1
|
Huma L, Suciu H, Avram C, Suteu RA, Danilesco A, Baba DF, Moldovan DA, Sin AI. Implications of Preoperative C-Reactive Protein Levels in Heart Transplant Patients-A Single-Center Retrospective Study. J Clin Med 2024; 13:7466. [PMID: 39685924 DOI: 10.3390/jcm13237466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Heart transplant is the final therapeutic option for end-stage heart failure patients. It has been used with increasing success as a surgical procedure, greatly influenced by advances in diagnostic and prognostic tools. The aim of this paper was to study potential implications of C-reactive protein (CRP) in patients who underwent heart transplants. Methods: Our cohort included 43 adult patients from the Emergency Institute for Cardiovascular Diseases and Transplant of Târgu Mureș who underwent heart transplants in our center between 2011 and 2023. Correlations between CRP levels and different characteristics of the patients were investigated, and the optimal cut-off value for CRP levels in relation to the 6-month mortality rate was determined. The central tendencies of the baseline characteristics of patients who had a CRP value lower than the cut-off and those with a value higher than it were compared using parametric or nonparametric tests. Results: Significant correlations between the preoperative CRP levels and 6-month mortality rate (r = 0.35; 95%CI: 0.05-0.60; p = 0.02), as well as previous cardiac resynchronization therapy (CRT) and preoperative CRP levels (r = -0.37; 95%CI: -0.61--0.07, p = 0.01) were highlighted. A value for CRP > 1.66 mg/dL was found to be associated with 6-month mortality (OR = 18.00; 95%CI: 1.90-170.33, p < 0.01). Moreover, the patients who received CRT before transplantation had significantly lower levels of CRP when compared to those who did not receive CRT (p = 0.01). Conclusions: Preoperative CRP levels could represent a valuable asset in the follow-up algorithm of heart transplant patients. The lower levels of CRP in patients who benefited from CRT before transplantation highlights the importance of understanding the complex mechanisms of inflammation and increasing focus on device therapy for future transplant recipients. Further prospective studies with larger cohorts are needed for validation.
Collapse
Affiliation(s)
- Laurentiu Huma
- Department of Cell and Molecular Biology, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
- Emergency Institute for Cardiovascular Diseases and Transplant, 540136 Târgu Mureș, Romania
- Doctoral School, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Horatiu Suciu
- Emergency Institute for Cardiovascular Diseases and Transplant, 540136 Târgu Mureș, Romania
- Department of Surgery, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Calin Avram
- Department of Medical Informatics and Biostatistics, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Radu-Adrian Suteu
- Emergency Institute for Cardiovascular Diseases and Transplant, 540136 Târgu Mureș, Romania
| | | | - Dragos-Florin Baba
- Department of Cell and Molecular Biology, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
- Emergency Institute for Cardiovascular Diseases and Transplant, 540136 Târgu Mureș, Romania
| | - Diana-Andreea Moldovan
- Emergency Institute for Cardiovascular Diseases and Transplant, 540136 Târgu Mureș, Romania
- Doctoral School, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
- Department of Family Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Anca-Ileana Sin
- Department of Cell and Molecular Biology, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| |
Collapse
|
2
|
Athari SS, Mehrabi Nasab E, Jing K, Wang J. Interaction between cardiac resynchronization therapy and cytokines in heart failure patients. Cytokine 2024; 175:156479. [PMID: 38199086 DOI: 10.1016/j.cyto.2023.156479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Congestive heart failure (CHF) is a complex multistage syndrome that has a great financial burden on human societies. It was known that the damaged myocardium sends a signal to stimulate the immune system and proliferation of leukocytes. In continuous, cytokine storm can be initiated and causes the probability of CHF. Persistent inflammation by increasing the levels of pro-inflammatory cytokines, plays an important role in the pathogenesis of CHF and causes remodeling, which is a progressive processs. Although treatment by drugs can reduce mortality and partially control the symptoms of heart failure patients, but complications and mortality are still high. Therefore, other treatment options such as Cardiac Resynchronization Therapy (CRT) are necessary. Today, it is known that CRT can be an effective treatment for many patients with heart failure. CRT is novel, non-pharmacological, and device-based therapy that would be beneficial to know more about its performance in the management of heart failure. In this study, we have reviewed the immunological processes involved in heart failure and the effect of CRT in controlling of the cytokine storm.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Entezar Mehrabi Nasab
- Department of Cardiology, School of Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Cardiology, School of Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kai Jing
- Department of Proctology, The People's Hospital of Huaiyin Jinan, 250021 Shandong, China
| | - Jin Wang
- Department of Cardiology, The Fifth People's Hospital of Jinan, 250022 Shandong, China.
| |
Collapse
|
3
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
4
|
Wen Z, Liu Q, Jiang P, Zhu C, Li J, Wu J, Wang S, Ning B. Serum interleukin-1 is a new biomarker to predict the risk of rebleeding of ruptured intracranial aneurysm after admission. Neurosurg Rev 2023; 46:123. [PMID: 37195327 DOI: 10.1007/s10143-023-02010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 04/23/2023] [Indexed: 05/18/2023]
Abstract
Interleukin-1 (IL-1) could induce inflammation of the aneurysm wall, which might be related to intracranial aneurysm rupture. The aim of this study was to investigate whether IL-1 could serve as a biomarker to predict the risk of rebleeding after admission. Data between January 2018 and September 2020 were collected from patients with ruptured intracranial aneurysms (RIAs) and were retrospectively reviewed. The serum IL-1β and IL-1ra levels were detected using a panel, and IL-1 ratio was calculated as the log10 (IL-1ra/IL-1β). The predictive accuracy of IL-1 compared with previous clinical morphology (CM) model and other risk factors were evaluated by the c-statistic. Five hundred thirty-eight patients were finally included in the study, with 86 rebleeding RIAs. The multivariate Cox analysis confirmed aspect ratio (AR) > 1.6 (hazard ratio (HR), 4.89 [95%CI, 2.76-8.64], P < 0.001), size ratio (SR) > 3.0 (HR, 2.40 [95%CI, 1.34-4.29], P = 0.003), higher serum IL-1β (HR, 1.88 [95%CI, 1.27-2.78], P = 0.002), and lower serum IL-1ra (HR, 0.67 [95%CI, 0.56-0.79], P < 0.001) as the independent risk factors for rebleeding after admission. According to the c-statistics, the IL-1 ratio had the highest predictive accuracy (0.82), followed by IL-1ra and IL-1β (0.80), AR > 1.6 (0.79), IL-1ra (0.78), IL-1β (0.74), and SR > 3.0 (0.56), respectively. Subgroup analysis based on AR and SR presented similar results. The model combining IL-1 ratio and CM model showed higher predictive accuracy for the rebleeding after admission (c-statistic, 0.90). Serum IL-1, especially IL-1 ratio, could serve as a biomarker to predict the risk of rebleeding after admission.
Collapse
Affiliation(s)
- Zheng Wen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Pengjun Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Jiangan Li
- Emergency Medicine, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Bo Ning
- Department of Neurosurgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, Guangdong, China.
| |
Collapse
|
5
|
Chao X, Jiang Z, Zhong G, Huang R. Identification of biomarkers, pathways and potential therapeutic agents for salt-sensitive hypertension using RNA-seq. Front Cardiovasc Med 2022; 9:963744. [PMID: 36035920 PMCID: PMC9399395 DOI: 10.3389/fcvm.2022.963744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Salt-sensitive hypertension (SSH) is a common type of essential hypertension in China. In recent years, although an increasing number of researches have focused on SSH, few studies have been researched on patients with SSH. The objective of this study was to explore the genes and pathways linked with SSH using RNA-sequencing (RNA-seq). Materials and methods We used RNA-seq to analyze the transcriptome of peripheral blood mononuclear cells (PBMCs) of five SSH patients and five SRH patients. Next, we analyzed the differentially expressed genes (DEGs) using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Gene Set Enrichment (GSEA) enrichment analysis. Then, Cytoscape was used to construct the protein-protein interaction (PPI) network and the hub genes. Finally, CMAP analysis found that several small molecular compounds could reverse the altered DEGs. Results A total of 431 DEGs were found in the PBMC samples, including 294 up-regulated and 137 down-regulated genes. Functional enrichment analysis found significant enrichment in immune-related associations such as inflammation, chemokine, and cytokine-cytokine receptor interaction. The hub genes of the two modules were IL-6, IL-1A, CCL2, CCL3L3, and BUB1. In addition, we identified two small molecular compounds (iopromide and iloprost) that potentially interacted with DEGs. Conclusion This study suggests some potential biomarkers for the diagnosis of SSH. It provides new insights into SSH diagnosis and possible future clinical treatment.
Collapse
Affiliation(s)
- Xiaoying Chao
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyuan Jiang
- Division of Hypertension, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guoqiang Zhong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Guoqiang Zhong,
| | - Rongjie Huang
- Division of Hypertension, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Rongjie Huang,
| |
Collapse
|
6
|
Sauer F, Riou M, Charles AL, Meyer A, Andres E, Geny B, Talha S. Pathophysiology of Heart Failure: A Role for Peripheral Blood Mononuclear Cells Mitochondrial Dysfunction? J Clin Med 2022; 11:jcm11030741. [PMID: 35160190 PMCID: PMC8836880 DOI: 10.3390/jcm11030741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a leading cause of hospitalization in patients aged more than 65 years and is associated with high mortality rates. A better comprehension of its physiopathology is still needed, and, in addition to neurohormonal systems and sodium glucose co-transporter 2 modulations, recent studies focus on the mitochondrial respiration of peripheral blood circulating cells (PBMCs). Thus, cardiovascular metabolic risk factors and cellular switch with an increased neutrophil/lymphocytes ratio might favor the decreased PBMC mitochondrial respiration observed in relation with HF severity. PBMCs are implicated in the immune system function and mitochondrial dysfunction of PBMC, potentially induced by their passage through a damaged heart and by circulating mitoDAMPs, which can lead to a vicious circle, thus sustaining negative cardiac remodeling during HF. This new approach of HF complex pathophysiology appears to be a promising field of research, and further studies on acute and chronic HF with reduced or preserved LVEF are warranted to better understand whether circulating PBMC mitochondrial function and mitoDAMPs follow-ups in HF patients might show diagnosis, prognosis or therapeutic usefulness.
Collapse
Affiliation(s)
- François Sauer
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Marianne Riou
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Anne-Laure Charles
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Alain Meyer
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Emmanuel Andres
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- Internal Medicine, Diabete and Metabolic Diseases Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Bernard Geny
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
- Correspondence:
| | - Samy Talha
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| |
Collapse
|
7
|
Improvement of Cognitive Function and Interleukin 1 Beta Serum Concentrations Following Cardiac Pacemaker Implantation in Patients with Symptomatic Bradycardia. J Pers Med 2021; 11:jpm11080770. [PMID: 34442414 PMCID: PMC8401580 DOI: 10.3390/jpm11080770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background and aim: Bradyarrhythmias cause a low cerebral blood flow with secondary neuronal ischemia and cognitive dysfunction. This study aims to assess the effect of cardiac pacemaker implantation (PI) on the cognitive function and inflammatory markers (TNF alpha, IL1β). Material and method: We conducted a prospective observational study on a number of 31 patients with symptomatic bradyarrhythmias. We performed the cognitive function assessment by two tests (Mini-Mental State Examination and Trail Making Test A), cardiac output assessment (echocardiographic), and determination of IL 1β and TNF alpha serum concentrations before pacemaker implantation and after an average period of 42 days from pacemaker implantation.Results: After pacemaker implantation we observed an increase in the cardiac index by 0.71 L/min/m2 (p < 0.001) and a better scoring in cognitive performance; the mean MMSE score increased by two points (p < 0.001), and Trail Making Test A had an improvement of 16 s (p < 0.001). Regarding the inflammatory markers, a significant decrease in IL-1β with 8.6 pg/mL (p = 0.049) after pacemaker implantation was observed. Additionally, we found statistically significant correlations between IL1β and TNF alpha (positive correlation, p = 0.005), between the MMSE and cardiac index (p < 0.001), between the Trail Making Test and cardiac index (p = 0.001), and between the MMSE and Trail Making Test (p = 0.003). Conclusions: Our findings suggest that cardiac pacemaker implantation was associated with improved cognitive function—possibly related to an increased cardiac output and with adecreased serum IL1β concentration in subjects with symptomatic bradycardia.
Collapse
|
8
|
Li Z, Zhao H, Wang J. Metabolism and Chronic Inflammation: The Links Between Chronic Heart Failure and Comorbidities. Front Cardiovasc Med 2021; 8:650278. [PMID: 34026868 PMCID: PMC8131678 DOI: 10.3389/fcvm.2021.650278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) patients often suffer from multiple comorbidities, such as diabetes, atrial fibrillation, depression, chronic obstructive pulmonary disease, and chronic kidney disease. The coexistance of comorbidities usually leads to multi morbidity and poor prognosis. Treatments for HF patients with multi morbidity are still an unmet clinical need, and finding an effective therapy strategy is of great value. HF can lead to comorbidity, and in return, comorbidity may promote the progression of HF, creating a vicious cycle. This reciprocal correlation indicates there may be some common causes and biological mechanisms. Metabolism remodeling and chronic inflammation play a vital role in the pathophysiological processes of HF and comorbidities, indicating metabolism and inflammation may be the links between HF and comorbidities. In this review, we comprehensively discuss the major underlying mechanisms and therapeutic implications for comorbidities of HF. We first summarize the potential role of metabolism and inflammation in HF. Then, we give an overview of the linkage between common comorbidities and HF, from the perspective of epidemiological evidence to the underlying metabolism and inflammation mechanisms. Moreover, with the help of bioinformatics, we summarize the shared risk factors, signal pathways, and therapeutic targets between HF and comorbidities. Metabolic syndrome, aging, deleterious lifestyles (sedentary behavior, poor dietary patterns, smoking, etc.), and other risk factors common to HF and comorbidities are all associated with common mechanisms. Impaired mitochondrial biogenesis, autophagy, insulin resistance, and oxidative stress, are among the major mechanisms of both HF and comorbidities. Gene enrichment analysis showed the PI3K/AKT pathway may probably play a central role in multi morbidity. Additionally, drug targets common to HF and several common comorbidities were found by network analysis. Such analysis has already been instrumental in drug repurposing to treat HF and comorbidity. And the result suggests sodium-glucose transporter-2 (SGLT-2) inhibitors, IL-1β inhibitors, and metformin may be promising drugs for repurposing to treat multi morbidity. We propose that targeting the metabolic and inflammatory pathways that are common to HF and comorbidities may provide a promising therapeutic strategy.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Weldy CS, Syed SA, Amsallem M, Hu DQ, Ji X, Punn R, Taylor A, Navarre B, Reddy S. Circulating whole genome miRNA expression corresponds to progressive right ventricle enlargement and systolic dysfunction in adults with tetralogy of Fallot. PLoS One 2020; 15:e0241476. [PMID: 33175850 PMCID: PMC7657553 DOI: 10.1371/journal.pone.0241476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The adult congenital heart disease population with repaired tetralogy of Fallot (TOF) is subject to chronic volume and pressure loading leading to a 40% probability of right ventricular (RV) failure by the 3rd decade of life. We sought to identify a non-invasive signature of adverse RV remodeling using peripheral blood microRNA (miRNA) profiling to better understand the mechanisms of RV failure. METHODS Demographic, clinical data, and blood samples were collected from adults with repaired TOF (N = 20). RNA was isolated from the buffy coat of peripheral blood and whole genome miRNA expression was profiled using Agilent's global miRNA microarray platform. Fold change, pathway analysis, and unbiased hierarchical clustering of miRNA expression was performed and correlated to RV size and function assessed by echocardiography performed at or near the time of blood collection. RESULTS MiRNA expression was profiled in the following groups: 1. normal RV size (N = 4), 2. mild/moderate RV enlargement (N = 11) and 3. severe RV enlargement (N = 5). 267 miRNAs were downregulated, and 66 were upregulated across the three groups (fold change >2.0, FDR corrected p<0.05) as RV enlargement increased and systolic function decreased. qPCR validation of a subset of these miRNAs identified increasing expression of miRNA 28-3p, 433-3p, and 371b-3p to be associated with increasing RV size and decreasing RV systolic function. Unbiased hierarchical clustering of all patients based on miRNA expression demonstrates three distinct patient clusters that largely coincide with progressive RV enlargement. Pathway analysis of dysregulated miRNAs demonstrates up and downregulation of cell cycle pathways, extracellular matrix proteins and fatty acid synthesis. HIF 1α signaling was downregulated while p53 signaling was predicted to be upregulated. CONCLUSION Adults with TOF have a distinct miRNA profile with progressive RV enlargement and dysfunction implicating cell cycle dysregulation and upregulation in extracellular matrix and fatty acid metabolism. These data suggest peripheral blood miRNA can provide insight into the mechanisms of RV failure and can potentially be used for monitoring disease progression and to develop RV specific therapeutics to prevent RV failure in TOF.
Collapse
Affiliation(s)
- Chad S. Weldy
- Division of Cardiology, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Saad Ali Syed
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Myriam Amsallem
- Division of Cardiology, Department of Medicine, Stanford University, Stanford, California, United States of America
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Dong-Qing Hu
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Xuhuai Ji
- Human Immune Monitoring Center and Functional Genomics Facility, Stanford University, Stanford, California, United States of America
| | - Rajesh Punn
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Anne Taylor
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Brittany Navarre
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Sushma Reddy
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
10
|
Bonios MJ, Adamopoulos SN, Drakos SG. Quality matters: Erectile dysfunction and cardiac resynchronization therapy. Hellenic J Cardiol 2020; 61:40-41. [PMID: 32464278 DOI: 10.1016/j.hjc.2020.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael J Bonios
- Division of Cardiovascular Medicine, University of Utah Health and School of Medicine, Salt Lake City, UT, USA; Heart Failure and Transplant Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | | | - Stavros G Drakos
- Division of Cardiovascular Medicine, University of Utah Health and School of Medicine, Salt Lake City, UT, USA; 3(rd) Department of Cardiology, National Kapodestrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
11
|
Zhang R, Saredy J, Shao Y, Yao T, Liu L, Saaoud F, Yang WY, Sun Y, Johnson C, Drummer C, Fu H, Lu Y, Xu K, Liu M, Wang J, Cutler E, Yu D, Jiang X, Li Y, Li R, Wang L, Choi ET, Wang H, Yang X. End-stage renal disease is different from chronic kidney disease in upregulating ROS-modulated proinflammatory secretome in PBMCs - A novel multiple-hit model for disease progression. Redox Biol 2020; 34:101460. [PMID: 32179051 PMCID: PMC7327976 DOI: 10.1016/j.redox.2020.101460] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background The molecular mechanisms underlying chronic kidney disease (CKD) transition to end-stage renal disease (ESRD) and CKD acceleration of cardiovascular and other tissue inflammations remain poorly determined. Methods We conducted a comprehensive data analyses on 7 microarray datasets in peripheral blood mononuclear cells (PBMCs) from patients with CKD and ESRD from NCBI-GEO databases, where we examined the expressions of 2641 secretome genes (SG). Results 1) 86.7% middle class (molecular weight >500 Daltons) uremic toxins (UTs) were encoded by SGs; 2) Upregulation of SGs in PBMCs in patients with ESRD (121 SGs) were significantly higher than that of CKD (44 SGs); 3) Transcriptomic analyses of PBMC secretome had advantages to identify more comprehensive secretome than conventional secretomic analyses; 4) ESRD-induced SGs had strong proinflammatory pathways; 5) Proinflammatory cytokines-based UTs such as IL-1β and IL-18 promoted ESRD modulation of SGs; 6) ESRD-upregulated co-stimulation receptors CD48 and CD58 increased secretomic upregulation in the PBMCs, which were magnified enormously in tissues; 7) M1-, and M2-macrophage polarization signals contributed to ESRD- and CKD-upregulated SGs; 8) ESRD- and CKD-upregulated SGs contained senescence-promoting regulators by upregulating proinflammatory IGFBP7 and downregulating anti-inflammatory TGF-β1 and telomere stabilizer SERPINE1/PAI-1; 9) ROS pathways played bigger roles in mediating ESRD-upregulated SGs (11.6%) than that in CKD-upregulated SGs (6.8%), and half of ESRD-upregulated SGs were ROS-independent. Conclusions Our analysis suggests novel secretomic upregulation in PBMCs of patients with CKD and ESRD, act synergistically with uremic toxins, to promote inflammation and potential disease progression. Our findings have provided novel insights on PBMC secretome upregulation to promote disease progression and may lead to the identification of new therapeutic targets for novel regimens for CKD, ESRD and their accelerated cardiovascular disease, other inflammations and cancers. (Total words: 279).
Collapse
Affiliation(s)
- Ruijing Zhang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China; Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Jason Saredy
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Tian Yao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Lu Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fatma Saaoud
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | | | - Yu Sun
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Charles Drummer
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hangfei Fu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yifan Lu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Keman Xu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ming Liu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jirong Wang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Elizabeth Cutler
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yafeng Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Rongshan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Lihua Wang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Eric T Choi
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|