the other hand, during the literature review, we noticed a relatively common etiologic pattern in some forms of complex/multisystem CMP. In other words, certain syndromes such as Danon, Vici, Alström, Barth, and Myhre syndrome share a common pathway of directly or indirectly defective "autophagy" process, which appears to be a possible initiating/triggering factor for CMPs. This conjoint aspect could be important for possible prognostic/therapeutic implications in this category of patients. However, multicentric studies detailed functional and experimental models are needed prior to deriving conclusions.
Collapse
Affiliation(s)
- Valentina Lodato
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Giovanni Parlapiano
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Federica Calì
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Massimo Stefano Silvetti
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Rachele Adorisio
- Heart Failure Clinic-Heart Failure, Heart Transplant, Mechanical Circulatory Support Unit, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplant, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Michela Armando
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - May El Hachem
- Dermatology and Genodermatosis Units, Genetics and Rare Disease Research Division, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Antonino Romanzo
- Ophtalmology Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Fabrizio Drago
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Massimiliano Raponi
- Medical Direction, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy;
| | - Anwar Baban
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| |
Collapse
|
19
|
Abstract
Barth syndrome is a rare and potentially fatal X-linked disease characterized by cardiomyopathy, skeletal muscle weakness, growth delays, and cyclic neutropenia. Patients with Barth syndrome are prone to high risk of mortality in infancy and the development of cardiomyopathy with severe weakening of the immune system. Elamipretide is a water-soluble, aromatic-cationic, mitochondria-targeting tetrapeptide that readily penetrates and transiently localizes to the inner mitochondrial membrane. Therapy with elamipretide facilitates cell health by improving energy production and inhibiting excessive formation of reactive oxygen species, thus alleviating oxidative stress. Elamipretide crosses the outer membrane of the mitochondrion and becomes associated with cardiolipin, a constituent phospholipid of the inner membrane. Elamipretide improves mitochondrial bioenergetics and morphology rapidly in induced pluripotent stem cells from patients with Barth syndrome and other genetically related diseases characterized by pediatric cardiomyopathy. Data with elamipretide across multiple models of disease are especially promising, with results from several studies supporting the use of elamipretide as potential therapy for patients with Barth syndrome, particularly where there is a confirmed diagnosis of cardiomyopathy. This review highlights the challenges and opportunities presented in treating Barth syndrome cardiomyopathy patients with elamipretide and addresses evidence supporting the durability of effect of elamipretide as a therapeutic agent for Barth syndrome, especially its likely durable effects on progression of cardiomyopathy following the cessation of drug treatment and the capability of elamipretide to structurally reverse remodel the failing left ventricle at the global, cellular, and molecular level in a gradual manner through specific targeting of the mitochondrial inner membrane.
Collapse
|
20
|
Zegallai HM, Abu-El-Rub E, Olayinka-Adefemi F, Cole LK, Sparagna GC, Marshall AJ, Hatch GM. Tafazzin deficiency in mouse mesenchymal stem cells potentiates their immunosuppression and impairs activated B lymphocyte immune function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34729562 DOI: 10.1101/2021.09.07.459330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Barth Syndrome (BTHS) is a rare X-linked genetic disorder caused by mutation in the TAFAZZIN gene which encodes the cardiolipin (CL) transacylase tafazzin (Taz). Taz deficiency in BTHS patients results in reduced CL in their tissues and a neutropenia which contributes to the risk of infections. However, the impact of Taz deficiency in other cells of the immune system is poorly understood. Mesenchymal stem cells (MSCs) are well known for their immune inhibitory function. We examined whether Taz-deficiency in murine MSCs impacted their ability to modulate lipopolysaccharide (LPS)-activated wild type (WT) murine B lymphocytes. MSCs from tafazzin knockdown (TazKD) mice exhibited a 50% reduction in CL compared to wild type (WT) MSCs. However, mitochondrial oxygen consumption rate and membrane potential were unaltered. In contrast, TazKD MSCs exhibited increased glycolysis compared to WT MSCs and this was associated with elevated proliferation, phosphatidylinositol-3-kinase expression and expression of the immunosuppressive markers indoleamine-2,3-dioxygenase, cytotoxic T-lymphocyte-associated protein 4, interleukin-10, and cluster of differentiation 59. When co-cultured with LPS-activated WT B cells, TazKD MSCs inhibited B cell proliferation and growth rate and reduced B cell secretion of IgM to a greater extent than B cells co-cultured with WT MSCs. In addition, co-culture of LPS-activated WT B cells with TazKD MSCs induced B cell differentiation toward potent immunosuppressive phenotypes including interleukin-10 secreting plasma cells and B regulatory cells compared to activated B cells co-cultured with WT MSCs. These results indicate that Taz deficiency in MSCs enhances MSCs-mediated immunosuppression of activated B lymphocytes.
Collapse
|
21
|
Feng Y, Huang W, Paul C, Liu X, Sadayappan S, Wang Y, Pauklin S. Mitochondrial nucleoid in cardiac homeostasis: bidirectional signaling of mitochondria and nucleus in cardiac diseases. Basic Res Cardiol 2021; 116:49. [PMID: 34392401 PMCID: PMC8364536 DOI: 10.1007/s00395-021-00889-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023]
Abstract
Metabolic function and energy production in eukaryotic cells are regulated by mitochondria, which have been recognized as the intracellular 'powerhouses' of eukaryotic cells for their regulation of cellular homeostasis. Mitochondrial function is important not only in normal developmental and physiological processes, but also in a variety of human pathologies, including cardiac diseases. An emerging topic in the field of cardiovascular medicine is the implication of mitochondrial nucleoid for metabolic reprogramming. This review describes the linear/3D architecture of the mitochondrial nucleoid (e.g., highly organized protein-DNA structure of nucleoid) and how it is regulated by a variety of factors, such as noncoding RNA and its associated R-loop, for metabolic reprogramming in cardiac diseases. In addition, we highlight many of the presently unsolved questions regarding cardiac metabolism in terms of bidirectional signaling of mitochondrial nucleoid and 3D chromatin structure in the nucleus. In particular, we explore novel techniques to dissect the 3D structure of mitochondrial nucleoid and propose new insights into the mitochondrial retrograde signaling, and how it regulates the nuclear (3D) chromatin structures in mitochondrial diseases.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Xingguo Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
22
|
Rao S, Kanwal A, Padmanabhan S. Case report of Barth syndrome: a forgotten cause of cardiomyopathy. Eur Heart J Case Rep 2021; 5:ytab195. [PMID: 34557625 PMCID: PMC8453413 DOI: 10.1093/ehjcr/ytab195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/01/2020] [Accepted: 03/05/2021] [Indexed: 11/15/2022]
Abstract
Background Barth syndrome (BTHS) is a rare X-linked recessive disorder characterized by clinical features including cardiomyopathy, skeletal myopathy, neutropenia, growth delay, and exercise intolerance. It is often considered to be a paediatric disease, owing to most cases being diagnosed during childhood and mortality being the highest during the first few years of life. Case summary We report a case of dilated cardiomyopathy due to BTHS in a 27-year-old adult male patient, who initially presented with lightheadedness, dyspnoea, orthopnoea, and bilateral lower extremity oedema. Key findings from investigations included leukopenia, prolonged QTc interval, reduced left ventricular ejection fraction (LVEF), global enlargement of all heart chambers, patent coronary arteries, and mild pulmonary hypertension. The patient was diuresed to euvolemia and discharged with a LifeVest. Guideline-directed medical therapy was initiated and uptitrated as an outpatient. A repeat echocardiogram 2 years after initial presentation showed marked improvement in LVEF. Discussion It is possible that there are adult patients with idiopathic cardiomyopathy, which may be attributable to BTHS. In the absence of an obvious underlying cause, with the appropriate historical information, clinical exam, laboratory investigations, and imaging findings, BTHS should be considered as a likely cause of non-ischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Shiavax Rao
- Department of Medicine, MedStar Health Internal Medicine Residency Program , 201 E University Pkwy, Baltimore, MD 21218, USA
| | - Arjun Kanwal
- Department of Medicine, MedStar Health Internal Medicine Residency Program , 201 E University Pkwy, Baltimore, MD 21218, USA
| | - Sriram Padmanabhan
- MedStar Heart and Vascular Institute, MedStar Franklin Square Medical Center, 9000 Franklin Square Dr, Baltimore, MD 21237, US A
| |
Collapse
|
23
|
Greenwell AA, Gopal K, Altamimi TR, Saed CT, Wang F, Tabatabaei Dakhili SA, Ho KL, Zhang L, Eaton F, Kruger J, Al Batran R, Lopaschuk GD, Oudit GY, Ussher JR. Barth syndrome-related cardiomyopathy is associated with a reduction in myocardial glucose oxidation. Am J Physiol Heart Circ Physiol 2021; 320:H2255-H2269. [PMID: 33929899 DOI: 10.1152/ajpheart.00873.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart failure presents as the leading cause of infant mortality in individuals with Barth syndrome (BTHS), a rare genetic disorder due to mutations in the tafazzin (TAZ) gene affecting mitochondrial structure and function. Investigations into the perturbed bioenergetics in the BTHS heart remain limited. Hence, our objective was to identify the potential alterations in myocardial energy metabolism and molecular underpinnings that may contribute to the early cardiomyopathy and heart failure development in BTHS. Cardiac function and myocardial energy metabolism were assessed via ultrasound echocardiography and isolated working heart perfusions, respectively, in a mouse model of BTHS [doxycycline-inducible Taz knockdown (TazKD) mice]. In addition, we also performed mRNA/protein expression profiling for key regulators of energy metabolism in hearts from TazKD mice and their wild-type (WT) littermates. TazKD mice developed hypertrophic cardiomyopathy as evidenced by increased left ventricular anterior and posterior wall thickness, as well as increased cardiac myocyte cross-sectional area, though no functional impairments were observed. Glucose oxidation rates were markedly reduced in isolated working hearts from TazKD mice compared with their WT littermates in the presence of insulin, which was associated with decreased pyruvate dehydrogenase activity. Conversely, myocardial fatty acid oxidation rates were elevated in TazKD mice, whereas no differences in glycolytic flux or ketone body oxidation rates were observed. Our findings demonstrate that myocardial glucose oxidation is impaired before the development of overt cardiac dysfunction in TazKD mice, and may thus represent a pharmacological target for mitigating the development of cardiomyopathy in BTHS.NEW & NOTEWORTHY Barth syndrome (BTHS) is a rare genetic disorder due to mutations in tafazzin that is frequently associated with infantile-onset cardiomyopathy and subsequent heart failure. Although previous studies have provided evidence of perturbed myocardial energy metabolism in BTHS, actual measurements of flux are lacking. We now report a complete energy metabolism profile that quantifies flux in isolated working hearts from a murine model of BTHS, demonstrating that BTHS is associated with a reduction in glucose oxidation.
Collapse
Affiliation(s)
- Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Tariq R Altamimi
- Department of Pediatrics, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Christina T Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Faqi Wang
- Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Divsion of Cardiology, Department of Medicine, University of Alberta, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Kim L Ho
- Department of Pediatrics, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Liyan Zhang
- Department of Pediatrics, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Jennifer Kruger
- Health Sciences Laboratory Animal Services, University of Alberta, Alberta, Canada
| | - Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - Gavin Y Oudit
- Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Divsion of Cardiology, Department of Medicine, University of Alberta, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| |
Collapse
|
24
|
Inbody SC, Sinquefield BE, Lewis JP, Horton RE. Biomimetic microsystems for cardiovascular studies. Am J Physiol Cell Physiol 2021; 320:C850-C872. [PMID: 33760660 DOI: 10.1152/ajpcell.00026.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional tissue culture platforms have been around for several decades and have enabled key findings in the cardiovascular field. However, these platforms failed to recreate the mechanical and dynamic features found within the body. Organs-on-chips (OOCs) are cellularized microfluidic-based devices that can mimic the basic structure, function, and responses of organs. These systems have been successfully utilized in disease, development, and drug studies. OOCs are designed to recapitulate the mechanical, electrical, chemical, and structural features of the in vivo microenvironment. Here, we review cardiovascular-themed OOC studies, design considerations, and techniques used to generate these cellularized devices. Furthermore, we will highlight the advantages of OOC models over traditional cell culture vessels, discuss implementation challenges, and provide perspectives on the state of the field.
Collapse
Affiliation(s)
- Shelby C Inbody
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Bridgett E Sinquefield
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Joshua P Lewis
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Renita E Horton
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| |
Collapse
|
25
|
Abstract
Barth syndrome (BTHS) is a rare, X-linked recessive, infantile-onset debilitating disorder characterized by early-onset cardiomyopathy, skeletal muscle myopathy, growth delay, and neutropenia, with a worldwide incidence of 1/300,000-400,000 live births. The high mortality rate throughout infancy in BTHS patients is related primarily to progressive cardiomyopathy and a weakened immune system. BTHS is caused by defects in the TAZ gene that encodes tafazzin, a transacylase responsible for the remodeling and maturation of the mitochondrial phospholipid cardiolipin (CL), which is critical to normal mitochondrial structure and function (i.e., ATP generation). A deficiency in tafazzin results in up to a 95% reduction in levels of structurally mature CL. Because the heart is the most metabolically active organ in the body, with the highest mitochondrial content of any tissue, mitochondrial dysfunction plays a key role in the development of heart failure in patients with BTHS. Changes in mitochondrial oxidative phosphorylation reduce the ability of mitochondria to meet the ATP demands of the human heart as well as skeletal muscle, namely ATP synthesis does not match the rate of ATP consumption. The presence of several cardiomyopathic phenotypes have been described in BTHS, including dilated cardiomyopathy, left ventricular noncompaction, either alone or in conjunction with other cardiomyopathic phenotypes, endocardial fibroelastosis, hypertrophic cardiomyopathy, and an apical form of hypertrophic cardiomyopathy, among others, all of which can be directly attributed to the lack of CL synthesis, remodeling, and maturation with subsequent mitochondrial dysfunction. Several mechanisms by which these cardiomyopathic phenotypes exist have been proposed, thereby identifying potential targets for treatment. Dysfunction of the sarcoplasmic reticulum Ca2+-ATPase pump and inflammation potentially triggered by circulating mitochondrial components have been identified. Currently, treatment modalities are aimed at addressing symptomatology of HF in BTHS, but do not address the underlying pathology. One novel therapeutic approach includes elamipretide, which crosses the mitochondrial outer membrane to localize to the inner membrane where it associates with cardiolipin to enhance ATP synthesis in several organs, including the heart. Encouraging clinical results of the use of elamipretide in treating patients with BTHS support the potential use of this drug for management of this rare disease.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| |
Collapse
|
26
|
Wang Y, Lei W, Yang J, Ni X, Ye L, Shen Z, Hu S. The updated view on induced pluripotent stem cells for cardiovascular precision medicine. Pflugers Arch 2021; 473:1137-1149. [DOI: 10.1007/s00424-021-02530-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
|
27
|
Ramaccini D, Montoya-Uribe V, Aan FJ, Modesti L, Potes Y, Wieckowski MR, Krga I, Glibetić M, Pinton P, Giorgi C, Matter ML. Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy. Front Cell Dev Biol 2021; 8:624216. [PMID: 33511136 PMCID: PMC7835522 DOI: 10.3389/fcell.2020.624216] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiac tissue requires a persistent production of energy in order to exert its pumping function. Therefore, the maintenance of this function relies on mitochondria that represent the “powerhouse” of all cardiac activities. Mitochondria being one of the key players for the proper functioning of the mammalian heart suggests continual regulation and organization. Mitochondria adapt to cellular energy demands via fusion-fission events and, as a proof-reading ability, undergo mitophagy in cases of abnormalities. Ca2+ fluxes play a pivotal role in regulating all mitochondrial functions, including ATP production, metabolism, oxidative stress balance and apoptosis. Communication between mitochondria and others organelles, especially the sarcoplasmic reticulum is required for optimal function. Consequently, abnormal mitochondrial activity results in decreased energy production leading to pathological conditions. In this review, we will describe how mitochondrial function or dysfunction impacts cardiac activities and the development of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Daniela Ramaccini
- University of Hawaii Cancer Center, Honolulu, HI, United States.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | | | - Femke J Aan
- University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Lorenzo Modesti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Irena Krga
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Marija Glibetić
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | | |
Collapse
|
28
|
Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Mol Cell Biochem 2021; 476:1605-1629. [PMID: 33415565 DOI: 10.1007/s11010-020-04021-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Barth syndrome is a rare X-linked genetic disease classically characterized by cardiomyopathy, skeletal myopathy, growth retardation, neutropenia, and 3-methylglutaconic aciduria. It is caused by mutations in the tafazzin gene localized to chromosome Xq28.12. Mutations in tafazzin may result in alterations in the level and molecular composition of the mitochondrial phospholipid cardiolipin and result in large elevations in the lysophospholipid monolysocardiolipin. The increased monolysocardiolipin:cardiolipin ratio in blood is diagnostic for the disease, and it leads to disruption in mitochondrial bioenergetics. In this review, we discuss cardiolipin structure, synthesis, and function and provide an overview of the clinical and cellular pathophysiology of Barth Syndrome. We highlight known pharmacological management for treatment of the major pathological features associated with the disease. In addition, we discuss non-pharmacological management. Finally, we highlight the most recent promising therapeutic options for this rare mitochondrial disease including lipid replacement therapy, peroxisome proliferator-activated receptor agonists, tafazzin gene replacement therapy, induced pluripotent stem cells, mitochondria-targeted antioxidants and peptides, and the polyphenolic compound resveratrol.
Collapse
|
29
|
Goncalves RLS, Schlame M, Bartelt A, Brand MD, Hotamışlıgil GS. Cardiolipin deficiency in Barth syndrome is not associated with increased superoxide/H 2 O 2 production in heart and skeletal muscle mitochondria. FEBS Lett 2020; 595:415-432. [PMID: 33112430 PMCID: PMC7894513 DOI: 10.1002/1873-3468.13973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
Barth syndrome (BTHS) is a rare X-linked genetic disorder caused by mutations in the gene encoding the transacylase tafazzin and characterized by loss of cardiolipin and severe cardiomyopathy. Mitochondrial oxidants have been implicated in the cardiomyopathy in BTHS. Eleven mitochondrial sites produce superoxide/hydrogen peroxide (H2 O2 ) at significant rates. Which of these sites generate oxidants at excessive rates in BTHS is unknown. Here, we measured the maximum capacity of superoxide/H2 O2 production from each site and the ex vivo rate of superoxide/H2 O2 production in the heart and skeletal muscle mitochondria of the tafazzin knockdown mice (tazkd) from 3 to 12 months of age. Despite reduced oxidative capacity, superoxide/H2 O2 production was indistinguishable between tazkd mice and wild-type littermates. These observations raise questions about the involvement of mitochondrial oxidants in BTHS pathology.
Collapse
Affiliation(s)
- Renata L S Goncalves
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael Schlame
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Alexander Bartelt
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | | | - Gökhan S Hotamışlıgil
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
30
|
Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies. Life (Basel) 2020; 10:life10110277. [PMID: 33187128 PMCID: PMC7697959 DOI: 10.3390/life10110277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
The heart is the most energy-consuming organ in the human body. In heart failure, the homeostasis of energy supply and demand is endangered by an increase in cardiomyocyte workload, or by an insufficiency in energy-providing processes. Energy metabolism is directly associated with mitochondrial redox homeostasis. The production of toxic reactive oxygen species (ROS) may overwhelm mitochondrial and cellular ROS defense mechanisms in case of heart failure. Mitochondria are essential cell organelles and provide 95% of the required energy in the heart. Metabolic remodeling, changes in mitochondrial structure or function, and alterations in mitochondrial calcium signaling diminish mitochondrial energy provision in many forms of cardiomyopathy. The mitochondrial respiratory chain creates a proton gradient across the inner mitochondrial membrane, which couples respiration with oxidative phosphorylation and the preservation of energy in the chemical bonds of ATP. Akin to other mitochondrial enzymes, the respiratory chain is integrated into the inner mitochondrial membrane. The tight association with the mitochondrial phospholipid cardiolipin (CL) ensures its structural integrity and coordinates enzymatic activity. This review focuses on how changes in mitochondrial CL may be associated with heart failure. Dysfunctional CL has been found in diabetic cardiomyopathy, ischemia reperfusion injury and the aging heart. Barth syndrome (BTHS) is caused by an inherited defect in the biosynthesis of cardiolipin. Moreover, a dysfunctional CL pool causes other types of rare inherited cardiomyopathies, such as Sengers syndrome and Dilated Cardiomyopathy with Ataxia (DCMA). Here we review the impact of cardiolipin deficiency on mitochondrial functions in cellular and animal models. We describe the molecular mechanisms concerning mitochondrial dysfunction as an incitement of cardiomyopathy and discuss potential therapeutic strategies.
Collapse
|
31
|
Greenwell AA, Gopal K, Ussher JR. Myocardial Energy Metabolism in Non-ischemic Cardiomyopathy. Front Physiol 2020; 11:570421. [PMID: 33041869 PMCID: PMC7526697 DOI: 10.3389/fphys.2020.570421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
As the most metabolically demanding organ in the body, the heart must generate massive amounts of energy adenosine triphosphate (ATP) from the oxidation of fatty acids, carbohydrates and other fuels (e.g., amino acids, ketone bodies), in order to sustain constant contractile function. While the healthy mature heart acts omnivorously and is highly flexible in its ability to utilize the numerous fuel sources delivered to it through its coronary circulation, the heart’s ability to produce ATP from these fuel sources becomes perturbed in numerous cardiovascular disorders. This includes ischemic heart disease and myocardial infarction, as well as in various cardiomyopathies that often precede the development of overt heart failure. We herein will provide an overview of myocardial energy metabolism in the healthy heart, while describing the numerous perturbations that take place in various non-ischemic cardiomyopathies such as hypertrophic cardiomyopathy, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and the cardiomyopathy associated with the rare genetic disease, Barth Syndrome. Based on preclinical evidence where optimizing myocardial energy metabolism has been shown to attenuate cardiac dysfunction, we will discuss the feasibility of myocardial energetics optimization as an approach to treat the cardiac pathology associated with these various non-ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
Podolec P, Matusik PT. New clinical classification of rare cardiovascular diseases and disorders: relevance for cardiovascular research. Cardiovasc Res 2020; 115:e77-e79. [PMID: 31211364 DOI: 10.1093/cvr/cvz142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Piotr Podolec
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Jagiellonian University Medical College, 80 Prądnicka Street, Kraków, Poland.,Centre for Rare Cardiovascular Diseases, The John Paul II Hospital, 80 Prądnicka Street, 31-202 Kraków, Poland
| | - Paweł T Matusik
- Centre for Rare Cardiovascular Diseases, The John Paul II Hospital, 80 Prądnicka Street, 31-202 Kraków, Poland.,Department of Electrocardiology, Institute of Cardiology, Jagiellonian University Medical College, 80 Prądnicka Street, Kraków, Poland
| |
Collapse
|
33
|
Yin HM, Yan LF, Liu Q, Peng Z, Zhang CY, Xia Y, Su D, Gu AH, Zhou Y. Activating transcription factor 3 coordinates differentiation of cardiac and hematopoietic progenitors by regulating glucose metabolism. SCIENCE ADVANCES 2020; 6:eaay9466. [PMID: 32494702 PMCID: PMC7202888 DOI: 10.1126/sciadv.aay9466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/27/2020] [Indexed: 05/10/2023]
Abstract
The cardiac and hematopoietic progenitors (CPs and HPs, respectively) in the mesoderm ultimately form a well-organized circulation system, but mechanisms that reconcile their development remain elusive. We found that activating transcription factor 3 (atf3) was highly expressed in the CPs, HPs, and mesoderm, in zebrafish. The atf3 -/- mutants exhibited atrial dilated cardiomyopathy and a high ratio of immature myeloid cells. These manifestations were primarily caused by the blockade of differentiation of both CPs and HPs within the anterior lateral plate mesoderm. Mechanistically, Atf3 targets cebpγ to repress slc2a1a-mediated glucose utilization. The high rate of glucose metabolism in atf3 -/- mutants inhibited the differentiation of progenitors by changing the redox state. Therefore, atf3 could provide CPs and HPs with metabolic adaptive capacity to changes in glucose levels. Our study provides new insights into the role of atf3 in the coordination of differentiation of CPs and HPs by regulating glucose metabolism.
Collapse
Affiliation(s)
- Hui-Min Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li-Feng Yan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zheng Peng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Yuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Xia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dan Su
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ai-Hua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Corresponding author. (A.-H.G.); (Y.Z.)
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author. (A.-H.G.); (Y.Z.)
| |
Collapse
|
34
|
Pereira GC, Pereira SP, Pereira FB, Lourenço N, Lumini JA, Pereira CV, Bjork JA, Magalhães J, Ascensão A, Wieckowski MR, Moreno AJ, Wallace KB, Oliveira PJ. Early Cardiac Mitochondrial Molecular and Functional Responses to Acute Anthracycline Treatment in Wistar Rats. Toxicol Sci 2020; 169:137-150. [PMID: 30698778 DOI: 10.1093/toxsci/kfz026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer drug widely used to treat human and nonhuman tumors but the late and persistent cardio-toxicity reduces the therapeutic utility of the drug. The full mechanism(s) of DOX-induced acute, subchronic and delayed toxicity, which has a preponderant mitochondrial component, remains unclear; therefore, it is clinically relevant to identify early markers to identify patients who are predisposed to DOX-related cardiovascular toxicity. To address this, Wistar rats (16 weeks old) were treated with a single DOX dose (20 mg/kg, i.p.); then, mRNA, protein levels and functional analysis of mitochondrial endpoints were assessed 24 h later in the heart, liver, and kidney. Using an exploratory data analysis, we observed cardiac-specific alterations after DOX treatment for mitochondrial complexes III, IV, and preferentially for complex I. Conversely, the same analysis revealed complex II alterations are associated with DOX response in the liver and kidney. Interestingly, H2O2 production by the mitochondrial respiratory chain as well as loss of calcium-loading capacity, markers of subchronic toxicity, were not reliable indicators of acute DOX cardiotoxicity in this animal model. By using sequential principal component analysis and feature correlation analysis, we demonstrated for the first time alterations in sets of transcripts and proteins, but not functional measurements, that might serve as potential early acute markers of cardiac-specific mitochondrial toxicity, contributing to explain the trajectory of DOX cardiac toxicity and to develop novel interventions to minimize DOX cardiac liabilities.
Collapse
Affiliation(s)
- Gonçalo C Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Cantanhede, Portugal.,School of Biochemistry, University Walk, University of Bristol, Bristol, UK
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Cantanhede, Portugal.,Research Centre in Physical Activity Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, Porto, Portugal
| | - Francisco B Pereira
- Centre for Informatics and Systems, University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra, Portugal.,Coimbra Polytechnic - ISEC, Coimbra, Portugal
| | - Nuno Lourenço
- Centre for Informatics and Systems, University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra, Portugal
| | - José A Lumini
- Health and Leisure, Faculty of Sport Sciences, University of Porto, Research Centre in Physical Activity, Porto, Portugal.,Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal.,LABIOMEP - Porto Biomechanics Laboratory, Porto University, Porto, Portugal
| | - Claudia V Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Cantanhede, Portugal.,University of Miami Miller School of Medicine, Neurological Research Building, Miami, Florida
| | - James A Bjork
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota
| | - José Magalhães
- Health and Leisure, Faculty of Sport Sciences, University of Porto, Research Centre in Physical Activity, Porto, Portugal
| | - António Ascensão
- Health and Leisure, Faculty of Sport Sciences, University of Porto, Research Centre in Physical Activity, Porto, Portugal
| | | | - António J Moreno
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Cantanhede, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Kendall B Wallace
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Cantanhede, Portugal
| |
Collapse
|
35
|
Nguyen Q, Lim KRQ, Yokota T. Genome Editing for the Understanding and Treatment of Inherited Cardiomyopathies. Int J Mol Sci 2020; 21:E733. [PMID: 31979133 PMCID: PMC7036815 DOI: 10.3390/ijms21030733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyopathies are diseases of heart muscle, a significant percentage of which are genetic in origin. Cardiomyopathies can be classified as dilated, hypertrophic, restrictive, arrhythmogenic right ventricular or left ventricular non-compaction, although mixed morphologies are possible. A subset of neuromuscular disorders, notably Duchenne and Becker muscular dystrophies, are also characterized by cardiomyopathy aside from skeletal myopathy. The global burden of cardiomyopathies is certainly high, necessitating further research and novel therapies. Genome editing tools, which include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR) systems have emerged as increasingly important technologies in studying this group of cardiovascular disorders. In this review, we discuss the applications of genome editing in the understanding and treatment of cardiomyopathy. We also describe recent advances in genome editing that may help improve these applications, and some future prospects for genome editing in cardiomyopathy treatment.
Collapse
Affiliation(s)
- Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (Q.N.); (K.R.Q.L.)
| | - Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (Q.N.); (K.R.Q.L.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (Q.N.); (K.R.Q.L.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
| |
Collapse
|
36
|
Seitz A, Hinck A, Bekeredjian R, Sechtem U. Late diagnosis of Barth syndrome in a 39-year-old patient with non-compaction cardiomyopathy and neutropenia. ESC Heart Fail 2020; 7:697-701. [PMID: 31967729 PMCID: PMC7160505 DOI: 10.1002/ehf2.12588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 11/07/2022] Open
Abstract
Barth syndrome is a rare X‐linked recessive disorder characterized by a broad spectrum of clinical features including cardiac and skeletal myopathy, neutropenia, exercise intolerance, and growth delay. Most affected patients are diagnosed during childhood, and mortality is highest in the first years of life. As a consequence, Barth syndrome is often considered a paediatric disease. Here, we report a case where the diagnosis was established in a 39‐year‐old patient with left ventricular non‐compaction and neutropenia. The clinical course of the patient presented here was relatively benign. This suggests that the prevalence of Barth syndrome in adults may be underestimated. Barth syndrome should be considered in the differential diagnosis of male patients with cardiomyopathy and neutropenia.
Collapse
Affiliation(s)
- Andreas Seitz
- Department of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Annely Hinck
- Department of Medicine-Cardiology, Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Raffi Bekeredjian
- Department of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Udo Sechtem
- Department of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| |
Collapse
|
37
|
Fatica EM, DeLeonibus GA, House A, Kodger JV, Pearce RW, Shah RR, Levi L, Sandlers Y. Barth Syndrome: Exploring Cardiac Metabolism with Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Metabolites 2019; 9:E306. [PMID: 31861102 PMCID: PMC6950123 DOI: 10.3390/metabo9120306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Barth syndrome (BTHS) is an X-linked recessive multisystem disorder caused by mutations in the TAZ gene (TAZ, G 4.5, OMIM 300394) that encodes for the acyltransferase tafazzin. This protein is highly expressed in the heart and plays a significant role in cardiolipin biosynthesis. Heart disease is the major clinical manifestation of BTHS with a high incidence in early life. Although the genetic basis of BTHS and tetralinoleoyl cardiolipin deficiency in BTHS-affected individuals are well-established, downstream metabolic changes in cardiac metabolism are still uncovered. Our study aimed to characterize TAZ-induced metabolic perturbations in the heart. Control (PGP1-TAZWT) and TAZ mutant (PGP1-TAZ517delG) iPS-CM were incubated with 13C6-glucose and 13C5-glutamine and incorporation of 13C into downstream Krebs cycle intermediates was traced. Our data reveal that TAZ517delG induces accumulation of cellular long chain acylcarnitines and overexpression of fatty acid binding protein (FABP4). We also demonstrate that TAZ517delG induces metabolic alterations in pathways related to energy production as reflected by high glucose uptake, an increase in glycolytic lactate production and a decrease in palmitate uptake. Moreover, despite mitochondrial dysfunction, in the absence of glucose and fatty acids, TAZ517delG-iPS-CM can use glutamine as a carbon source to replenish the Krebs cycle.
Collapse
Affiliation(s)
- Erica M. Fatica
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Gina A. DeLeonibus
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Alisha House
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Jillian V. Kodger
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Ryan W. Pearce
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Rohan R. Shah
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Liraz Levi
- Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Yana Sandlers
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| |
Collapse
|
38
|
Machiraju P, Wang X, Sabouny R, Huang J, Zhao T, Iqbal F, King M, Prasher D, Lodha A, Jimenez-Tellez N, Ravandi A, Argiropoulos B, Sinasac D, Khan A, Shutt TE, Greenway SC. SS-31 Peptide Reverses the Mitochondrial Fragmentation Present in Fibroblasts From Patients With DCMA, a Mitochondrial Cardiomyopathy. Front Cardiovasc Med 2019; 6:167. [PMID: 31803760 PMCID: PMC6873783 DOI: 10.3389/fcvm.2019.00167] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/31/2019] [Indexed: 12/04/2022] Open
Abstract
We used patient dermal fibroblasts to characterize the mitochondrial abnormalities associated with the dilated cardiomyopathy with ataxia syndrome (DCMA) and to study the effect of the mitochondrially-targeted peptide SS-31 as a potential novel therapeutic. DCMA is a rare and understudied autosomal recessive disorder thought to be related to Barth syndrome but caused by mutations in DNAJC19, a protein of unknown function localized to the mitochondria. The clinical disease is characterized by 3-methylglutaconic aciduria, dilated cardiomyopathy, abnormal neurological development, and other heterogeneous features. Until recently no effective therapies had been identified and affected patients frequently died in early childhood from intractable heart failure. Skin fibroblasts from four pediatric patients with DCMA were used to establish parameters of mitochondrial dysfunction. Mitochondrial structure, reactive oxygen species (ROS) production, cardiolipin composition, and gene expression were evaluated. Immunocytochemistry with semi-automated quantification of mitochondrial structural metrics and transmission electron microscopy demonstrated mitochondria to be highly fragmented in DCMA fibroblasts compared to healthy control cells. Live-cell imaging demonstrated significantly increased ROS production in patient cells. These abnormalities were reversed by treating DCMA fibroblasts with SS-31, a synthetic peptide that localizes to the inner mitochondrial membrane. Levels of cardiolipin were not significantly different between control and DCMA cells and were unaffected by SS-31 treatment. Our results demonstrate the abnormal mitochondria in fibroblasts from patients with DCMA and suggest that SS-31 may represent a potential therapy for this devastating disease.
Collapse
Affiliation(s)
- Pranav Machiraju
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xuemei Wang
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rasha Sabouny
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joshua Huang
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tian Zhao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fatima Iqbal
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Melissa King
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dimple Prasher
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arijit Lodha
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nerea Jimenez-Tellez
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, St. Boniface Hospital Research Centre, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Bob Argiropoulos
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Sinasac
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Timothy E Shutt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
39
|
Rohani L, Machiraju P, Sabouny R, Meng G, Liu S, Zhao T, Iqbal F, Wang X, Ravandi A, Wu JC, Khan A, Shutt T, Rancourt D, Greenway SC. Reversible Mitochondrial Fragmentation in iPSC-Derived Cardiomyocytes From Children With DCMA, a Mitochondrial Cardiomyopathy. Can J Cardiol 2019; 36:554-563. [PMID: 32046906 DOI: 10.1016/j.cjca.2019.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy with ataxia syndrome (DCMA) is an understudied autosomal recessive disease caused by loss-of-function mutations in the poorly characterized gene DNAJC19. Clinically, DCMA is commonly associated with heart failure and early death in affected children through an unknown mechanism. DCMA has been linked to Barth syndrome, a rare but well-studied disorder caused by deficient maturation of cardiolipin (CL), a key mitochondrial membrane phospholipid. METHODS Peripheral blood mononuclear cells from 2 children with DCMA and severe cardiac dysfunction were reprogrammed into induced pluripotent stem cells (iPSCs). Patient and control iPSCs were differentiated into beating cardiomyocytes (iPSC-CMs) using a metabolic selection strategy. Mitochondrial structure and CL content before and after incubation with the mitochondrially targeted peptide SS-31 were quantified. RESULTS Patient iPSCs carry the causative DNAJC19 mutation (rs137854888) found in the Hutterite population, and the iPSC-CMs demonstrated highly fragmented and abnormally shaped mitochondria associated with an imbalanced isoform ratio of the mitochondrial protein OPA1, an important regulator of mitochondrial fusion. These abnormalities were reversible by incubation with SS-31 for 24 hours. Differentiation of iPSCs into iPSC-CMs increased the number of CL species observed, but consistent, significant differences in CL content were not seen between patients and control. CONCLUSIONS We describe a unique and novel cellular model that provides insight into the mitochondrial abnormalities present in DCMA and identifies SS-31 as a potential therapeutic for this devastating disease.
Collapse
Affiliation(s)
- Leili Rohani
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pranav Machiraju
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rasha Sabouny
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Guoliang Meng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shiying Liu
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tian Zhao
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fatima Iqbal
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xuemei Wang
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology and Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy Shutt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Derrick Rancourt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Steven C Greenway
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
40
|
Loss of Peter Pan (PPAN) Affects Mitochondrial Homeostasis and Autophagic Flux. Cells 2019; 8:cells8080894. [PMID: 31416196 PMCID: PMC6721654 DOI: 10.3390/cells8080894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/30/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022] Open
Abstract
Nucleolar stress is a cellular response to inhibition of ribosome biogenesis or nucleolar disruption leading to cell cycle arrest and/or apoptosis. Emerging evidence points to a tight connection between nucleolar stress and autophagy as a mechanism underlying various diseases such as neurodegeneration and treatment of cancer. Peter Pan (PPAN) functions as a key regulator of ribosome biogenesis. We previously showed that human PPAN localizes to nucleoli and mitochondria and that PPAN knockdown triggers a p53-independent nucleolar stress response culminating in mitochondrial apoptosis. Here, we demonstrate a novel role of PPAN in the regulation of mitochondrial homeostasis and autophagy. Our present study characterizes PPAN as a factor required for maintaining mitochondrial integrity and respiration-coupled ATP production. PPAN interacts with cardiolipin, a lipid of the inner mitochondrial membrane. Down-regulation of PPAN enhances autophagic flux in cancer cells. PPAN knockdown promotes recruitment of the E3-ubiquitin ligase Parkin to damaged mitochondria. Moreover, we provide evidence that PPAN knockdown decreases mitochondrial mass in Parkin-expressing cells. In summary, our study uncovers that PPAN knockdown is linked to mitochondrial damage and stimulates autophagy.
Collapse
|
41
|
Kimura T, Kimura AK, Ren M, Monteiro V, Xu Y, Berno B, Schlame M, Epand RM. Plasmalogen loss caused by remodeling deficiency in mitochondria. Life Sci Alliance 2019; 2:e201900348. [PMID: 31434794 PMCID: PMC6707388 DOI: 10.26508/lsa.201900348] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022] Open
Abstract
Lipid homeostasis is crucial in human health. Barth syndrome (BTHS), a life-threatening disease typically diagnosed with cardiomyopathy and neutropenia, is caused by mutations in the mitochondrial transacylase tafazzin. By high-resolution 31P nuclear magnetic resonance (NMR) with cryoprobe technology, recently we found a dramatic loss of choline plasmalogen in the tafazzin-knockdown (TAZ-KD) mouse heart, besides observing characteristic cardiolipin (CL) alterations in BTHS. In inner mitochondrial membrane where tafazzin locates, CL and diacyl phosphatidylethanolamine are known to be essential via lipid-protein interactions reflecting their cone shape for integrity of respiratory chain supercomplexes and cristae ultrastructure. Here, we investigate the TAZ-KD brain, liver, kidney, and lymphoblast from patients compared with controls. We identified common yet markedly cell type-dependent losses of ethanolamine plasmalogen as the dominant plasmalogen class therein. Tafazzin function thus critically relates to homeostasis of plasmalogen, which in the ethanolamine class has conceivably analogous and more potent molecular functions in mitochondria than diacyl phosphatidylethanolamine. The present discussion of a loss of plasmalogen-protein interaction applies to other diseases with mitochondrial plasmalogen loss and aberrant forms of this organelle, including Alzheimer's disease.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Atsuko K Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Mindong Ren
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, USA
- Department of Anesthesiology, New York University Langone Medical Center, New York, NY, USA
| | - Vernon Monteiro
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Yang Xu
- Department of Anesthesiology, New York University Langone Medical Center, New York, NY, USA
| | - Bob Berno
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Michael Schlame
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, USA
- Department of Anesthesiology, New York University Langone Medical Center, New York, NY, USA
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
42
|
Bondue A, Arbustini E, Bianco A, Ciccarelli M, Dawson D, De Rosa M, Hamdani N, Hilfiker-Kleiner D, Meder B, Leite-Moreira AF, Thum T, Tocchetti CG, Varricchi G, Van der Velden J, Walsh R, Heymans S. Complex roads from genotype to phenotype in dilated cardiomyopathy: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc Res 2018; 114:1287-1303. [PMID: 29800419 PMCID: PMC6054212 DOI: 10.1093/cvr/cvy122] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/05/2018] [Accepted: 05/16/2018] [Indexed: 12/14/2022] Open
Abstract
Dilated cardiomyopathy (DCM) frequently affects relatively young, economically, and socially active adults, and is an important cause of heart failure and transplantation. DCM is a complex disease and its pathological architecture encounters many genetic determinants interacting with environmental factors. The old perspective that every pathogenic gene mutation would lead to a diseased heart, is now being replaced by the novel observation that the phenotype depends not only on the penetrance-malignancy of the mutated gene-but also on epigenetics, age, toxic factors, pregnancy, and a diversity of acquired diseases. This review discusses how gene mutations will result in mutation-specific molecular alterations in the heart including increased mitochondrial oxidation (sarcomeric gene e.g. TTN), decreased calcium sensitivity (sarcomeric genes), fibrosis (e.g. LMNA and TTN), or inflammation. Therefore, getting a complete picture of the DCM patient will include genomic data, molecular assessment by preference from cardiac samples, stratification according to co-morbidities, and phenotypic description. Those data will help to better guide the heart failure and anti-arrhythmic treatment, predict response to therapy, develop novel siRNA-based gene silencing for malignant gene mutations, or intervene with mutation-specific altered gene pathways in the heart.This article is part of the Mini Review Series from the Varenna 2017 meeting of the Working Group of Myocardial Function of the European Society of Cardiology.
Collapse
Affiliation(s)
- Antoine Bondue
- Department of Cardiology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Anna Bianco
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands
| | - Michele Ciccarelli
- School of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Dana Dawson
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Matteo De Rosa
- School of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University Bochum, Bochum, Germany
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Benjamin Meder
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Genome Technology Center, Palo Alto, CA, USA
| | - Adelino F Leite-Moreira
- Cardiovascular R&D Unit, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Hospital of S. João, Porto, Portugal
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Jolanda Van der Velden
- Department of Physiology, VU University Medical Centre, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Roddy Walsh
- Cardiovascular Research Center, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, UK
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| |
Collapse
|
43
|
Pacheu-Grau D, Rucktäschel R, Deckers M. Mitochondrial dysfunction and its role in tissue-specific cellular stress. Cell Stress 2018; 2:184-199. [PMID: 31225486 PMCID: PMC6551628 DOI: 10.15698/cst2018.07.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial bioenergetics require the coordination of two different and independent genomes. Mutations in either genome will affect mitochondrial functionality and produce different sources of cellular stress. Depending on the kind of defect and stress, different tissues and organs will be affected, leading to diverse pathological conditions. There is no curative therapy for mitochondrial diseases, nevertheless, there are strategies described that fight the various stress forms caused by the malfunctioning organelles. Here, we will revise the main kinds of stress generated by mutations in mitochondrial genes and outline several ways of fighting this stress.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Robert Rucktäschel
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| |
Collapse
|
44
|
Johnson JM, Ferrara PJ, Verkerke ARP, Coleman CB, Wentzler EJ, Neufer PD, Kew KA, de Castro Brás LE, Funai K. Targeted overexpression of catalase to mitochondria does not prevent cardioskeletal myopathy in Barth syndrome. J Mol Cell Cardiol 2018; 121:94-102. [PMID: 30008435 DOI: 10.1016/j.yjmcc.2018.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/20/2018] [Accepted: 07/01/2018] [Indexed: 12/25/2022]
Abstract
Barth Syndrome (BTHS) is an X-linked recessive disorder characterized by cardiomyopathy and muscle weakness. The underlying cause of BTHS is a mutation in the tafazzin (TAZ) gene, a key enzyme of cardiolipin biosynthesis. The lack of CL arising from loss of TAZ function results in destabilization of the electron transport system, promoting oxidative stress that is thought to contribute to development of cardioskeletal myopathy. Indeed, in vitro studies demonstrate that mitochondria-targeted antioxidants improve contractile capacity in TAZ-deficient cardiomyocytes. The purpose of the present study was to determine if resolving mitochondrial oxidative stress would be sufficient to prevent cardiomyopathy and skeletal myopathy in vivo using a mouse model of BTHS. To this end we crossed mice that overexpress catalase in the mitochondria (MCAT mice) with TAZ-deficient mice (TAZKD) to produce TAZKD mice that selectively overexpress catalase in the mitochondria (TAZKD+MCAT mice). TAZKD+MCAT mice exhibited decreased mitochondrial H2O2 emission and lipid peroxidation compared to TAZKD littermates, indicating decreased oxidative stress. Despite the improvements in oxidative stress, TAZKD+MCAT mice developed cardiomyopathy and mild muscle weakness similar to TAZKD littermates. These findings indicate that resolving oxidative stress is not sufficient to suppress cardioskeletal myopathy associated with BTHS.
Collapse
Affiliation(s)
- Jordan M Johnson
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Patrick J Ferrara
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Anthony R P Verkerke
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Chanel B Coleman
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Edward J Wentzler
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - P Darrell Neufer
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Kimberly A Kew
- Department of Chemistry, East Carolina University, Greenville, NC, USA
| | | | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA; Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
45
|
Sipido KR, Vandevelde W. A virtual issue for the CBCS Summer School 2017: focus on hot topics. Cardiovasc Res 2018; 113:708-710. [PMID: 28525919 DOI: 10.1093/cvr/cvx083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Karin R Sipido
- Department of Cardiovascular Sciences, Experimental Cardiology, KU Leuven, University of Leuven, Campus Gasthuisberg O/N1?704, Herestraat 49, B-3000 Leuven, Belgium
| | - Wouter Vandevelde
- Department of Cardiovascular Sciences, Experimental Cardiology, KU Leuven, University of Leuven, Campus Gasthuisberg O/N1?704, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
46
|
Kimura T, Kimura AK, Ren M, Berno B, Xu Y, Schlame M, Epand RM. Substantial Decrease in Plasmalogen in the Heart Associated with Tafazzin Deficiency. Biochemistry 2018; 57:2162-2175. [PMID: 29557170 PMCID: PMC5893435 DOI: 10.1021/acs.biochem.8b00042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tafazzin is the mitochondrial enzyme that catalyzes transacylation between a phospholipid and a lysophospholipid in remodeling. Mutations in tafazzin cause Barth syndrome, a potentially life-threatening disease with the major symptom being cardiomyopathy. In the tafazzin-deficient heart, cardiolipin (CL) acyl chains become abnormally heterogeneous unlike those in the normal heart with a single dominant linoleoyl species, tetralinoleoyl CL. In addition, the amount of CL decreases and monolysocardiolipin (MLCL) accumulates. Here we determine using high-resolution 31P nuclear magnetic resonance with cryoprobe technology the fundamental phospholipid composition, including the major but oxidation-labile plasmalogens, in the tafazzin-knockdown (TAZ-KD) mouse heart as a model of Barth syndrome. In addition to confirming a lower level of CL (6.4 ± 0.1 → 2.0 ± 0.4 mol % of the total phospholipid) and accumulation of MLCL (not detected → 3.3 ± 0.5 mol %) in the TAZ-KD, we found a substantial reduction in the level of plasmenylcholine (30.8 ± 2.8 → 18.1 ± 3.1 mol %), the most abundant phospholipid in the control wild type. A quantitative Western blot revealed that while the level of peroxisomes, where early steps of plasmalogen synthesis take place, was normal in the TAZ-KD model, expression of Far1 as a rate-determining enzyme in plasmalogen synthesis was dramatically upregulated by 8.3 (±1.6)-fold to accelerate the synthesis in response to the reduced level of plasmalogen. We confirmed lyso-plasmenylcholine or plasmenylcholine is a substrate of purified tafazzin for transacylation with CL or MLCL, respectively. Our results suggest that plasmenylcholine, abundant in linoleoyl species, is important in remodeling CL in the heart. Tafazzin deficiency thus has a major impact on the cardiac plasmenylcholine level and thereby its functions.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Atsuko K. Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mindong Ren
- Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016
| | - Bob Berno
- Department of Chemistry, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yang Xu
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY 10016
| | - Michael Schlame
- Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY 10016
| | - Richard M. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
47
|
Report on the Ion Channel Symposium : Organized by the German Cardiac Society Working Group on Cellular Electrophysiology (AG 18). Herzschrittmacherther Elektrophysiol 2018; 29:4-13. [PMID: 29313139 DOI: 10.1007/s00399-017-0549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
To support scientific exchange and activity in the field of cardiac cellular electrophysiology, the German Cardiac Society Working Group on Cellular Electrophysiology (AG 18) established a two-day symposium to be held every 2 years. The second Ion Channel Symposium entitled "Göttingen Channels 2017-Of Benches and Beds" took place in Göttingen from September 22nd to 23rd under the auspices of the German Cardiac Society. A group of national and international experts presented scientific advances in cardiac electrophysiology and rhythmology. The symposium's primary focus was the significance of cellular electrophysiology findings for the optimization of diagnostic and therapeutic strategies against cardiac arrhythmias. To this end, speakers, chairpersons and attendees discussed the contribution of specific molecular alterations to the initiation and perpetuation of atrial and ventricular arrhythmias. Furthermore, the meeting highlighted how discoveries in electrophysiological research may lead to novel therapeutic targets. The interdisciplinary assessment of mechanisms and therapeutic strategies of cardiac arrhythmias represented a key feature of the meeting. A unique combination of topics and speakers representing both basic science and clinical electrophysiology ensured the scientific success of the "Göttingen Channels 2017" symposium. The next Ion Channel Symposium is planned to be hosted by the incoming co-chair of the German Cardiac Society Working Group on Cellular Electrophysiology in fall 2019.
Collapse
|
48
|
Dudek J. Role of Cardiolipin in Mitochondrial Signaling Pathways. Front Cell Dev Biol 2017; 5:90. [PMID: 29034233 PMCID: PMC5626828 DOI: 10.3389/fcell.2017.00090] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
The phospholipid cardiolipin (CL) is an essential constituent of mitochondrial membranes and plays a role in many mitochondrial processes, including respiration and energy conversion. Pathological changes in CL amount or species composition can have deleterious consequences for mitochondrial function and trigger the production of reactive oxygen species. Signaling networks monitor mitochondrial function and trigger an adequate cellular response. Here, we summarize the role of CL in cellular signaling pathways and focus on tissues with high-energy demand, like the heart. CL itself was recently identified as a precursor for the formation of lipid mediators. We highlight the concept of CL as a signaling platform. CL is exposed to the outer mitochondrial membrane upon mitochondrial stress and CL domains serve as a binding site in many cellular signaling events. During mitophagy, CL interacts with essential players of mitophagy like Beclin 1 and recruits the autophagic machinery by its interaction with LC3. Apoptotic signaling pathways require CL as a binding platform to recruit apoptotic factors such as tBid, Bax, caspase-8. CL required for the activation of the inflammasome and plays a role in inflammatory signaling. As changes in CL species composition has been observed in many diseases, the signaling pathways described here may play a general role in pathology.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
49
|
Maack C, Murphy E. Metabolic cardiomyopathies - fighting the next epidemic. Cardiovasc Res 2017; 113:367-369. [PMID: 28203832 PMCID: PMC5852643 DOI: 10.1093/cvr/cvx022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg 66421, Germany
| | | |
Collapse
|