1
|
Forte M, Galli M, Sciarretta S. Erbb3 and Hspa2, two novel predictors of heart failure in diabetic patients. Cardiovasc Res 2024; 120:1827-1829. [PMID: 39450783 DOI: 10.1093/cvr/cvae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Affiliation(s)
- Maurizio Forte
- Department of Angiocardioneurology, IRCCS Neuromed, via Atinense 18, Pozzilli 86077, Italy
| | - Mattia Galli
- GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina 04100, Italy
| | - Sebastiano Sciarretta
- Department of Angiocardioneurology, IRCCS Neuromed, via Atinense 18, Pozzilli 86077, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina 04100, Italy
| |
Collapse
|
2
|
Jeong A, Lim Y, Kook T, Kwon DH, Cho YK, Ryu J, Lee YG, Shin S, Choe N, Kim YS, Cho HJ, Kim JC, Choi Y, Lee SJ, Kim HS, Kee HJ, Nam KI, Ahn Y, Jeong MH, Park WJ, Kim YK, Kook H. Circular RNA circSMAD4 regulates cardiac fibrosis by targeting miR-671-5p and FGFR2 in cardiac fibroblasts. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102071. [PMID: 38046397 PMCID: PMC10690640 DOI: 10.1016/j.omtn.2023.102071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Heart failure is a leading cause of death and is often accompanied by activation of quiescent cardiac myofibroblasts, which results in cardiac fibrosis. In this study, we aimed to identify novel circular RNAs that regulate cardiac fibrosis. We applied transverse aortic constriction (TAC) for 1, 4, and 8 weeks in mice. RNA sequencing datasets were obtained from cardiac fibroblasts isolated by use of a Langendorff apparatus and then further processed by use of selection criteria such as differential expression and conservation in species. CircSMAD4 was upregulated by TAC in mice or by transforming growth factor (TGF)-β1 in primarily cultured human cardiac fibroblasts. Delivery of si-circSMAD4 attenuated myofibroblast activation and cardiac fibrosis in mice treated with isoproterenol (ISP). si-circSmad4 significantly reduced cardiac fibrosis and remodeling at 8 weeks. Mechanistically, circSMAD4 acted as a sponge against the microRNA miR-671-5p in a sequence-specific manner. miR-671-5p was downregulated during myofibroblast activation and its mimic form attenuated cardiac fibrosis. miR-671-5p mimic destabilized fibroblast growth factor receptor 2 (FGFR2) mRNA in a sequence-specific manner and interfered with the fibrotic action of FGFR2. The circSMAD4-miR-671-5p-FGFR2 pathway is involved in the differentiation of cardiac myofibroblasts and thereby the development of cardiac fibrosis.
Collapse
Affiliation(s)
- Anna Jeong
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Yongwoon Lim
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Taewon Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Duk-Hwa Kwon
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Young Kuk Cho
- Department of Pediatrics, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Juhee Ryu
- Collage of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Gyeong Lee
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Sera Shin
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Nakwon Choe
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Yong Sook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hye Jung Cho
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Jeong Chul Kim
- Department of Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Su-Jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyung-Seok Kim
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Hae Jin Kee
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Kwang-Il Nam
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Woo Jin Park
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Young-Kook Kim
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Hyun Kook
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| |
Collapse
|
3
|
Yang HW, Sun YH, Fang CY, Ohiro Y, Liao HY, Liao YW, Kao YH, Yu CC. Downregulation of histone deacetylase 8 (HDAC8) alleviated the progression of oral submucous fibrosis. J Dent Sci 2023; 18:652-658. [PMID: 37021220 PMCID: PMC10068366 DOI: 10.1016/j.jds.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Indexed: 04/07/2023] Open
Abstract
Background/purpose Oral submucous fibrosis (OSF) is a premalignant disorder that is associated with betel nut chewing. The purpose of the study was to establish the role of histone deacetylase (HDAC) 8, one of histone deacetylases, in the regulation of fibrotic conditions to provide a therapeutic potential for OSF. Materials and methods First, we examined the expression of HDAC8 in fibrotic buccal mucosal fibroblasts (fBMFs) and OSF tissues. Markers of myofibroblasts and TGF-β signaling were conducted in fBMFs with HDAC8 knockdown were examined. Furthermore, epithelial-mesenchymal transition (EMT) markers, collagen gel contraction and migration ability were also examined in fBMFs transfected with sh-HDAC8. HDAC8 inhibitor was used to analyze the collagen gel contraction and wound healing ability in fBMFs. Results We observed the mRNA expression of HDAC8 was significantly increased in fBMFs. Compared to normal tissues, the protein level of HDAC8 was upregulated in OSF. Next, mRNA and protein expression of HDAC8 was significantly decreased, accompanying downregulation of α-SMA and COL1A1 in fBMFs infected with sh-HDAC8. To determine the critical role of HDAC8 in OSF fibrogenesis, results revealed that TGF-β secretion and the expression of EMT transcription factor SNAIL and p-Smad were significantly decreased in HDAC8-knockdown fBMFs. We further demonstrated that collagen gel contraction and migration ability were significantly decreased in fBMFs transfected with sh-HDAC8. Last, results revealed that significantly reduced collagen gel contraction and wound healing ability in fBMFs with HDAC8 inhibitor treatment. Conclusion We concluded that downregulation of HDAC8 alleviated the activities of myofibroblasts and TGF-β/Smad signaling pathway in OSF.
Collapse
Affiliation(s)
- Hui-Wen Yang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hwa Sun
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yuan Fang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yoichi Ohiro
- Oral and Maxillofacial Surgery, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Heng-Yi Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Corresponding author. Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Corresponding author. Institute of Oral Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan. Fax: +886 4 24759065.
| |
Collapse
|
4
|
Pradhan K, Niehues P, Neupane B, Maleck C, Sharif-Yakan A, Emrani M, Zink MD, Napp A, Marx N, Gramlich M. MicroRNA-21 mediated cross-talk between cardiomyocytes and fibroblasts in patients with atrial fibrillation. Front Cardiovasc Med 2023; 10:1056134. [PMID: 36873400 PMCID: PMC9982105 DOI: 10.3389/fcvm.2023.1056134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
Background Atrial fibrosis represents a major hallmark in disease progression of atrial fibrillation (AF). We have previously shown that circulating microRNA-21 (miR-21) correlates with the extent of left atrial fibrosis in patients undergoing catheter ablation for AF and can serve as a biomarker to predict ablation success. In this study, we aimed to validate the role of miR-21-5p as a biomarker in a large cohort of AF patients and to investigate its pathophysiological role in atrial remodeling. Methods For the validation cohort, we included 175 patients undergoing catheter ablation for AF. Bipolar voltage maps were obtained, circulating miR-21-5p was measured, and patients were followed-up for 12 months including ECG holter monitoring. AF was simulated by tachyarrhythmic pacing of cultured cardiomyocytes, the culture medium was transferred to fibroblast, and fibrosis pathways were analysed. Results 73.3% of patients with no/minor LVAs, 51.4% of patients with moderate LVAs and only 18.2% of patients with extensive LVAs were in stable sinus rhythm (SR) 12 months after ablation (p < 0.01). Circulating miR-21-5p levels significantly correlated with the extent of LVAs and event-free survival. In-vitro tachyarrhythmic pacing of HL-1 cardiomyocytes resulted in an increased miR-21-5p expression. Transfer of the culture medium to fibroblasts induced fibrosis pathways and collagen production. The HDAC1 inhibitor mocetinostat was found to inhibit atrial fibrosis development. Conclusion We validated miR-21-5p as a biomarker that reflects the extent of left atrial fibrosis in AF patients. Furthermore, we found that miR-21-5p is released in-vitro from cardiomyocytes under tachyarrhythmic conditions and stimulates fibroblasts in a paracrine mode to induce collagen production.
Collapse
Affiliation(s)
- Kabita Pradhan
- Department of Cardiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Paul Niehues
- Department of Cardiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Balram Neupane
- Department of Cardiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Carole Maleck
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Ahmad Sharif-Yakan
- Department of Cardiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Mahdi Emrani
- Department of Cardiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Matthias Daniel Zink
- Department of Cardiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Andreas Napp
- Department of Cardiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Cardiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Michael Gramlich
- Department of Cardiology, University Hospital RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Kemi OJ. Exercise and Calcium in the Heart. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Zhao P, Malik S. The phosphorylation to acetylation/methylation cascade in transcriptional regulation: how kinases regulate transcriptional activities of DNA/histone-modifying enzymes. Cell Biosci 2022; 12:83. [PMID: 35659740 PMCID: PMC9164400 DOI: 10.1186/s13578-022-00821-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription factors directly regulate gene expression by recognizing and binding to specific DNA sequences, involving the dynamic alterations of chromatin structure and the formation of a complex with different kinds of cofactors, like DNA/histone modifying-enzymes, chromatin remodeling factors, and cell cycle factors. Despite the significance of transcription factors, it remains unclear to determine how these cofactors are regulated to cooperate with transcription factors, especially DNA/histone modifying-enzymes. It has been known that DNA/histone modifying-enzymes are regulated by post-translational modifications. And the most common and important modification is phosphorylation. Even though various DNA/histone modifying-enzymes have been classified and partly explained how phosphorylated sites of these enzymes function characteristically in recent studies. It still needs to find out the relationship between phosphorylation of these enzymes and the diseases-associated transcriptional regulation. Here this review describes how phosphorylation affects the transcription activity of these enzymes and other functions, including protein stability, subcellular localization, binding to chromatin, and interaction with other proteins.
Collapse
|
7
|
Hou J, Wen X, Long P, Xiong S, Liu H, Cai L, Deng H, Zhang Z. The role of post-translational modifications in driving abnormal cardiovascular complications at high altitude. Front Cardiovasc Med 2022; 9:886300. [PMID: 36186970 PMCID: PMC9515308 DOI: 10.3389/fcvm.2022.886300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The high-altitude environment is characterized by hypobaric hypoxia, low temperatures, low humidity, and high radiation, which is a natural challenge for lowland residents entering. Previous studies have confirmed the acute and chronic effects of high altitude on the cardiovascular systems of lowlanders. Abnormal cardiovascular complications, including pulmonary edema, cardiac hypertrophy and pulmonary arterial hypertension were commonly explored. Effective evaluation of cardiovascular adaptive response in high altitude can provide a basis for early warning, prevention, diagnosis, and treatment of altitude diseases. At present, post-translational modifications (PTMs) of proteins are a key step to regulate their biological functions and dynamic interactions with other molecules. This process is regulated by countless enzymes called “writer, reader, and eraser,” and the performance is precisely controlled. Mutations and abnormal expression of these enzymes or their substrates have been implicated in the pathogenesis of cardiovascular diseases associated with high altitude. Although PTMs play an important regulatory role in key processes such as oxidative stress, apoptosis, proliferation, and hypoxia response, little attention has been paid to abnormal cardiovascular response at high altitude. Here, we reviewed the roles of PTMs in driving abnormal cardiovascular complications at high altitude.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People’s Hospital, Chengdu, China
| | - Pan Long
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hanxiong Liu
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Lin Cai
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- *Correspondence: Lin Cai,
| | - Haoyu Deng
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Center for Heart and Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Haoyu Deng,
| | - Zhen Zhang
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Zhen Zhang,
| |
Collapse
|
8
|
Analysis of Therapeutic Targets of A Novel Peptide Athycaltide-1 in the Treatment of Isoproterenol-Induced Pathological Myocardial Hypertrophy. Cardiovasc Ther 2022; 2022:2715084. [PMID: 35599721 PMCID: PMC9085328 DOI: 10.1155/2022/2715084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial hypertrophy is a pathological feature of many heart diseases. This is a complex process involving all types of cells in the heart and interactions with circulating cells. This study is aimed at identifying the differentially expressed proteins (DEPs) in myocardial hypertrophy rats induced by isoprenaline (ISO) and treated with novel peptide Athycaltide-1 (ATH-1) and exploring the mechanism of its improvement. ITRAQ was performed to compare the three different heart states in control group, ISO group, and ATH-1 group. Pairwise comparison showed that there were 121 DEPs in ISO/control (96 upregulated and 25 downregulated), 47 DEPs in ATH-1/ISO (27 upregulated and 20 downregulated), and 116 DEPs in ATH-1/control (77 upregulated and 39 downregulated). Protein network analysis was then performed using the STRING software. Functional analysis revealed that Hspa1 protein, oxidative stress, and MAPK signaling pathway were significantly involved in the occurrence and development of myocardial hypertrophy, which was further validated by vivo model. It is proved that ATH-1 can reduce the expression of Hspa1 protein and the level of oxidative stress in hypertrophic myocardium and further inhibit the phosphorylation of p38 MAPK, JNK, and ERK1/2.
Collapse
|
9
|
Ritchie JA, Ng JQ, Kemi OJ. When one says yes and the other says no; does calcineurin participate in physiologic cardiac hypertrophy? ADVANCES IN PHYSIOLOGY EDUCATION 2022; 46:84-95. [PMID: 34762541 DOI: 10.1152/advan.00104.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Developing engaging activities that build skills for understanding and appreciating research is important for undergraduate and postgraduate science students. Comparing and contrasting opposing research studies does this, and more: it also appropriately for these cohorts challenges higher level cognitive processing. Here, we present and discuss one such scenario, that of calcineurin in the heart and its response to exercise training. This scenario is further accentuated by the existence of only two studies. The background is that regular aerobic endurance exercise training stimulates the heart to physiologically adapt to chronically increase its ability to produce a greater cardiac output to meet the increased demand for oxygenated blood in working muscles, and this happens by two main mechanisms: 1) increased cardiac contractile function and 2) physiologic hypertrophy. The major underlying mechanisms have been delineated over the last decades, but one aspect has not been resolved: the potential role of calcineurin in modulating physiologic hypertrophy. This is partly because the existing research has provided opposing and contrasting findings, one line showing that exercise training does activate cardiac calcineurin in conjunction with myocardial hypertrophy, but another line showing that exercise training does not activate cardiac calcineurin even if myocardial hypertrophy is blatantly occurring. Here, we review and present the current evidence in the field and discuss reasons for this controversy. We present real-life examples from physiology research and discuss how this may enhance student engagement and participation, widen the scope of learning, and thereby also further facilitate higher level cognitive processing.
Collapse
Affiliation(s)
- Jonathan A Ritchie
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jun Q Ng
- School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ole J Kemi
- School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Hdac8 Inhibitor Alleviates Transverse Aortic Constriction-Induced Heart Failure in Mice by Downregulating Ace1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6227330. [PMID: 35126818 PMCID: PMC8813277 DOI: 10.1155/2022/6227330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022]
Abstract
Background Heart failure is characterized by activation of the renin-angiotensin-aldosterone system, which is involved in the regulation of cardiac hypertrophy and hypertension. Recently, we reported that Hdac8 inhibition alleviates isoproterenol-induced and angiotensin II-induced cardiac hypertrophy or hypertension in mice. Here, the effect and regulatory mechanisms of the Hdac8 selective inhibitor PCI34051 on pressure overload-induced heart failure were examined. Methods and Results At week 6 posttransverse aortic constriction (TAC), mice were administered with PCI34051 (3, 10, or 30 mg/kg bodyweight/day) for 2 weeks. The therapeutic effects of PCI34051 on TAC-induced cardiac and lung hypertrophy were determined by examining the heart weight-to-bodyweight and lung weight-to-bodyweight ratios and the cross-sectional cardiomyocyte area. Echocardiography analysis revealed that PCI34051 mitigated TAC-induced decreased ejection fraction and fractional shortening. Additionally, the expression of Hdac8 was upregulated in the cardiac and pulmonary tissues of TAC mice. The expression levels of Ace1 and Agtr1 were upregulated, whereas those of Ace2 and Agtr2 were downregulated in TAC mice. PCI34051 treatment or Hdac8 knockdown alleviated inflammation as evidenced by Rela downregulation and Nfkbia upregulation in mice, as well as in cardiomyocytes, but not in cardiac fibroblasts. Hdac8 overexpression-induced Rela pathway activation was downregulated in Ace1 knockdown cells. Picrosirius red staining, real-time polymerase chain reaction, and western blotting analyses revealed that PCI34051 alleviated fibrosis and downregulated fibrosis-related genes. Moreover, PCI34051 or Hdac8 knockdown in rat cardiac fibroblasts alleviated cardiac fibrosis through the Tgfb1-Smad2/3 pathway. The results of overexpression and knockdown experiments revealed that Hdac8 and Ace1 promote inflammation and fibrosis. Conclusions Treatment with PCI34051 enhanced cardiac and lung functions in the TAC-induced heart failure mouse model. These data suggest that HDAC8 is a potential novel therapeutic target for heart failure accompanied by pathological lung diseases.
Collapse
|
11
|
Han X, Peng C, Huang L, Luo X, Mao Q, Wu S, Zhang H. EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice. Int J Mol Med 2021; 49:11. [PMID: 34841436 PMCID: PMC8691946 DOI: 10.3892/ijmm.2021.5066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Myocardial remodeling is a complex pathological process and its mechanism is unclear. The present study investigated whether epigallocatechin gallate (EGCG) prevents myocardial remodeling by regulating histone acetylation and explored the mechanisms underlying this effect in the heart of a mouse model of transverse aortic constriction (TAC). A TAC mouse model was created by partial thoracic aortic banding (TAB). Subsequently, TAC mice were injected with EGCG at a dose of 50 mg/kg/day for 12 weeks. The hearts of mice were collected for analysis 4, 8 and 12 weeks after TAC. Histopathological changes in the heart were observed by hematoxylin and eosin, Masson trichrome and wheat germ agglutinin staining. Protein expression levels were investigated using western blotting. Cardiac function of mice was detected by echocardiography. The level of histone acetylated lysine 27 on histone H3 (H3K27ac) first increased and then decreased in the hearts of mice at 4, 8 and 12 weeks after TAC. The expression levels of two genes associated with pathological myocardial remodeling, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), also increased initially but then decreased. The expression levels of histone deacetylase 5 (HDAC5) gradually increased in the hearts of mice at 4, 8 and 12 weeks after TAC. Furthermore, EGCG increased acetylation of H3K27ac by inhibiting HDAC5 in the heart of TAC mice treated with EGCG for 12 weeks. EGCG normalized the transcriptional activity of heart nuclear transcription factor myocyte enhancer factor 2A in TAC mice treated for 12 weeks. The low expression levels of myocardial remodeling‑associated genes (ANP and BNP) were reversed by EGCG treatment for 12 weeks in TAC mice. In addition, EGCG reversed cardiac enlargement and improved cardiac function and survival in TAC mice when treated with EGCG for 12 weeks. Modification of the HDAC5‑mediated imbalance in histone H3K27ac served a key role in pathological myocardial remodeling. The present results show that EGCG prevented and delayed myocardial remodeling in TAC mice by inhibiting HDAC5.
Collapse
Affiliation(s)
- Xiao Han
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lixin Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaomei Luo
- Department of Physiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Mao
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shuqi Wu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Huanting Zhang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
12
|
Yoon S, Gergs U, McMullen JR, Eom GH. Overexpression of Heat Shock Protein 70 Improves Cardiac Remodeling and Survival in Protein Phosphatase 2A-Expressing Transgenic Mice with Chronic Heart Failure. Cells 2021; 10:cells10113180. [PMID: 34831402 PMCID: PMC8624068 DOI: 10.3390/cells10113180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
Heat shock protein (HSP) 70 is a molecular chaperone that regulates protein structure in response to thermal stress. In addition, HSP70 is involved in post-translational modification and is related to the severity of some diseases. Here, we tested the functional relevance of long-lasting HSP70 expression in a model of nonischemic heart failure using protein phosphatase 2 catalytic subunit A (PP2CA)-expressing transgenic mice. These transgenic mice, with cardiac-specific overexpression of PP2CA, abruptly died after 12 weeks of postnatal life. Serial echocardiograms to assess cardiac function revealed that the ejection fraction (EF) was gradually decreased in transgenic PP2CA (TgPP2CA) mice. In addition, PP2CA expression exacerbated systolic dysfunction and LV dilatation, with free wall thinning, which are indicators of fatal dilated cardiomyopathy. Interestingly, simultaneous expression of HSP70 in double transgenic mice (dTg) significantly improved the dilated cardiomyopathy phenotype of TgPP2CA mice. We observed better survival, preserved EF, reduced chamber enlargement, and suppression of free wall thinning. In the proposed molecular mechanism, HSP70 preferentially regulates the phosphorylation of AKT. Phosphorylation of AKT was significantly reduced in TgPP2CA mice but was not significantly lower in dTg mice. Signal crosstalk between AKT and its substrates, in association with HSP70, might be a useful intervention for patients with nonischemic heart failure to suppress cardiac remodeling and improve survival.
Collapse
Affiliation(s)
- Somy Yoon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea
- Correspondence: (S.Y.); (G.H.E.); Tel.: +82-61-379-2843 (S.Y.); +82-61-379-2837 (G.H.E.)
| | - Ulrich Gergs
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany;
| | | | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea
- Correspondence: (S.Y.); (G.H.E.); Tel.: +82-61-379-2843 (S.Y.); +82-61-379-2837 (G.H.E.)
| |
Collapse
|
13
|
Lim Y, Jeong A, Kwon DH, Lee YU, Kim YK, Ahn Y, Kook T, Park WJ, Kook H. P300/CBP-Associated Factor Activates Cardiac Fibroblasts by SMAD2 Acetylation. Int J Mol Sci 2021; 22:9944. [PMID: 34576109 PMCID: PMC8472677 DOI: 10.3390/ijms22189944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 01/07/2023] Open
Abstract
Various heart diseases cause cardiac remodeling, which in turn leads to ineffective contraction. Although it is an adaptive response to injury, cardiac fibrosis contributes to this remodeling, for which the reactivation of quiescent myofibroblasts is a key feature. In the present study, we investigated the role of the p300/CBP-associated factor (PCAF), a histone acetyltransferase, in the activation of cardiac fibroblasts. An intraperitoneal (i.p.) injection of a high dose (160 mg/kg) of isoproterenol (ISP) induced cardiac fibrosis and reduced the amount of the PCAF in cardiac fibroblasts in the mouse heart. However, the PCAF activity was significantly increased in cardiac fibroblasts, but not in cardiomyocytes, obtained from ISP-administered mice. An in vitro study using human cardiac fibroblast cells recapitulated the in vivo results; an treatment with transforming growth factor-β1 (TGF-β1) reduced the PCAF, whereas it activated the PCAF in the fibroblasts. PCAF siRNA attenuated the TGF-β1-induced increase in and translocation of fibrosis marker proteins. PCAF siRNA blocked TGF-β1-mediated gel contraction and cell migration. The PCAF directly interacted with and acetylated mothers against decapentaplegic homolog 2 (SMAD2). PCAF siRNA prevented TGF-β1-induced phosphorylation and the nuclear localization of SMAD2. These results suggest that the increase in PCAF activity during cardiac fibrosis may participate in SMAD2 acetylation and thereby in its activation.
Collapse
Affiliation(s)
- Yongwoon Lim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea; (Y.L.); (A.J.); (D.-H.K.); (Y.-U.L.); (T.K.)
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea; (Y.-K.K.); (Y.A.)
- BK21 Plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 61469, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Anna Jeong
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea; (Y.L.); (A.J.); (D.-H.K.); (Y.-U.L.); (T.K.)
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea; (Y.-K.K.); (Y.A.)
- BK21 Plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 61469, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Duk-Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea; (Y.L.); (A.J.); (D.-H.K.); (Y.-U.L.); (T.K.)
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea; (Y.-K.K.); (Y.A.)
- BK21 Plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 61469, Korea
| | - Yeong-Un Lee
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea; (Y.L.); (A.J.); (D.-H.K.); (Y.-U.L.); (T.K.)
- Health and Environment Research Institute of Gwangju, 584, Mujin-daero, Seo-gu, Gwangju 61954, Korea
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea; (Y.-K.K.); (Y.A.)
- BK21 Plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 61469, Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea; (Y.-K.K.); (Y.A.)
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Taewon Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea; (Y.L.); (A.J.); (D.-H.K.); (Y.-U.L.); (T.K.)
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Woo-Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea; (Y.L.); (A.J.); (D.-H.K.); (Y.-U.L.); (T.K.)
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Korea; (Y.-K.K.); (Y.A.)
- BK21 Plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 61469, Korea
| |
Collapse
|
14
|
Cai X, Tian Y, Wu Y, Bonner MY, Zhuo X, Yuan Z. An Optimized Model of Hypertrophic Preconditioning Confers Cardioprotection in the Mouse. J Surg Res 2021; 264:544-552. [PMID: 33864962 DOI: 10.1016/j.jss.2020.11.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/15/2020] [Accepted: 11/01/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND Conventional models of hypertrophic preconditioning (C-HP) can be established surgically through transverse aortic constriction (TAC) → deconstriction (De-TAC) → reconstriction (Re-TAC) characterized by dynamic afterload while it exerts technical difficulty on operators and poses high mortality during perioperative period in mice. We aimed to introduce an optimized method for obtaining a hypertrophic preconditioning (O-HP) model for further study on cardiac hypertrophy. METHODS Ninety mice were divided into four groups: sham, TAC, C-HP, and O-HP. The sham group was exerted on three-time thoracotomies. The TAC group experienced twice thoracotomies and one TAC operation. C-HP and O-HP groups were given TAC, De-TAC, and Re-TAC operation at day 0, day 3, and day 7 in conventional and optimized method, respectively. We optimized the operating procedure in O-HP mice compared with the C-HP group by (1) leaving a ∼3-cm suture fixed in the subcutaneous layer after aortic constriction in TAC surgery (2) using two small forceps to untie the constriction knot instead of cutting it in the De-TAC operation. Ultrasound biomicroscopy was used for hemodynamics and cardiac function detection. Four weeks after the third surgery, all mice were sacrificed and pathology was analyzed among four groups. RESULTS Four weeks after Re-TAC, the survival of O-HP mice was 63.3% while that of C-HP was 26.7%. Ultrasound biomicroscopy showed a successful establishment of HP models. C-HP and O-HP mice had improved cardiac structure and function indicated by left ventricular end-systolic diameter, left ventricular end-systolic posterior wall thickness, left ventricular ejection fraction, and left ventricular fractional shortening than the TAC group. Pathological analysis showed O-HP as well as C-HP had less hypertrophy than the TAC mice. CONCLUSIONS Our results provide a rapid, safe, efficient, and reproducible method for optimized establishment of the HP model, which will facilitate studies for early intervention and prevention of left ventricular hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xiaojie Cai
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an Shaanxi, China
| | - Yuling Tian
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an Shaanxi, China
| | - Yue Wu
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an Shaanxi, China
| | - Michael Y Bonner
- Division of Medical Inflammation Research, Department of Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Xiaozhen Zhuo
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an Shaanxi, China.
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an Shaanxi, China.
| |
Collapse
|
15
|
Junho CVC, Azevedo CAB, da Cunha RS, de Yurre AR, Medei E, Stinghen AEM, Carneiro-Ramos MS. Heat Shock Proteins: Connectors between Heart and Kidney. Cells 2021; 10:cells10081939. [PMID: 34440708 PMCID: PMC8391307 DOI: 10.3390/cells10081939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Over the development of eukaryotic cells, intrinsic mechanisms have been developed in order to provide the ability to defend against aggressive agents. In this sense, a group of proteins plays a crucial role in controlling the production of several proteins, guaranteeing cell survival. The heat shock proteins (HSPs), are a family of proteins that have been linked to different cellular functions, being activated under conditions of cellular stress, not only imposed by thermal variation but also toxins, radiation, infectious agents, hypoxia, etc. Regarding pathological situations as seen in cardiorenal syndrome (CRS), HSPs have been shown to be important mediators involved in the control of gene transcription and intracellular signaling, in addition to be an important connector with the immune system. CRS is classified as acute or chronic and according to the first organ to suffer the injury, which can be the heart (CRS type 1 and type 2), kidneys (CRS type 3 and 4) or both (CRS type 5). In all types of CRS, the immune system, redox balance, mitochondrial dysfunction, and tissue remodeling have been the subject of numerous studies in the literature in order to elucidate mechanisms and propose new therapeutic strategies. In this sense, HSPs have been targeted by researchers as important connectors between kidney and heart. Thus, the present review has a focus to present the state of the art regarding the role of HSPs in the pathophysiology of cardiac and renal alterations, as well their role in the kidney–heart axis.
Collapse
Affiliation(s)
- Carolina Victória Cruz Junho
- Center of Natural and Human Sciences (CCNH), Laboratory of Cardiovascular Immunology, Federal University of ABC, Santo André 09210-580, Brazil
| | - Carolina Amaral Bueno Azevedo
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Regiane Stafim da Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Ainhoa Rodriguez de Yurre
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Emiliano Medei
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 22281-100, Brazil
| | - Andréa Emilia Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Center of Natural and Human Sciences (CCNH), Laboratory of Cardiovascular Immunology, Federal University of ABC, Santo André 09210-580, Brazil
| |
Collapse
|
16
|
Qin J, Guo N, Tong J, Wang Z. Function of histone methylation and acetylation modifiers in cardiac hypertrophy. J Mol Cell Cardiol 2021; 159:120-129. [PMID: 34175302 DOI: 10.1016/j.yjmcc.2021.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy is an adaptive response of the heart to increased workload induced by various physiological or pathological stimuli. It is a common pathological process in multiple cardiovascular diseases, and it ultimately leads to heart failure. The development of cardiac hypertrophy is accompanied by gene expression reprogramming, a process that is largely dependent on epigenetic regulation. Histone modifications such as methylation and acetylation are dynamically regulated under cardiac stress. These consequently contribute to the pathogenesis of cardiac hypertrophy via compensatory or maladaptive transcriptome reprogramming. Histone methylation and acetylation modifiers play crucial roles in epigenetic remodeling during the pathogenesis of cardiac hypertrophy. Regulation of histone methylation and acetylation modifiers serves as a bridge between signal transduction and downstream gene reprogramming. Exploring the role of histone modifiers in cardiac hypertrophy provides novel therapeutic strategies to treat cardiac hypertrophy and heart failure. In this review, we summarize the recent advancements in functional histone methylation and acetylation modifiers in cardiac hypertrophy, with an emphasis on the underlying mechanisms and the therapeutic potential.
Collapse
Affiliation(s)
- Jian Qin
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Proteomic identification of the proteins related to cigarette smoke-induced cardiac hypertrophy in spontaneously hypertensive rats. Sci Rep 2020; 10:18825. [PMID: 33139745 PMCID: PMC7608641 DOI: 10.1038/s41598-020-75429-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023] Open
Abstract
Smoking increases the risk of cardiovascular diseases. The present study was designed to determine the effects of 2-month exposure to cigarette smoke (CS) on proteins in the left ventricles of spontaneously hypertensive rats (SHR) and to identify the molecular targets associated with the pathogenesis/progression of CS-induced cardiac hypertrophy. SHR and Wistar Kyoto rats (WKY) were exposed to CS at low (2 puffs/min for 40 min) or high dose (2 puffs/min for 120 min), 5 days a week for 2 months. Using the two-dimensional fluorescence difference gel electrophoresis combined with MALDI-TOF/TOF tandem mass spectrometry, we compared differences in the expression levels of proteins in the whole left ventricles induced by long-term smoking. High-dose CS mainly caused cardiac hypertrophy in SHR, but not WKY, but no change in blood pressure. Proteomic analysis identified 30 protein spots with significant alterations, with 14 up-regulated and 16 down-regulated proteins in the left ventricles of CS-exposed SHR, compared with control SHR. Among these proteins, two members of the heat shock proteins (HSP70 and HSP20) showed significant up-regulation in the left ventricles of CS high-dose SHR, and the results were confirmed by western blot analysis. Our findings suggested that HSPs play an important role in regulation of CS-induced cardiac hypertrophy.
Collapse
|
18
|
Wu J, Chen S, Liu Y, Liu Z, Wang D, Cheng Y. Therapeutic perspectives of heat shock proteins and their protein-protein interactions in myocardial infarction. Pharmacol Res 2020; 160:105162. [DOI: 10.1016/j.phrs.2020.105162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022]
|
19
|
Roles of Histone Acetylation Modifiers and Other Epigenetic Regulators in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21093246. [PMID: 32375326 PMCID: PMC7247359 DOI: 10.3390/ijms21093246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC) is characterized by calcium deposition inside arteries and is closely associated with the morbidity and mortality of atherosclerosis, chronic kidney disease, diabetes, and other cardiovascular diseases (CVDs). VC is now widely known to be an active process occurring in vascular smooth muscle cells (VSMCs) involving multiple mechanisms and factors. These mechanisms share features with the process of bone formation, since the phenotype switching from the contractile to the osteochondrogenic phenotype also occurs in VSMCs during VC. In addition, VC can be regulated by epigenetic factors, including DNA methylation, histone modification, and noncoding RNAs. Although VC is commonly observed in patients with chronic kidney disease and CVD, specific drugs for VC have not been developed. Thus, discovering novel therapeutic targets may be necessary. In this review, we summarize the current experimental evidence regarding the role of epigenetic regulators including histone deacetylases and propose the therapeutic implication of these regulators in the treatment of VC.
Collapse
|
20
|
Heart failure with preserved ejection fraction: present status and future directions. Exp Mol Med 2019; 51:1-9. [PMID: 31857581 PMCID: PMC6923411 DOI: 10.1038/s12276-019-0323-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The clinical importance of heart failure with preserved ejection fraction (HFpEF) has recently become apparent. HFpEF refers to heart failure (HF) symptoms with normal or near-normal cardiac function on echocardiography. Common clinical features of HFpEF include diastolic dysfunction, reduced compliance, and ventricular hypokinesia. HFpEF differs from the better-known HF with reduced ejection fraction (HFrEF). Despite having a "preserved ejection fraction," patients with HFpEF have symptoms such as shortness of breath, excessive tiredness, and limited exercise capability. Furthermore, the mortality rate and cumulative survival rate are as severe in HFpEF as they are in HFrEF. While beta-blockers and renin-angiotensin-aldosterone system modulators can improve the survival rate in HFrEF, no known therapeutic agents show similar effectiveness in HFpEF. Researchers have examined molecular events in the development of HFpEF using small and middle-sized animal models. This review discusses HFpEF with regard to etiology and clinical features and introduces the use of mouse and other animal models of human HFpEF.
Collapse
|
21
|
Lyu X, Hu M, Peng J, Zhang X, Sanders YY. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther Adv Chronic Dis 2019; 10:2040622319862697. [PMID: 31367296 PMCID: PMC6643173 DOI: 10.1177/2040622319862697] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Fibrosis usually results from dysregulated wound repair and is characterized by
excessive scar tissue. It is a complex process with unclear mechanisms.
Accumulating evidence indicates that epigenetic alterations, including histone
acetylation, play a pivotal role in this process. Histone acetylation is
governed by histone acetyltransferases (HATs) and histone deacetylases (HDACs).
HDACs are enzymes that remove the acetyl groups from both histone and nonhistone
proteins. Aberrant HDAC activities are observed in fibrotic diseases, including
cardiac and pulmonary fibrosis. HDAC inhibitors (HDACIs) are molecules that
block HDAC functions. HDACIs have been studied extensively in a variety of
tumors. Currently, there are four HDACIs approved by the US Food and Drug
Administration for cancer treatment yet none for fibrotic diseases. Emerging
evidence from in vitro and in vivo preclinical
studies has presented beneficial effects of HDACIs in preventing or reversing
fibrogenesis. In this review, we summarize the latest findings of the roles of
HDACs in the pathogenesis of cardiac and pulmonary fibrosis and highlight the
potential applications of HDACIs in these two fibrotic diseases.
Collapse
Affiliation(s)
- Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieting Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19 Street South, BMRII Room 408, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
HDAC Inhibitors: Therapeutic Potential in Fibrosis-Associated Human Diseases. Int J Mol Sci 2019; 20:ijms20061329. [PMID: 30884785 PMCID: PMC6471162 DOI: 10.3390/ijms20061329] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is characterized by excessive deposition of the extracellular matrix and develops because of fibroblast differentiation during the process of inflammation. Various cytokines stimulate resident fibroblasts, which differentiate into myofibroblasts. Myofibroblasts actively synthesize an excessive amount of extracellular matrix, which indicates pathologic fibrosis. Although initial fibrosis is a physiologic response, the accumulated fibrous material causes failure of normal organ function. Cardiac fibrosis interferes with proper diastole, whereas pulmonary fibrosis results in chronic hypoxia; liver cirrhosis induces portal hypertension, and overgrowth of fibroblasts in the conjunctiva is a major cause of glaucoma surgical failure. Recently, several reports have clearly demonstrated the functional relevance of certain types of histone deacetylases (HDACs) in various kinds of fibrosis and the successful alleviation of the condition in animal models using HDAC inhibitors. In this review, we discuss the therapeutic potential of HDAC inhibitors in fibrosis-associated human diseases using results obtained from animal models.
Collapse
|