1
|
Crawford SG, Coker RH, O’Hara TM, Breed GA, Gelatt T, Fadely B, Burkanov V, Rivera PM, Rea LD. Fasting durations of Steller sea lion pups vary among subpopulations-evidence from two plasma metabolites. CONSERVATION PHYSIOLOGY 2023; 11:coad084. [PMID: 38026798 PMCID: PMC10673819 DOI: 10.1093/conphys/coad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Geographic differences in population growth trends are well-documented in Steller sea lions (Eumetopias jubatus), a species of North Pacific pinniped listed under the U.S. Endangered Species Act in 1990 following a marked decline in population abundance that began during the 1970s. As population growth is intrinsically linked to pup production and survival, examining factors related to pup physiological condition provides useful information to management authorities regarding potential drivers of regional differences. During dam foraging trips, pups predictably transition among three fasting phases, distinguished by the changes in the predominant metabolic byproduct. We used standardized ranges of two plasma metabolites (blood urea nitrogen and β-hydroxybutyrate) to assign pups to fasting categories (n = 1528, 1990-2016, 12 subpopulations): Recently Fed-Phase I (digestion/assimilation-expected hepatic/muscle glycogen usage), Phase II (expected lipid utilization), transitioning between Phases II-III (expected lipid utilization with increased protein reliance), or Phase III (expected protein catabolism). As anticipated, the majority of pups were classified as Recently Fed-Phase I (overall mean proportion = 0.72) and few pups as Phase III (overall mean proportion = 0.04). By further comparing pups in Short (Recently Fed-Phase II) and Long (all other pups) duration fasts, we identified three subpopulations with significantly (P < 0.03) greater proportions of pups dependent upon endogenous sources of energy for extended periods, during a life stage of somatic growth and development: the 1) central (0.27 ± 0.09) and 2) western (0.36 ± 0.13) Aleutian Island (declining population trend) and 3) southern Southeast Alaska (0.32 ± 0.06; increasing population trend) subpopulations had greater Long fast proportions than the eastern Aleutian Islands (0.10 ± 0.05; stabilized population). Due to contrasting population growth trends among these highlighted subpopulations over the past 50+ years, both density-independent and density-dependent factors likely influence the dam foraging trip duration, contributing to longer fasting durations for pups at some rookeries.
Collapse
Affiliation(s)
- Stephanie G Crawford
- Department of Biology and Wildlife and Institute of Northern Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, Alaska 99775, USA
| | - Robert H Coker
- Montana Center for Work Physiology and Exercise Metabolism, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA
| | - Todd M O’Hara
- Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 402 Raymond Stotzer Parkway, Bldg 2, College Station, Texas 77843, USA
| | - Greg A Breed
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
| | - Tom Gelatt
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Bldg. 4, Seattle, Washington 98115, USA
| | - Brian Fadely
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Bldg. 4, Seattle, Washington 98115, USA
| | - Vladimir Burkanov
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Bldg. 4, Seattle, Washington 98115, USA
| | - Patricia M Rivera
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, 2141 Koyukuk Drive, Fairbanks, Alaska 99775, USA
| | - Lorrie D Rea
- Institute of Northern Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, Alaska 99775, USA
| |
Collapse
|
2
|
Brittain CN, Bessler AM, Elgin AS, Layko RB, Park S, Still SE, Wada H, Swaddle JP, Cristol DA. Mercury causes degradation of spatial cognition in a model songbird species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115483. [PMID: 37717355 DOI: 10.1016/j.ecoenv.2023.115483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Mercury is a widespread pollutant of increasing global concern that exhibits a broad range of deleterious effects on organisms, including birds. Because the developing brain is well-known to be particularly vulnerable to the neurotoxic insults of mercury, many studies have focused on developmental effects such as on the embryonic brain and resulting behavioral impairment in adults. It is not well understood how the timing of exposure, for example exclusively in ovo versus throughout life, influences the impact of mercury. Using dietary exposure to environmentally relevant methylmercury concentrations, we examined the role that timing and duration of exposure play on spatial learning and memory in a model songbird species, the domesticated zebra finch (Taeniopygia guttata castanotis). We hypothesized that developmental exposure was both necessary and sufficient to disrupt spatial memory in adult finches. We documented profound disruption of memory for locations of hidden food at two spatial scales, cage- and room-sized enclosures, but found that both developmental and ongoing adult exposure were required to exhibit this behavioral impairment. Methylmercury-exposed birds made more mistakes before mastering the spatial task, because they revisited unrewarded locations repeatedly even after discovering the rewarded location. Contrary to our prediction, hippocampal volume was not affected in birds exposed to methylmercury over their lifetimes. The disruption of spatial cognition that we detected is severe and would likely have implications for survival and reproduction in wild birds; however, it appears that individuals that disperse or migrate from a contaminated site might recover later in life if no longer exposed to the toxicant.
Collapse
Affiliation(s)
- Cara N Brittain
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Amanda M Bessler
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| | - Andrew S Elgin
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| | - Rachel B Layko
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| | - Sumin Park
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shelby E Still
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - John P Swaddle
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA; Institute for Integrative Conservation, William & Mary, Williamsburg, VA 23185, USA
| | - Daniel A Cristol
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| |
Collapse
|
3
|
Lu C, Gudowska A, Rutkowska J. What do zebra finches learn besides singing? Systematic mapping of the literature and presentation of an efficient associative learning test. Anim Cogn 2023; 26:1489-1503. [PMID: 37300600 PMCID: PMC10442275 DOI: 10.1007/s10071-023-01795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The process of learning in birds has been extensively studied, with a focus on species such as pigeons, parrots, chickens, and crows. In recent years, the zebra finch has emerged as a model species in avian cognition, particularly in song learning. However, other cognitive domains such as spatial memory and associative learning could also be critical to fitness and survival, particularly during the intensive juvenile period. In this systematic review, we provide an overview of cognitive studies on zebra finches, with a focus on domains other than song learning. Our findings indicate that spatial, associative, and social learning are the most frequently studied domains, while motoric learning and inhibitory control have been examined less frequently over 30 years of research. All of the 60 studies included in this review were conducted on captive birds, limiting the generalizability of the findings to wild populations. Moreover, only two of the studies were conducted on juveniles, highlighting the need for more research on this critical period of learning. To address this research gap, we propose a high-throughput method for testing associative learning performance in a large number of both juvenile and adult zebra finches. Our results demonstrate that learning can occur in both age groups, thus encouraging researchers to also perform cognitive tests on juveniles. We also note the heterogeneity of methodologies, protocols, and subject exclusion criteria applied by different researchers, which makes it difficult to compare results across studies. Therefore, we call for better communication among researchers to develop standardised methodologies for studying each cognitive domain at different life stages and also in their natural conditions.
Collapse
Affiliation(s)
- ChuChu Lu
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Gudowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
5
|
Grunst AS, Grunst ML, Fort J. Contaminant-by-environment interactive effects on animal behavior in the context of global change: Evidence from avian behavioral ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163169. [PMID: 37003321 DOI: 10.1016/j.scitotenv.2023.163169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
The potential for chemical contaminant exposure to interact with other stressors to affect animal behavioral responses to environmental variability is of mounting concern in the context of anthropogenic environmental change. We systematically reviewed the avian literature to evaluate evidence for contaminant-by-environment interactive effects on animal behavior, as birds are prominent models in behavioral ecotoxicology and global change research. We found that only 17 of 156 (10.9 %) avian behavioral ecotoxicological studies have explored contaminant-by-environment interactions. However, 13 (76.5 %) have found evidence for interactive effects, suggesting that contaminant-by-environment interactive effects on behavior are understudied but important. We draw on our review to develop a conceptual framework to understand such interactive effects from a behavioral reaction norm perspective. Our framework highlights four patterns in reaction norm shapes that can underlie contaminant-by-environment interactive effects on behavior, termed exacerbation, inhibition, mitigation and convergence. First, contamination can render individuals unable to maintain critical behaviors across gradients in additional stressors, exacerbating behavioral change (reaction norms steeper) and generating synergy. Second, contamination can inhibit behavioral adjustment to other stressors, antagonizing behavioral plasticity (reaction norms shallower). Third, a second stressor can mitigate (antagonize) toxicological effects of contamination, causing steeper reaction norms in highly contaminated individuals, with improvement of performance upon exposure to additional stress. Fourth, contamination can limit behavioral plasticity in response to permissive conditions, such that performance of more and less contaminated individuals converges under more stressful conditions. Diverse mechanisms might underlie such shape differences in reaction norms, including combined effects of contaminants and other stressors on endocrinology, energy balance, sensory systems, and physiological and cognitive limits. To encourage more research, we outline how the types of contaminant-by-environment interactive effects proposed in our framework might operate across multiple behavioral domains. We conclude by leveraging our review and framework to suggest priorities for future research.
Collapse
Affiliation(s)
- Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France.
| | - Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| |
Collapse
|
6
|
Xia Z, Idowu I, Halldorson T, Lucas AM, Stein C, Kaur M, Tomy T, Marvin C, Thomas PJ, Hebert CE, Smith RA, Dwyer-Samuel F, Provencher JF, Tomy GT. Microbead beating extraction of avian eggs for polycyclic aromatic compounds. CHEMOSPHERE 2023; 335:139059. [PMID: 37268236 DOI: 10.1016/j.chemosphere.2023.139059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Due to their relatively high trophic position and importance as a food source for many communities in the circumpolar north, seabird eggs are an important matrix for monitoring contaminant levels. In fact, many countries, including Canada, have established long-term seabird egg contaminant monitoring programs, with oil related compounds a contaminant of emerging concern for seabirds in several regions. Current approaches to measuring many contaminant burdens in seabird eggs are time-consuming and often require large volumes of solvent. Here we propose an alternative approach, based on the principle of microbead beating tissue extraction using custom designed stainless-steel extraction tubes and lids, to measure a suite of 75 polycyclic aromatic compounds (polycyclic aromatic hydrocarbons (PAHs), alkyl-PAHs, halogenated-PAHs and some heterocyclic compounds) comprising a wide-range of chemical properties. Our method was conducted in strict accordance with ISO/IEC 17025 guidelines for method validation. Accuracies for our analytes generally ranged from 70 to 120%, and intra and inter-day repeatability for most analytes were <30%. Limits of detection/quantitation for the 75 target analytes were <0.2/0.6 ng g-1. The level of contamination in our method blanks was significantly smaller in our stainless-steel tubes/lids relative to commercially available high-density plastic alternatives. Overall, our method meets our data quality objectives and results in a notable reduction in sample processing times relative to current approaches.
Collapse
Affiliation(s)
- Zhe Xia
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2.
| | - Ifeoluwa Idowu
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Thor Halldorson
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Amica-Mariae Lucas
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Claire Stein
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Manpreet Kaur
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Thane Tomy
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Chris Marvin
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, Canada, L7S 1A1
| | - Philippe J Thomas
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, Canada, K1A 0H3
| | - Craig E Hebert
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, Canada, K1A 0H3
| | - Reyd A Smith
- Carleton University, Department of Biology, Ottawa, ON, Canada K1S 5B6
| | | | - Jennifer F Provencher
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, Canada, K1A 0H3
| | - Gregg T Tomy
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2.
| |
Collapse
|
7
|
Bottini CLJ, MacDougall-Shackleton SA. Methylmercury effects on avian brains. Neurotoxicology 2023; 96:140-153. [PMID: 37059311 DOI: 10.1016/j.neuro.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Methylmercury (MeHg) is a concerning contaminant due to its ubiquity and harmful effects on organisms. Although birds are important models in the neurobiology of vocal learning and adult neuroplasticity, the neurotoxic effects of MeHg are less understood in birds than mammals. We surveyed the literature on MeHg effects on biochemical changes in the avian brain. Publication rates of papers related to neurology and/or birds and/or MeHg increased with time and can be linked with historical events, regulations, and increased understanding of MeHg cycling in the environment. However, publications on MeHg effects on the avian brain remain relatively low across time. The neural effects measured to evaluate MeHg neurotoxicity in birds changed with time and researcher interest. The measures most consistently affected by MeHg exposure in birds were markers of oxidative stress. NMDA, acetylcholinesterase, and Purkinje cells also seem sensitive to some extent. MeHg exposure has the potential to affect most neurotransmitter systems but more studies are needed for validation in birds. We also review the main mechanisms of MeHg-induced neurotoxicity in mammals and compare it to what is known in birds. The literature on MeHg effects on the avian brain is limited, preventing full construction of an adverse outcome pathway. We identify research gaps for taxonomic groups such as songbirds, and age- and life-stage groups such as immature fledgling stage and adult non-reproductive life stage. In addition, results are often inconsistent between experimental and field studies. We conclude that future neurotoxicological studies of MeHg impacts on birds need to better connect the numerous aspects of exposure from molecular physiological effects to behavioural outcomes that would be ecologically or biologically relevant for birds, especially under challenging conditions.
Collapse
Affiliation(s)
- Claire L J Bottini
- University of Western Ontario, Department of Biology, 1151 Richmond St., London Ontario, N6A 5B7; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada; University of Western Ontario, Department of Psychology, 1151 Richmond St., London Ontario, N6A 5C2
| |
Collapse
|
8
|
Bottini CLJ, Whiley RE, Branfireun BA, MacDougall-Shackleton SA. Effects of methylmercury and food stress on migratory activity in song sparrows, Melospiza melodia. Horm Behav 2022; 146:105261. [PMID: 36126358 DOI: 10.1016/j.yhbeh.2022.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/25/2022]
Abstract
Avian migration is a challenging life stage susceptible to the adverse effects of stressors, including contaminants like methylmercury (MeHg). Although birds often experience stressors and contaminants concurrently in the wild, no study to date has investigated how simultaneous exposure to MeHg and food stress affects migratory behavior. Our objectives were to determine if MeHg or food stress exposure during summer, alone or combined, has carry-over effects on autumn migratory activity, and if hormone levels (corticosterone, thyroxine) and body condition were related to these effects. We tested how exposure to dietary MeHg and/or food stress (unpredictable temporary food removal) affected migratory behavior in captive song sparrows, Melospiza melodia. Nocturnal activity was influenced by a 3-way interaction between MeHg × stress × nights of the study, indicating that activity changed over time in different ways depending on prior treatments. Thyroxine was not affected by treatment or sampling date. During the migratory season, fecal corticosterone metabolite concentrations increased in birds co-exposed to MeHg and food stress compared to controls, suggesting an additive carry-over effect. As well, during the period of behavioral recording, body condition increased with time in unstressed birds, but not in stressed birds. Fecal corticosterone metabolite concentrations were positively correlated to duration of nocturnal activity, but thyroxine levels and body condition were not. The differences in nocturnal activity between groups suggest that food stress and MeHg exposure on breeding grounds could have direct and indirect carry-over effects that have the potential to affect the fall migration journey.
Collapse
Affiliation(s)
- Claire L J Bottini
- University of Western Ontario, Department of Biology, 1151 Richmond St., London, Ontario N6A 5B7, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.
| | - Rebecca E Whiley
- University of Western Ontario, Department of Biology, 1151 Richmond St., London, Ontario N6A 5B7, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Brian A Branfireun
- University of Western Ontario, Department of Biology, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada; University of Western Ontario, Department of Psychology, 1151 Richmond St., London, Ontario N6A 5C2, Canada
| |
Collapse
|
9
|
Zheng Y, Zhang F, Xu S, Wu L. Advances in neural organoid systems and their application in neurotoxicity testing of environmental chemicals. Genes Environ 2021; 43:39. [PMID: 34551827 PMCID: PMC8456188 DOI: 10.1186/s41021-021-00214-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Due to the complex structure and function of central nervous system (CNS), human CNS in vitro modeling is still a great challenge. Neurotoxicity testing of environmental chemicals mainly depends on the traditional animal models, which have various limitations such as species differences, expensive and time-consuming. Meanwhile, in vitro two-dimensional (2D) cultured cells or three-dimensional (3D) cultured neurospheres cannot fully simulate complex 3D structure of neural tissues. Recent advancements in neural organoid systems provides excellent models for the testing of environmental chemicals that affect the development of human CNS. Neural organoids derived from hPSCs not only can simulate the process of CNS development, including early stage neural tube formation, neuroepithelium differentiation and regional specification, but also its 3D structure, thus can be used to evaluate the effect of chemicals on differentiation and morphogenesis. Here, we provide a review of recent progress in the methods of culturing neural organoids and their applications in neurotoxicity testing of environmental chemicals. We conclude by highlighting challenge and future directions in neurotoxicity testing based on neural organoids.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Fangrong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
10
|
Seewagen CL. The threat of global mercury pollution to bird migration: potential mechanisms and current evidence. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1254-1267. [PMID: 30159636 DOI: 10.1007/s10646-018-1971-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Mercury is a global pollutant that has been widely shown to adversely affect reproduction and other endpoints related to fitness and health in birds, but almost nothing is known about its effects on migration relative to other life cycle processes. Here I consider the physiological and histological effects that mercury is known to have on non-migrating birds and non-avian vertebrates to identify potential mechanisms by which mercury might hinder migration performance. I posit that the broad ability of mercury to inactivate enzymes and compromise the function of other proteins is a single mechanism by which mercury has strong potential to disrupt many of the physiological processes that make long-distance migration possible. In just this way alone, there is reason to expect mercury to interfere with navigation, flight endurance, oxidative balance, and stopover refueling. Navigation and flight could be further affected by neurotoxic effects of mercury on the brain regions that process geomagnetic information from the visual system and control biomechanics, respectively. Interference with photochemical reactions in the retina and decreases in scotopic vision sensitivity caused by mercury also have the potential to disrupt visual-based magnetic navigation. Finally, migration performance and possibly survival might be limited by the immunosuppressive effects of mercury on birds at a time when exposure to novel pathogens and parasites is great. I conclude that mercury pollution is likely to be further challenging what is already often the most difficult and perilous phase of a migratory bird's annual cycle, potentially contributing to global declines in migratory bird populations.
Collapse
Affiliation(s)
- Chad L Seewagen
- Great Hollow Nature Preserve & Ecological Research Center, 225 Route 37, New Fairfield, CT, USA.
| |
Collapse
|
11
|
Cristol DA, Evers DC. The impact of mercury on North American songbirds: effects, trends, and predictive factors. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1107-1116. [PMID: 32970279 DOI: 10.1007/s10646-020-02280-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Researchers were asked to contribute new results addressing questions about the exposure and effects of mercury (Hg) in North American songbirds, a rapidly declining group of species that is the subject of enduring interest for millions of birdwatchers, the general public and conservation scientists. Important questions to be answered include: Is Hg causing or exacerbating songbird population declines? Which North American songbirds are at most risk and in which landscapes? Are there aspects of songbird natural history that pre-dispose them to risks of Hg exposure and effects, in particular, their migratory behavior? In all, 61 authors contributed 15 studies addressing aspects of these questions. Articles in this special issue address an array of topics including: (1) three studies on health effects in the laboratory using a domesticated songbird model species, the zebra finch; (2) three studies on changes in songbird exposure to Hg over time spans from less than a decade to more than a century; (3) five studies on landscape characteristics or management practices that cause the oft-noted spatial variation in Hg accumulation by resident songbirds, from the subarctic tundra to high-elevation tropical forests; (4) three papers examining the recently recognized role of migration behavior in predicting risk to songbirds from Hg; and (5) one paper on the potential pitfalls of using feather Hg concentration as a bioindicator for Hg exposure. In summary, although there are many questions still to be answered, it is clear that the effects of Hg are persistent long after exposure, Hg exposure of North American songbirds is not improving, predicting exposure requires a detailed understanding of ecosystem processes beyond simply the amount of Hg present at a site, migration behavior predisposes songbirds to risk of Hg exposure and effects, and carefully selecting appropriate bioindicator sites, species, and tissues is critical to any monitoring efforts.
Collapse
Affiliation(s)
- Daniel A Cristol
- Department of Biology, William & Mary, PO Box 8795, Williamsburg, VA, 23187-8795, USA.
| | - David C Evers
- Biodiversity Research Institute, 276 Canco Drive, Portland, ME, 04105, USA
| |
Collapse
|
12
|
Grieves LA, Bottini CLJ, Branfireun BA, Bernards MA, MacDougall-Shackleton SA, MacDougall-Shackleton EA. Food stress, but not experimental exposure to mercury, affects songbird preen oil composition. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:275-285. [PMID: 32036507 DOI: 10.1007/s10646-020-02171-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Mercury is a global pollutant and potent neurotoxic metal. Its most toxic and bioavailable form, methylmercury, can have both lethal and sublethal effects on wildlife. In birds, methylmercury exposure can disrupt behavior, hormones, the neuroendocrine system, and feather integrity. Lipid-rich tissues and secretions may be particularly susceptible to disruption by lipophilic contaminants such as methylmercury. One such substance is feather preen oil, a waxy secretion of the uropygial gland that serves multiple functions including feather maintenance, anti-parasitic defense, and chemical signaling. If methylmercury exposure alters preen oil composition, it could have cascading effects on feather quality, susceptibility to ectoparasites, and mate choice and other social behaviors. We investigated whether exposure to methylmercury, either alone or in association with other stressors, affects preen oil chemical composition. We used a two-factor design to expose adult song sparrows (Melospiza melodia) to an environmentally relevant dietary dose of methylmercury and/or to another stressor (unpredictable food supply) for eight weeks. The wax ester composition of preen oil changed significantly over the 8-week experimental period. This change was more pronounced in the unpredictable food treatment, regardless of dietary methylmercury. Contrary to our prediction, we found no main effect of methylmercury exposure on preen oil composition, nor did methylmercury interact with unpredictable food supply in predicting the magnitude of chemical shifts in preen oil. While it remains critical to study sublethal effects of methylmercury on wildlife, our findings suggest that the wax ester composition of preen oil is robust to environmentally relevant doses of this contaminant.
Collapse
Affiliation(s)
- L A Grieves
- Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5B7, Canada.
| | - C L J Bottini
- Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5B7, Canada
| | - B A Branfireun
- Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5B7, Canada
| | - M A Bernards
- Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5B7, Canada
| | - S A MacDougall-Shackleton
- Department of Psychology, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5C2, Canada
| | - E A MacDougall-Shackleton
- Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5B7, Canada
| |
Collapse
|
13
|
Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. CHEMOSPHERE 2020; 245:125586. [PMID: 31881386 DOI: 10.1016/j.chemosphere.2019.125586] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
Minamata disease in Japan and the large-scale poisoning by methylmercury (MeHg) in Iraq caused wide public concerns about the risk emanating from mercury for human health. Nowadays, it is widely known that all forms of mercury induce toxic effects in mammals, and increasing evidence supports the concern that environmentally relevant levels of MeHg could impact normal biological functions in wildlife. The information of mechanism involved in mercurial toxicity is growing but knowledge gaps still exist between the adverse effects and mechanisms of action, especially at the molecular level. A body of data obtained from experimental studies on mechanisms of mercurial toxicity in vivo and in vitro points to that disruption of the antioxidant system may play an important role in the mercurial toxic effects. Moreover, the accumulating evidence indicates that signaling transduction, protein or/and enzyme activity, and gene regulation are involving in mediating toxic and adaptive response to mercury exposure. We conducted here a comprehensive review of mercurial toxic effects on wildlife and human, in particular synthesized key findings of molecular pathways involved in mercurial toxicity from the cells to human. We discuss the molecular evidence related mercurial toxicity to the adverse effects, with particular emphasis on the gene regulation. The further studies relying on Omic analysis connected to adverse effects and modes of action of mercury will aid in the evaluation and validation of causative relationship between health outcomes and gene expression.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Zidie Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Uwe Strähle
- Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
14
|
Bjørklund G, Hilt B, Dadar M, Lindh U, Aaseth J. Neurotoxic effects of mercury exposure in dental personnel. Basic Clin Pharmacol Toxicol 2019; 124:568-574. [PMID: 30589214 DOI: 10.1111/bcpt.13199] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/14/2018] [Indexed: 12/29/2022]
Abstract
Numerous studies have reported neurobehavioural effects in dental personnel occupationally exposed to chronic low levels of mercury (Hg). Hg exposure from dental work may also induce various chronic conditions such as elevation of amyloid protein expression, deterioration of microtubules and increase or inhibition of transmitter release at motor nerve terminal endings. Therefore, clinical studies of Hg toxicity in dentistry may provide new knowledge about disturbed metal homeostasis in neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis and mood disorders. The purpose of this MiniReview is to evaluate the evidence of possible relevance between Hg exposure in dentistry and idiopathic disturbances in motor functions, cognitive skills and affective reactions, as well as dose-response relationships.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Bjørn Hilt
- Department of Occupational Medicine, St. Olav University Hospital, Trondheim, Norway.,Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ulf Lindh
- Biology Education Centre, Uppsala University, Uppsala, Sweden
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway.,Faculty of Health and Social Science, Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
15
|
Gerson AR, Cristol DA, Seewagen CL. Environmentally relevant methylmercury exposure reduces the metabolic scope of a model songbird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:790-796. [PMID: 30623835 DOI: 10.1016/j.envpol.2018.12.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
For most birds, energy efficiency and conservation are paramount to balancing the competing demands of self-maintenance, reproduction, and other demanding life history stages. Yet the ability to maximize energy output for behaviors like predator escape and migration is often also critical. Environmental perturbations that affect energy metabolism may therefore have important consequences for fitness and survival. Methylmercury (MeHg) is a global pollutant that has wide-ranging impacts on physiological systems, but its effects on the metabolism of birds and other vertebrates are poorly understood. We investigated dose-dependent effects of dietary MeHg on the body composition, basal and peak metabolic rates (BMR, PMR), and respiratory quotients (RQ) of zebra finches (Taeniopygia guttata). Dietary exposure levels (0.0, 0.1, or 0.6 ppm wet weight) were intended to reflect a range of mercury concentrations found in invertebrate prey of songbirds in areas contaminated by atmospheric deposition or point-source pollution. We found adiposity increased with MeHg exposure. BMR also increased with exposure while PMR decreased, together resulting in reduced metabolic scope in both MeHg-exposed treatments. There were differences in RQ among treatments that suggested a compromised ability of exposed birds to rapidly metabolize carbohydrates during exercise in a hop-hover wheel. The elevated BMR of exposed birds may have been due to energetic costs of depurating MeHg, whereas the reduced PMR could have been due to reduced oxygen carrying capacity and/or reduced glycolytic capacity. Our results suggest that environmentally relevant mercury exposure is capable of compromising the ability of songbirds to both budget and rapidly exert energy.
Collapse
Affiliation(s)
- Alexander R Gerson
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Daniel A Cristol
- Biology Department, College of William & Mary, Williamsburg, VA, 23187, USA
| | - Chad L Seewagen
- Great Hollow Nature Preserve & Ecological Research Center, New Fairfield, CT, 06812, USA; AKRF Inc., White Plains, NY, 10601, USA
| |
Collapse
|
16
|
Whitney MC, Cristol DA. Impacts of Sublethal Mercury Exposure on Birds: A Detailed Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 244:113-163. [PMID: 28710647 DOI: 10.1007/398_2017_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mercury is a ubiquitous environmental contaminant known to accumulate in, and negatively affect, fish-eating and oceanic bird species, and recently demonstrated to impact some terrestrial songbirds to a comparable extent. It can bioaccumulate to concentrations of >1 μg/g in tissues of prey organisms such as fish and insects. At high enough concentrations, exposure to mercury is lethal to birds. However, environmental exposures are usually far below the lethal concentrations established by dosing studies.The objective of this review is to better understand the effects of sublethal exposure to mercury in birds. We restricted our survey of the literature to studies with at least some exposures >5 μg/g. The majority of sublethal effects were subtle and some studies of similar endpoints reached different conclusions. Strong support exists in the literature for the conclusion that mercury exposure reduces reproductive output, compromises immune function, and causes avoidance of high-energy behaviors. For some endpoints, notably certain measures of reproductive success, endocrine and neurological function, and body condition, there is weak or contradictory evidence of adverse effects and further study is required. There was no evidence that environmentally relevant mercury exposure affects longevity, but several of the sublethal effects identified likely do result in fitness reductions that could adversely impact populations. Overall, 72% of field studies and 91% of laboratory studies found evidence of deleterious effects of mercury on some endpoint, and thus we can conclude that mercury is harmful to birds, and the many effects on reproduction indicate that bird population declines may already be resulting from environmental mercury pollution.
Collapse
Affiliation(s)
- Margaret C Whitney
- Department of Biology, Institute for Integrative Bird Behavior Studies, The College of William and Mary, Williamsburg, VA, 23187, USA
| | - Daniel A Cristol
- Department of Biology, Institute for Integrative Bird Behavior Studies, The College of William and Mary, Williamsburg, VA, 23187, USA.
| |
Collapse
|