1
|
Hong L, Zhang M, Ly OT, Chen H, Sridhar A, Lambers E, Chalazan B, Youn SW, Maienschein-Cline M, Feferman L, Ong SG, Wu JC, Rehman J, Darbar D. Human induced pluripotent stem cell-derived atrial cardiomyocytes carrying an SCN5A mutation identify nitric oxide signaling as a mediator of atrial fibrillation. Stem Cell Reports 2021; 16:1542-1554. [PMID: 34019817 PMCID: PMC8190590 DOI: 10.1016/j.stemcr.2021.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in SCN5A, encoding the cardiac sodium channel, are linked with familial atrial fibrillation (AF) but the underlying pathophysiologic mechanisms and implications for therapy remain unclear. To characterize the pathogenesis of AF-linked SCN5A mutations, we generated patient-specific induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) from two kindreds carrying SCN5A mutations (E428K and N470K) and isogenic controls using CRISPR-Cas9 gene editing. We showed that mutant AF iPSC-aCMs exhibited spontaneous arrhythmogenic activity with beat-to-beat irregularity, prolonged action potential duration, and triggered-like beats. Single-cell recording revealed enhanced late sodium currents (INa,L) in AF iPSC-aCMs that were absent in a heterologous expression model. Gene expression profiling of AF iPSC-aCMs showed differential expression of the nitric oxide (NO)-mediated signaling pathway underlying enhanced INa,L. We showed that patient-specific AF iPSC-aCMs exhibited striking in vitro electrophysiological phenotype of AF-linked SCN5A mutations, and transcriptomic analyses supported that the NO signaling pathway modulated the INa,L and triggered AF.
Collapse
Affiliation(s)
- Liang Hong
- Division of Cardiology, Department of Medicine, Chicago, IL, USA.
| | - Meihong Zhang
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Olivia Thao Ly
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Hanna Chen
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Erin Lambers
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Brandon Chalazan
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Seock-Won Youn
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | | | - Leonid Feferman
- Research Informatics Core, Research Resources Center, Chicago, IL, USA
| | - Sang-Ging Ong
- Division of Cardiology, Department of Medicine, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Administration Medical Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Schmidt C, Ravens U. Genetic background of atrial fibrillation: influence of single-nucleotide polymorphisms. Cardiovasc Res 2021; 116:e106-e108. [PMID: 32623450 DOI: 10.1093/cvr/cvaa166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Safabakhsh S, Panwar P, Barichello S, Sangha SS, Hanson PJ, Van Petegem F, Laksman Z. THE ROLE OF PHOSPHORYLATION IN ATRIAL FIBRILLATION: A FOCUS ON MASS SPECTROMETRY APPROACHES. Cardiovasc Res 2021; 118:1205-1217. [PMID: 33744917 DOI: 10.1093/cvr/cvab095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/16/2021] [Indexed: 11/14/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide. It is associated with significant increases in morbidity in the form of stroke and heart failure, and a doubling in all-cause mortality. The pathophysiology of AF is incompletely understood, and this has contributed to a lack of effective treatments and disease-modifying therapies. An important cellular process that may explain how risk factors give rise to AF includes post-translational modification (PTM) of proteins. As the most commonly occurring PTM, protein phosphorylation is especially relevant. Although many methods exist for studying protein phosphorylation, a common and highly resolute technique is mass spectrometry (MS). This review will discuss recent evidence surrounding the role of protein phosphorylation in the pathogenesis of AF. MS-based technology to study phosphorylation and uses of MS in other areas of medicine such as oncology will also be presented. Based on these data, future goals and experiments will be outlined that utilize MS technology to better understand the role of phosphorylation in AF and elucidate its role in AF pathophysiology. This may ultimately allow for the development of more effective AF therapies.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pankaj Panwar
- AbCellera Biologicals Inc., Vancouver, British Columbia, Canada
| | - Scott Barichello
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarabjit S Sangha
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | - Paul J Hanson
- UBC Heart Lung Innovation Centre, Vancouver, British Columbia, Canada.,UBC Department of Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary Laksman
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Subramonian D, Wu YJ, Amed S, Sanatani S. Hyperthyroidism With Atrial Fibrillation in Children: A Case Report and Review of the Literature. Front Endocrinol (Lausanne) 2021; 12:689497. [PMID: 34616360 PMCID: PMC8488087 DOI: 10.3389/fendo.2021.689497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022] Open
Abstract
Atrial fibrillation is exceedingly rare in children with structurally and functionally normal hearts. We present a novel case of a 15-year-old female with known hyperthyroidism who subsequently developed atrial fibrillation. She had been suffering from fatigue, heat intolerance and myalgias for 6 months. Her initial TSH was 0.01mU/L, and free T4 was 75.4 pmol/L, with a free T3 of >30.8 pmol/L. An electrocardiogram showed atrial fibrillation with a ventricular rate of 141 beats per minute. An echocardiogram demonstrated an enlarged left atrium and ventricle, with mild mitral regurgitation. She was treated with methimazole and underwent synchronized cardioversion. She subsequently returned to a euthyroid state and remained in normal sinus rhythm. In this case, we discuss the physiologic and arrhythmogenic properties of thyroid hormone, with a summary of the existing literature on atrial fibrillation in hyperthyroidism in children. Current guidelines for treatment of atrial fibrillation are also outlined.
Collapse
Affiliation(s)
- Deepa Subramonian
- Division of Pediatric Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Yuwei Juliana Wu
- Division of Pediatric Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Shazhan Amed
- Division of Pediatric Endocrinology, University of British Columbia, Vancouver, BC, Canada
| | - Shubhayan Sanatani
- Division of Pediatric Cardiology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Shubhayan Sanatani,
| |
Collapse
|
5
|
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Christopher L -H Huang
- Physiological Laboratory and Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, UK
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Wong CK, Tse HF. New methodological approaches to atrial fibrillation drug discovery. Expert Opin Drug Discov 2020; 16:319-329. [PMID: 33016154 DOI: 10.1080/17460441.2021.1826432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical practice and rhythm control using pharmacological agents is required in selected patients. Nonetheless, current medication is only modestly efficacious and associated with significant cardiovascular and systemic side effects. More efficacious and safe drugs are required to restore and maintain sinus rhythm in patients with AF. AREAS COVERED In this review, several potential drug targets are discussed including trans-membrane ion channels, intracellular calcium signaling, gap junction signaling, atrial inflammation and fibrosis, and the autonomic nervous system. New tools and methodologies for AF drug development are also reviewed including gene therapy, genome-guided therapy, stem cell technologies, tissue engineering, and optogenetics. EXPERT OPINION In recent decades, there has been an increased understanding of the underlying pathogenesis of AF. As a result, there is a gradual paradigm shift from focusing only on trans-membrane ion channel inhibition to developing therapeutic agents that target other underlying arrhythmogenic mechanisms. Gene therapy and genome-guided therapy are emerging as novel treatments for AF with some success in proof-of-concept studies. Recent advances in stem cell technology, tissue engineering, and optogenetics may allow more effective in-vitro drug screening than conventional methodologies.
Collapse
Affiliation(s)
- Chun-Ka Wong
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
7
|
Bektik E, Cowan DB, Wang DZ. Long Non-Coding RNAs in Atrial Fibrillation: Pluripotent Stem Cell-Derived Cardiomyocytes as a Model System. Int J Mol Sci 2020; 21:ijms21155424. [PMID: 32751460 PMCID: PMC7432754 DOI: 10.3390/ijms21155424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is a type of sustained arrhythmia in humans often characterized by devastating alterations to the cardiac conduction system as well as the structure of the atria. AF can lead to decreased cardiac function, heart failure, and other complications. Long non-coding RNAs (lncRNAs) have been shown to play important roles in the cardiovascular system, including AF; however, a large group of lncRNAs is not conserved between mouse and human. Furthermore, AF has complex networks showing variations in mechanisms in different species, making it challenging to utilize conventional animal models to investigate the functional roles and potential therapeutic benefits of lncRNAs for AF. Fortunately, pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) offer a reliable platform to study lncRNA functions in AF because of certain electrophysiological and molecular similarities with native human CMs. In this review, we first summarize the broad aspects of lncRNAs in various heart disease settings, then focus on their potential roles in AF development and pathophysiology. We also discuss current uses of PSCs in AF research and describe how these studies could be developed into novel therapeutics for AF and other cardiovascular diseases.
Collapse
Affiliation(s)
- Emre Bektik
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Douglas B. Cowan
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Correspondence:
| |
Collapse
|
8
|
Li J, Xu C, Liu Y, Li Y, Du S, Zhang R, Sun Y, Zhang R, Wang Y, Xue H, Ni S, Asiya M, Xue G, Li Y, Shi L, Li D, Pan Z, Zhang Y, Wang Z, Cai B, Wang N, Yang B. Fibroblast growth factor 21 inhibited ischemic arrhythmias via targeting miR-143/EGR1 axis. Basic Res Cardiol 2020; 115:9. [PMID: 31900593 DOI: 10.1007/s00395-019-0768-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
Ventricular arrhythmia is the most common cause of sudden cardiac death in patients with myocardial infarction (MI). Fibroblast growth factor 21 (FGF21) has been shown to play an important role in cardiovascular and metabolic diseases. However, the effects of FGF21 on ventricular arrhythmias following MI have not been addressed yet. The present study was conducted to investigate the pharmacological action of FGF21 on ventricular arrhythmias after MI. Adult male mice were administrated with or without recombinant human basic FGF21 (rhbFGF21), and the susceptibility to arrhythmias was assessed by programmed electrical stimulation and optical mapping techniques. Here, we found that rhbFGF21 administration reduced the occurrence of ventricular tachycardia (VT), improved epicardial conduction velocity and shorted action potential duration at 90% (APD90) in infarcted mouse hearts. Mechanistically, FGF21 may improve cardiac electrophysiological remodeling as characterized by the decrease of INa and IK1 current density in border zone of infarcted mouse hearts. Consistently, in vitro study also demonstrated that FGF21 may rescue oxidant stress-induced dysfunction of INa and IK1 currents in cultured ventricular myocytes. We further found that oxidant stress-induced down-regulation of early growth response protein 1 (EGR1) contributed to INa and IK1 reduction in post-infarcted hearts, and FGF21 may recruit EGR1 into the SCN5A and KCNJ2 promoter regions to up-regulate NaV1.5 and Kir2.1 expression at transcriptional level. Moreover, miR-143 was identified as upstream of EGR1 and mediated FGF21-induced EGR1 up-regulation in cardiomyocytes. Collectively, rhbFGF21 administration effectively suppressed ventricular arrhythmias in post-infarcted hearts by regulating miR-143-EGR1-NaV1.5/Kir2.1 axis, which provides novel therapeutic strategies for ischemic arrhythmias in clinics.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chaoqian Xu
- Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yining Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuanshi Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Sijia Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ruijie Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuehang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ronghao Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hongru Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Sha Ni
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Mavlikhanova Asiya
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Genlong Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yanyao Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ling Shi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Desheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, China
| | - Zhiguo Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Benzhi Cai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin, 150081, China.
| | - Ning Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
9
|
Ghazizadeh Z, Kiviniemi T, Olafsson S, Plotnick D, Beerens ME, Zhang K, Gillon L, Steinbaugh MJ, Barrera V, Sui SH, Werdich AA, Kapur S, Eranti A, Gunn J, Jalkanen J, Airaksinen J, Kleber AG, Hollmén M, MacRae CA. Metastable Atrial State Underlies the Primary Genetic Substrate for MYL4 Mutation-Associated Atrial Fibrillation. Circulation 2019; 141:301-312. [PMID: 31735076 DOI: 10.1161/circulationaha.119.044268] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common clinical arrhythmia and is associated with heart failure, stroke, and increased mortality. The myocardial substrate for AF is poorly understood because of limited access to primary human tissue and mechanistic questions around existing in vitro or in vivo models. METHODS Using an MYH6:mCherry knock-in reporter line, we developed a protocol to generate and highly purify human pluripotent stem cell-derived cardiomyocytes displaying physiological and molecular characteristics of atrial cells. We modeled human MYL4 mutants, one of the few definitive genetic causes of AF. To explore non-cell-autonomous components of AF substrate, we also created a zebrafish Myl4 knockout model, which exhibited molecular, cellular, and physiologic abnormalities that parallel those in humans bearing the cognate mutations. RESULTS There was evidence of increased retinoic acid signaling in both human embryonic stem cells and zebrafish mutant models, as well as abnormal expression and localization of cytoskeletal proteins, and loss of intracellular nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide + hydrogen. To identify potentially druggable proximate mechanisms, we performed a chemical suppressor screen integrating multiple human cellular and zebrafish in vivo endpoints. This screen identified Cx43 (connexin 43) hemichannel blockade as a robust suppressor of the abnormal phenotypes in both models of MYL4 (myosin light chain 4)-related atrial cardiomyopathy. Immunofluorescence and coimmunoprecipitation studies revealed an interaction between MYL4 and Cx43 with altered localization of Cx43 hemichannels to the lateral membrane in MYL4 mutants, as well as in atrial biopsies from unselected forms of human AF. The membrane fraction from MYL4-/- human embryonic stem cell derived atrial cells demonstrated increased phospho-Cx43, which was further accentuated by retinoic acid treatment and by the presence of risk alleles at the Pitx2 locus. PKC (protein kinase C) was induced by retinoic acid, and PKC inhibition also rescued the abnormal phenotypes in the atrial cardiomyopathy models. CONCLUSIONS These data establish a mechanistic link between the transcriptional, metabolic and electrical pathways previously implicated in AF substrate and suggest novel avenues for the prevention or therapy of this common arrhythmia.
Collapse
Affiliation(s)
- Zaniar Ghazizadeh
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tuomas Kiviniemi
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Heart Center, Turku University Hospital (T.K., A.E., J.G., J.A.), Harvard T.H
- University of Turku, Finland (T.K., A.E., J.G., J.A.). Harvard T.H
| | - Sigurast Olafsson
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David Plotnick
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Manu E Beerens
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kun Zhang
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Leah Gillon
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Victor Barrera
- Chan School of Public Health, Boston, MA (M.J.S., V.B., S.H.S.)
| | - Shannan Ho Sui
- Chan School of Public Health, Boston, MA (M.J.S., V.B., S.H.S.)
| | - Andreas A Werdich
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sunil Kapur
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Antti Eranti
- Heart Center, Turku University Hospital (T.K., A.E., J.G., J.A.), Harvard T.H
- University of Turku, Finland (T.K., A.E., J.G., J.A.). Harvard T.H
| | - Jarmo Gunn
- Heart Center, Turku University Hospital (T.K., A.E., J.G., J.A.), Harvard T.H
- University of Turku, Finland (T.K., A.E., J.G., J.A.). Harvard T.H
| | - Juho Jalkanen
- Medicity Research Laboratories (J.J., M.H.), Harvard T.H
| | - Juhani Airaksinen
- Heart Center, Turku University Hospital (T.K., A.E., J.G., J.A.), Harvard T.H
- University of Turku, Finland (T.K., A.E., J.G., J.A.). Harvard T.H
| | - Andre G Kleber
- Department of Pathology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA (A.G.K.)
| | - Maija Hollmén
- Medicity Research Laboratories (J.J., M.H.), Harvard T.H
| | - Calum A MacRae
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Genetics and Network Medicine Divisions (C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Boston, MA (C.A.M.)
| |
Collapse
|
10
|
Martin GP, Mamas MA. Importance of quality control in 'big data': implications for statistical inference of electronic health records in clinical cardiology. Cardiovasc Res 2019; 115:e63-e65. [PMID: 30907408 DOI: 10.1093/cvr/cvy290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Glen P Martin
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Mamas A Mamas
- Keele Cardiovascular Research Group, Centre for Prognosis Research, Institute for Primary Care and Health Sciences, Keele University, Stoke-on-Trent, UK
| |
Collapse
|
11
|
Computational modeling: What does it tell us about atrial fibrillation therapy? Int J Cardiol 2019; 287:155-161. [PMID: 30803891 DOI: 10.1016/j.ijcard.2019.01.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/09/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is a complex cardiac arrhythmia with diverse etiology that negatively affects morbidity and mortality of millions of patients. Technological and experimental advances have provided a wealth of information on the pathogenesis of AF, highlighting a multitude of mechanisms involved in arrhythmia initiation and maintenance, and disease progression. However, it remains challenging to identify the predominant mechanisms for specific subgroups of AF patients, which, together with an incomplete understanding of the pleiotropic effects of antiarrhythmic therapies, likely contributes to the suboptimal efficacy of current antiarrhythmic approaches. Computer modeling of cardiac electrophysiology has advanced in parallel to experimental research and provides an integrative framework to attempt to overcome some of these challenges. Multi-scale cardiac modeling and simulation integrate structural and functional data from experimental and clinical work with knowledge of atrial electrophysiological mechanisms and dynamics, thereby improving our understanding of AF mechanisms and therapy. In this review, we describe recent advances in our quantitative understanding of AF through mathematical models. We discuss computational modeling of AF mechanisms and therapy using detailed, mechanistic cell/tissue-level models, including approaches to incorporate variability in patient populations. We also highlight efforts using whole-atria models to improve catheter ablation therapies. Finally, we describe recent efforts and suggest future extensions to model clinical concepts of AF using patient-level models.
Collapse
|
12
|
Ni H, Morotti S, Grandi E. A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research. Front Physiol 2018; 9:958. [PMID: 30079031 PMCID: PMC6062641 DOI: 10.3389/fphys.2018.00958] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
In cardiac electrophysiology, there exist many sources of inter- and intra-personal variability. These include variability in conditions and environment, and genotypic and molecular diversity, including differences in expression and behavior of ion channels and transporters, which lead to phenotypic diversity (e.g., variable integrated responses at the cell, tissue, and organ levels). These variabilities play an important role in progression of heart disease and arrhythmia syndromes and outcomes of therapeutic interventions. Yet, the traditional in silico framework for investigating cardiac arrhythmias is built upon a parameter/property-averaging approach that typically overlooks the physiological diversity. Inspired by work done in genetics and neuroscience, new modeling frameworks of cardiac electrophysiology have been recently developed that take advantage of modern computational capabilities and approaches, and account for the variance in the biological data they are intended to illuminate. In this review, we outline the recent advances in statistical and computational techniques that take into account physiological variability, and move beyond the traditional cardiac model-building scheme that involves averaging over samples from many individuals in the construction of a highly tuned composite model. We discuss how these advanced methods have harnessed the power of big (simulated) data to study the mechanisms of cardiac arrhythmias, with a special emphasis on atrial fibrillation, and improve the assessment of proarrhythmic risk and drug response. The challenges of using in silico approaches with variability are also addressed and future directions are proposed.
Collapse
Affiliation(s)
| | | | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|