1
|
Zheng Y, Liu C, Wang S, Qian K, Feng Y, Yu F, Wang J. Genome-wide analysis of cuticle protein family genes in rice stem borer Chilo suppressalis: Insights into their role in environmental adaptation and insecticidal stress response. Int J Biol Macromol 2023:124989. [PMID: 37244330 DOI: 10.1016/j.ijbiomac.2023.124989] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Insect cuticle plays a key role in insect survival, adaptation and prosperity by serving as the exoskeleton and the first barrier against environmental stresses. As the major components of insect cuticle, the diverse structural cuticle proteins (CPs) contribute to variation in physical properties and functions of cuticle. However, the roles of CPs in cuticular versatility, especially in the stress response or adaption, remain incompletely understood. In this study, we performed a genome-wide analysis of CP superfamily in the rice-boring pest Chilo suppressalis. A total of 211 CP genes were identified and their encoding proteins were classified into eleven families and three subfamilies (RR1, RR2, and RR3). The comparative genomic analysis of CPs revealed that C. suppressalis had fewer CP genes compared to other lepidopteran species, which largely resulted from a less expansion of his-rich RR2 genes involved in cuticular sclerotization, suggesting long-term boring life of C. suppressalis inside rice hosts might evolutionarily prefer cuticular elasticity rather than cuticular sclerotization. We also investigated the response pattern of all CP genes under insecticidal stresses. >50 % CsCPs were upregulated at least 2-fold under insecticidal stresses. Notably, the majority of the highly upregulated CsCPs formed gene pairs or gene clusters on chromosomes, indicating the rapid response of adjacent CsCPs to insecticidal stress. Most high-response CsCPs encoded AAPA/V/L motifs that are related to cuticular elasticity and >50 % of the sclerotization-related his-rich RR2 genes were also upregulated. These results suggested the potential roles of CsCPs in balancing the elasticity and sclerotization of cuticles, which is essential for the survival and adaptation of plant borers including C. suppressalis. Our study provides valuable information for further developing cuticle-based strategies of both pest management and biomimetic applications.
Collapse
Affiliation(s)
- Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou, China.
| | - Changpeng Liu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuang Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yinghao Feng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Fuhai Yu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, Shandong, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Yao Z, Jin H, Li C, Ma W, Zhang W, Lin Y. Knockdown of Dcr1 and Dcr2 limits the lethal effect of C-factor in Chilo suppressalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22004. [PMID: 36780173 DOI: 10.1002/arch.22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Dicer is a highly conserved ribonuclease in evolution. It belongs to the RNase III family and can specifically recognize and cleave double-stranded RNA (dsRNA). In this study, the genome and transcriptome of Chilo suppressalis were analyzed, and it was found that there were two members in the Dicer family, named Dcr1 and Dcr2. The dsRNAs of Dcr1 and Dcr2 genes were synthesized and fed to C. suppressalis larvae. The C-factor of C. suppressalis was selected as the marker gene. The results showed that both Dcr1 and Dcr2 genes were significantly knocked down. The larval mortality was significantly reduced by 43.50% (p < 0.05) after feeding on dsC-factor and dsDcr1. The transcription levels of C-factor genes were significantly increased by 33.95% (p < 0.05) and 32.94% (p < 0.05) when the larvae fed with dsDcr2 + dsC-factor for 72 h and 96 h, respectively. Furthermore, the mortality was significantly decreased by 79% (p < 0.05) after feeding dsC-factor and dsDcr2. These findings imply that Dcr1 can decrease the lethal effect of C-factor gene but cannot affect its RNAi efficiency and Dcr2 can decrease the lethal effect of C-factor gene by inhibiting RNAi efficiency.
Collapse
Affiliation(s)
- Zhuotian Yao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huihui Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Changyan Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihua Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Shahzad MF, Idrees A, Afzal A, Iqbal J, Qadir ZA, Khan AA, Ullah A, Li J. RNAi-Mediated Silencing of Putative Halloween Gene Phantom Affects the Performance of Rice Striped Stem Borer, Chilo suppressalis. INSECTS 2022; 13:731. [PMID: 36005356 PMCID: PMC9409148 DOI: 10.3390/insects13080731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The physiological and biochemical characterization of the "Halloween" genes has fundamental importance in the biosynthesis pathway of ecdysteroids. These genes were found to catalyze the final phases of ecdysteroid biosynthesis from dietary cholesterol to the molting hormone 20-hydroxyecdysone. We report the characterization of the Cs-Phm in a major insect pest in agriculture, the rice striped stem borer, Chilo suppressalis (C. suppressalis). A full-length transcript of Cs-Phm was amplified with an open reading frame (ORF) of 478 amino acids through 5' and 3' RACE. Cs-Phm shows five insect-conserved P450 motifs: Helix-C, Helix-I, Helix-K, PERF, and heme-binding motifs. Phylogenetic analysis clearly shows high similarity to Lepidoptera and evolutionary conservation in insects. The relative spatial and temporal transcript profile shows that Cs-Phm is highly expressed in the prothoracic glands and appears throughout the larval development, but with low expression at the start of the larval instar. It seems to peak in 3-4 days and decreases again before the larvae molt. Double-stranded RNA (dsRNA) injection of Cs-Phm at the larval stage efficiently knocked down the target gene and decreased its expression level. The dsRNA-treated group showed significantly decreased ecdysteroid titers, which leads to delayed larval development and higher larval mortality. Negative effects of larval development were rescued by treating 20E in the dsRNA-treated group. Thus, in conclusion, our results suggest that Cs-Phm is functionally conserved in C. suppressalis and encodes functional CYP that contributes to the biogenesis of 20E.
Collapse
Affiliation(s)
- Muhammad Faisal Shahzad
- Department of Entomology, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29220, Pakistan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Atif Idrees
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Ayesha Afzal
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1-Km Defense Road, Lahore 54000, Pakistan
| | - Jamshaid Iqbal
- Department of Entomology, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29220, Pakistan
| | - Ziyad Abdul Qadir
- Honeybee Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA
| | - Azhar Abbas Khan
- College of Agriculture, Bahadur Sub Campus Layyah, Bahauddin Zakariya University, Multan 31200, Pakistan
| | - Ayat Ullah
- Department of Entomology, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29220, Pakistan
| | - Jun Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
4
|
Zhang T, Chen L, Li R, Liu N, Huang X, Wong G. PIWI-interacting RNAs in human diseases: databases and computational models. Brief Bioinform 2022; 23:6603448. [PMID: 35667080 DOI: 10.1093/bib/bbac217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are short 21-35 nucleotide molecules that comprise the largest class of non-coding RNAs and found in a large diversity of species including yeast, worms, flies, plants and mammals including humans. The most well-understood function of piRNAs is to monitor and protect the genome from transposons particularly in germline cells. Recent data suggest that piRNAs may have additional functions in somatic cells although they are expressed there in far lower abundance. Compared with microRNAs (miRNAs), piRNAs have more limited bioinformatics resources available. This review collates 39 piRNA specific and non-specific databases and bioinformatics resources, describes and compares their utility and attributes and provides an overview of their place in the field. In addition, we review 33 computational models based upon function: piRNA prediction, transposon element and mRNA-related piRNA prediction, cluster prediction, signature detection, target prediction and disease association. Based on the collection of databases and computational models, we identify trends and potential gaps in tool development. We further analyze the breadth and depth of piRNA data available in public sources, their contribution to specific human diseases, particularly in cancer and neurodegenerative conditions, and highlight a few specific piRNAs that appear to be associated with these diseases. This briefing presents the most recent and comprehensive mapping of piRNA bioinformatics resources including databases, models and tools for disease associations to date. Such a mapping should facilitate and stimulate further research on piRNAs.
Collapse
Affiliation(s)
- Tianjiao Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| | - Liang Chen
- Department of Computer Science, School of Engineering, Shantou University, Shantou, China
| | - Rongzhen Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| | - Ning Liu
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| | - Xiaobing Huang
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| |
Collapse
|
5
|
Dhillon MK, Jaba J, Mishra P, Iquebal MA, Jaiswal S, Tanwar AK, Bharat N, Arora N, Mishra SP, Gogineni SP, Hasan F, Rai A, Kumar D, Sharma HC. Whole genome sequencing of spotted stem borer, Chilo partellus, reveals multiple genes encoding enzymes for detoxification of insecticides. Funct Integr Genomics 2022; 22:611-624. [PMID: 35426546 DOI: 10.1007/s10142-022-00852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
Abstract
Spotted stem borer, Chilo partellus, is the most important constraint for increasing the production and productivity of maize and sorghum, the two major coarse cereals in Asia and Africa. The levels of resistance to this pest in the cultivated germplasm are low to moderate, and hence, farmers have to use insecticides for effective control of this pest. However, there is no information on the detoxification mechanisms in C. partellus, which is one of the constraints for deployment of appropriate insecticides to control this pest. The ability to detoxify insecticides varies across insect populations, and hence, we sequenced different populations of C. partellus to identify and understand detoxification mechanisms to devise appropriate strategies for deployment of different insecticides for controlling this pest. Larval samples were sequenced from three different cohorts of C. partellus using the Illumina HiSeq 2500 platform. The data were subjected to identify putative genes that are involved in detoxification on insecticides in our cohort insect species. These studies resulted in identification of 64 cytochrome P450 genes (CYP450s), and 36 glutathione S-transferases genes (GSTs) encoding metabolic detoxification enzymes, primarily responsible for xenobiotic metabolism in insects. A total of 183 circadian genes with > 80% homolog and 11 olfactory receptor genes that mediate chemical cues were found in the C. partellus genome. Also, target receptors related to insecticide action, 4 acetylcholinesterase (AChE), 14 γ-aminobutyric acid (GABA), and 15 nicotinic acetylcholine (nAChR) receptors were detected. This is the first report of whole genome sequencing of C. partellus useful for understanding mode of action of different insecticides, and mechanisms of detoxification and designing target-specific insecticides to develop appropriate strategies to control C. partellus for sustainable crop production.
Collapse
Affiliation(s)
- Mukesh K Dhillon
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jagdish Jaba
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| | - Pallavi Mishra
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Aditya K Tanwar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nareshkumar Bharat
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| | - Naveen Arora
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| | - Suraj Prasad Mishra
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| | - Shyam Prasad Gogineni
- ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, Telangana, India
| | - Fazil Hasan
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India. .,Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| | - Hari C Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| |
Collapse
|
6
|
Yang L, Xing B, Li F, Wang LK, Yuan L, Mbuji AL, Peng Z, Malhat F, Wu S. Full-length transcriptome analysis of Spodoptera frugiperda larval brain reveals detoxification genes. PeerJ 2021; 9:e12069. [PMID: 34513339 PMCID: PMC8395580 DOI: 10.7717/peerj.12069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background Spodoptera frugiperda (J. E. Smith), commonly known as fall armyworm (FAW), is one of the most destructive agricultural pests in the world and has posed a great threat to crops. The improper use of insecticides has led to rapid development of resistance. However, the genetic data available for uncovering the insecticide resistance mechanisms are scarce. Methods In this study, we used PacBio single-molecule real-time (SMRT) sequencing aimed at revealing the full-length transcriptome profiling of the FAW larval brain to obtain detoxification genes. Results A total of 18,642 high-quality transcripts were obtained with an average length of 2,371 bp, and 11,230 of which were successfully annotated in six public databases. Among these, 5,692 alternative splicing events were identified.
Collapse
Affiliation(s)
- Lei Yang
- Hainan University, Haikou, Hainan, China
| | | | - Fen Li
- Hainan University, Haikou, Hainan, China
| | | | | | - Amosi Leonard Mbuji
- Hainan University, Haikou, Hainan, China.,Department of Resources Utilization and Plant Protection, College of Resources and Environmental Science, China Agricultural University, Beijing, Beijing, China
| | - Zhengqiang Peng
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Farag Malhat
- Pesticide Residues and Environmental Pollution Department, Agricultural Research Center, Dokki, Giza, Egypt
| | | |
Collapse
|
7
|
Kattupalli D, Barbadikar KM, Balija V, Ballichatla S, R A, Padmakumari AP, Saxena S, Gaikwad K, Yerram S, Kokku P, Madhav MS. The Draft Genome of Yellow Stem Borer, an Agriculturally Important Pest, Provides Molecular Insights into Its Biology, Development and Specificity Towards Rice for Infestation. INSECTS 2021; 12:insects12060563. [PMID: 34205299 PMCID: PMC8234988 DOI: 10.3390/insects12060563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Yellow stem borer (YSB), is the most destructive and widely occurring pest that attacks rice throughout the growing season. Rice (Oryza sativa L.) is a major staple cereal worldwide, providing essential caloric requirements for more than half of the world’s population. Annual losses to rice borers are approximately 5–10%, but losses in individual fields may reach up to 50–60%. The use of traditional pest management strategies in controlling YSB is somewhat challenging due to its unique internal feeding habit. Genome sequence information of economically important crop pests is important for designing or developing pest-resistant rice varieties. In an approach to achieve this, we present our first-ever study on the draft genome sequence of YSB. The information provided from our current study might be useful in developing genome-based approaches for the management of pest species. Abstract Yellow stem borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), a major monophagous insect pest of rice, causes significant yield losses. The rice–YSB interaction is very dynamic, making it difficult for management. The development of resistant lines has been unsuccessful as there are no effective resistant sources in the germplasm. Genome information is necessary for a better understanding of interaction with rice in terms of its recognition, response, and infestation mechanism. The draft genome of YSB is predicted to have 46,057 genes with an estimated size of 308 Mb, being correlated with the flow cytometry analysis. The existence of complex metabolic mechanisms and genes related to specific behavior was identified, being conditioned by a higher level of regulation. We deciphered the possible visual, olfactory, and gustatory mechanisms responsible for its evolution as a monophagous pest. Comparative genomic analysis revealed that YSB is unique in the way it has evolved. The obvious presence of high-immunity-related genes, well-developed RNAi machinery, and diverse effectors provides a means for developing genomic tools for its management. The identified 21,696 SSR markers can be utilized for diversity analysis of populations across the rice-growing regions. We present the first draft genome of YSB. The information emanated paves a way for biologists to design novel pest management strategies as well as for the industry to design new classes of safer and specific insecticide molecules.
Collapse
Affiliation(s)
- Divya Kattupalli
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Kalyani M. Barbadikar
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Vishalakshi Balija
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Suneel Ballichatla
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Athulya R
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Ayyagari Phani Padmakumari
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Swati Saxena
- Genomics Lab, ICAR-National Institute of Plant Biotechnology, New Delhi 110012, India; (S.S.); (K.G.)
| | - Kishor Gaikwad
- Genomics Lab, ICAR-National Institute of Plant Biotechnology, New Delhi 110012, India; (S.S.); (K.G.)
| | - Sridhar Yerram
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Premalatha Kokku
- Department of Chemistry, Osmania University, Hyderabad 500007, India;
| | - Maganti Sheshu Madhav
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
- Correspondence:
| |
Collapse
|
8
|
Sondhi Y, Ellis EA, Bybee SM, Theobald JC, Kawahara AY. Light environment drives evolution of color vision genes in butterflies and moths. Commun Biol 2021; 4:177. [PMID: 33564115 PMCID: PMC7873203 DOI: 10.1038/s42003-021-01688-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Opsins, combined with a chromophore, are the primary light-sensing molecules in animals and are crucial for color vision. Throughout animal evolution, duplications and losses of opsin proteins are common, but it is unclear what is driving these gains and losses. Light availability is implicated, and dim environments are often associated with low opsin diversity and loss. Correlations between high opsin diversity and bright environments, however, are tenuous. To test if increased light availability is associated with opsin diversification, we examined diel niche and identified opsins using transcriptomes and genomes of 175 butterflies and moths (Lepidoptera). We found 14 independent opsin duplications associated with bright environments. Estimating their rates of evolution revealed that opsins from diurnal taxa evolve faster-at least 13 amino acids were identified with higher dN/dS rates, with a subset close enough to the chromophore to tune the opsin. These results demonstrate that high light availability increases opsin diversity and evolution rate in Lepidoptera.
Collapse
Affiliation(s)
- Yash Sondhi
- Department of Biology, Florida International University, Miami, FL, USA.
| | - Emily A Ellis
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Seth M Bybee
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Jamie C Theobald
- Department of Biology, Florida International University, Miami, FL, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Fine-scale genetic structure of the overwintering Chilo suppressalis in the typical bivoltine areas of northern China. PLoS One 2020; 15:e0243999. [PMID: 33326485 PMCID: PMC7743936 DOI: 10.1371/journal.pone.0243999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022] Open
Abstract
The rice stem borer (RSB), Chilo suppressalis (Lepidoptera: Pyralidae), is an important agricultural pest that has caused serious economic losses in the major rice-producing areas of China. To effectively control this pest, we investigated the genetic diversity, genetic differentiation and genetic structure of 16 overwintering populations in the typical bivoltine areas of northern China based on 12 nuclear microsatellite loci. Moderate levels of genetic diversity and genetic differentiation among the studied populations were detected. Neighbour-joining dendrograms, Bayesian clustering and principal coordinate analysis (PCoA) consistently divided these populations into three genetic clades: western, eastern and northern/central. Isolation by distance (IBD) and spatial autocorrelation analyses demonstrated no correlation between genetic distance and geographic distance. Bottleneck analysis illustrated that RSB populations had not undergone severe bottleneck effects in these regions. Accordingly, our results provide new insights into the genetic relationships of overwintering RSB populations and thus contribute to developing effective management strategies for this pest.
Collapse
|
10
|
Ye X, Xiong S, Teng Z, Yang Y, Wang J, Yu K, Wu H, Mei Y, Yan Z, Cheng S, Yin C, Wang F, Yao H, Fang Q, Song Q, Werren JH, Ye G, Li F. Amino acid synthesis loss in parasitoid wasps and other hymenopterans. eLife 2020; 9:e59795. [PMID: 33074103 PMCID: PMC7593089 DOI: 10.7554/elife.59795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/17/2020] [Indexed: 11/17/2022] Open
Abstract
Insects utilize diverse food resources which can affect the evolution of their genomic repertoire, including leading to gene losses in different nutrient pathways. Here, we investigate gene loss in amino acid synthesis pathways, with special attention to hymenopterans and parasitoid wasps. Using comparative genomics, we find that synthesis capability for tryptophan, phenylalanine, tyrosine, and histidine was lost in holometabolous insects prior to hymenopteran divergence, while valine, leucine, and isoleucine were lost in the common ancestor of Hymenoptera. Subsequently, multiple loss events of lysine synthesis occurred independently in the Parasitoida and Aculeata. Experiments in the parasitoid Cotesia chilonis confirm that it has lost the ability to synthesize eight amino acids. Our findings provide insights into amino acid synthesis evolution, and specifically can be used to inform the design of parasitoid artificial diets for pest control.
Collapse
Affiliation(s)
- Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
- Department of Biology, University of RochesterRochesterUnited States
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Ziwen Teng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yi Yang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Kaili Yu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Huizi Wu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Sammy Cheng
- Department of Biology, University of RochesterRochesterUnited States
| | - Chuanlin Yin
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of MissouriColumbiaUnited States
| | - John H Werren
- Department of Biology, University of RochesterRochesterUnited States
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| |
Collapse
|
11
|
Chang ZX, Ajayi OE, Guo DY, Wu QF. Genome-wide characterization and developmental expression profiling of long non-coding RNAs in Sogatella furcifera. INSECT SCIENCE 2020; 27:987-997. [PMID: 31264303 DOI: 10.1111/1744-7917.12707] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/16/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The genome-wide characterization of long non-coding RNA (lncRNA) in insects demonstrates their importance in fundamental biological processes. Essentially, an in-depth understanding of the functional repertoire of lncRNA in insects is pivotal to insect resources utilization and sustainable pest control. Using a custom bioinformatics pipeline, we identified 1861 lncRNAs encoded by 1852 loci in the Sogatella furcifera genome. We profiled lncRNA expression in different developmental stages and observed that the expression of lncRNAs is more highly temporally restricted compared to protein-coding genes. More up-regulated Sogatella furcifera lncRNA expressed in the embryo, 4th and 5th instars, suggesting that increased lncRNA levels may play a role in these developmental stages. We compared the relationship between the expression of Sogatella furcifera lncRNA and its nearest protein gene and found that lncRNAs were more correlated to their downstream coding neighbors on the opposite strand. Our genome-wide profiling of lncRNAs in Sogatella furcifera identifies exciting candidates for characterization of lncRNAs, and also provides information on lncRNA regulation during insect development.
Collapse
Affiliation(s)
- Zhao-Xia Chang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Olugbenga Emmanuel Ajayi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dong-Yang Guo
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Fa Wu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Zhou H, Hu W, Huang Q, Abouzaid M, Jin H, Sun Y, Qiu L, Zhang W, Lin Y, Ma W. Knockdown of cadherin genes decreases susceptibility of Chilo suppressalis larvae to Bacillus thuringiensis produced Crystal toxins. INSECT MOLECULAR BIOLOGY 2020; 29:301-308. [PMID: 31908051 DOI: 10.1111/imb.12634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
The striped rice stem borer, Chilo suppressalis Walker, is one of the most destructive rice pests in Asia. Insecticidal crystal proteins (Cry toxins) produced by Bacillus thuringiensis are widely used as biopesticides or in developing transgenic crops for pest management. In this study, we tested the involvement of two newly cloned C. suppressalis cadherins (CsCAD3 and CsCAD4) in the toxicity of Cry1Ab/Ac, Cry2Aa and Cry1Ca. Our results showed that CsCAD4 was expressed highest in the midgut, whereas CsCAD3 was expressed highest in the epidermis. The feeding of double-stranded RNA specific to CsCAD3 and CsCAD4 respectively significantly suppressed the expressions of target gene. The knockdown of CsCAD3 significantly reduced the mortality of larvae to Cry1Ab/Ac, whereas knockdown of CsCAD4 significantly decreased the larval susceptibility to Cry2Aa. In contrast, reduced expressions of CsCAD3 or CsCAD4 were not interacted with larval susceptibility to Cry1Ca. Our results suggest that CsCAD3 and CsCAD4 function in Cry toxin toxicity and these findings will help us to better understand the action mechanism of Cry toxins in C. suppressalis.
Collapse
Affiliation(s)
- H Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - W Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Q Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - M Abouzaid
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - H Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Y Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - L Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - W Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
| | - Y Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
| | - W Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Wang K, Peng Y, Chen J, Peng Y, Wang X, Shen Z, Han Z. Comparison of efficacy of RNAi mediated by various nanoparticles in the rice striped stem borer (Chilo suppressalis). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104467. [PMID: 32359547 DOI: 10.1016/j.pestbp.2019.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) has proven to be a very promising prospect for insect pest control. However, low RNAi efficacy limits further development of this biotechnology for use on lepidopteran insects, including the rice striped stem borer (SSB) (Chilo suppressalis), one of the major destructive rice pests. In this work, the application of various nanoparticles (NPs) by which double-stranded RNA (dsRNA) could be encapsulated was evaluated as an alternative delivery strategy to potentially increase the bioactivity of dsRNA. Three NPs, chitosan, carbon quantum dot (CQD), and lipofectamine2000, complexed with dsRNA (to target the glyceraldehyde-3-phosphate dehydrogenase gene (G3PDH)) were tested to examine their use in controlling SSB. Relative mRNA expressions were quantified using qPCR to evaluate knockdown efficiency of NP-dsRNA treated larvae, and the correlated dsRNA-mediated SSB larval mortality was tested. Thereafter, the content dynamics of hemolymph dsRNA after ingesting different NP-dsRNA were monitored in vivo; the hemolymph dsRNA content was in ratios of 5.67, 9.43, and 1 with chitosan, CQD, and lipofectamine2000 induced samples, respectively. The results demonstrated that all three tested NPs led to efficient feeding delivery by improving both dsRNA stability and cellular uptake equally. Furthermore, there was a strong correlation (r= 0.9854) between the hemolymph dsRNA contents and the average RNAi depletions in the non-gut tissues of SSB. Overall, our results strongly suggest that due to its strong endosomal escaping ability, CQD was the most efficient carrier for inducing systemic RNAi, and thereby causing effective gene silencing and mortality in SSB.
Collapse
Affiliation(s)
- Kangxu Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023, China.
| | - Yingchuan Peng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Jiasheng Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yue Peng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Xuesong Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Zihan Shen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Zhaojun Han
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China.
| |
Collapse
|
14
|
Gao P, Lu MX, Pan DD, Du YZ. Characterization of an inducible HSP70 gene in Chilo suppressalis and expression in response to environmental and biological stress. Cell Stress Chaperones 2020; 25:65-72. [PMID: 31792734 PMCID: PMC6985400 DOI: 10.1007/s12192-019-01047-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
The highly conserved heat shock protein 70 (HSP70) contributes to survival at a cellular level and greatly enhances stress tolerance in many organisms. In this study, we isolate and characterize Cshsp702, which encodes an inducible form of HSP70 in the rice stem borer, Chilo suppressalis. Cshsp702 does not contain introns; the translational product is comprised of 629 amino acids with an isoelectric point of 5.69. Real-time quantitative PCR revealed that Cshsp702 was expressed at maximal levels in hemocytes and was minimally expressed in the midgut. Expression of Cshsp702 in response to a range of temperatures (-11 to 43 °C) indicated significant induction by extreme cold and hot temperatures, with maximum expression after 2 h at 42 °C. The induction of Cshsp702 in response to the endoparasite Cotesia chilonis was also studied; interestingly, Cshsp702 expression in C. suppressalis was significantly induced at 24 h and 5 days, which correspond to predicted times of C. chilonis feeding and growth, respectively. The potential induction of Cshsp702 as an inflammatory response due to parasitic stress is discussed. In conclusion, Cshsp702 is induced in response to both environmental and biotic stress and plays an important role in the physiological adaptation of C. suppressalis.
Collapse
Affiliation(s)
- Peng Gao
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
| | - Ming-Xing Lu
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.
| | - Dan-Dan Pan
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Ma W, Zhao X, Yin C, Jiang F, Du X, Chen T, Zhang Q, Qiu L, Xu H, Joe Hull J, Li G, Sung W, Li F, Lin Y. A chromosome‐level genome assembly reveals the genetic basis of cold tolerance in a notorious rice insect pest,
Chilo suppressalis. Mol Ecol Resour 2019; 20:268-282. [DOI: 10.1111/1755-0998.13078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Weihua Ma
- National Key Laboratory of Crop Genetic Improvement National Centre of Plant Gene ResearchHuazhong Agricultural University Wuhan Hubei China
| | - Xianxin Zhao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests Institute of Insect Sciences Zhejiang University Hangzhou Zhejiang China
| | - Chuanlin Yin
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests Institute of Insect Sciences Zhejiang University Hangzhou Zhejiang China
| | - Fan Jiang
- College of Informatics Huazhong Agricultural University Wuhan Hubei China
| | - Xiaoyong Du
- College of Informatics Huazhong Agricultural University Wuhan Hubei China
| | - Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement National Centre of Plant Gene ResearchHuazhong Agricultural University Wuhan Hubei China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement National Centre of Plant Gene ResearchHuazhong Agricultural University Wuhan Hubei China
| | - Lin Qiu
- College of Plant Protection Hunan Agricultural University Changsha Hunan China
| | - Hongxing Xu
- Institute of Plant Protection and Microbiology Zhejiang Academy of Agricultural Sciences Hangzhou Zhejiang China
| | - J. Joe Hull
- Department of Agriculture U.S. Agricultural Research Service U.S. Arid Land Agricultural Research Center Maricopa AZ USA
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement National Centre of Plant Gene ResearchHuazhong Agricultural University Wuhan Hubei China
- College of Informatics Huazhong Agricultural University Wuhan Hubei China
| | - Wing‐Kin Sung
- College of Informatics Huazhong Agricultural University Wuhan Hubei China
- Department of Computer Science National University of Singapore Singapore Singapore
- Department of Computational and Systems Biology Genome Institute of Singapore Singapore Singapore
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests Institute of Insect Sciences Zhejiang University Hangzhou Zhejiang China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement National Centre of Plant Gene ResearchHuazhong Agricultural University Wuhan Hubei China
| |
Collapse
|
16
|
Qiu L, Sun Y, Jiang Z, Yang P, Liu H, Zhou H, Wang X, Zhang W, Lin Y, Ma W. The midgut V-ATPase subunit A gene is associated with toxicity to crystal 2Aa and crystal 1Ca-expressing transgenic rice in Chilo suppressalis. INSECT MOLECULAR BIOLOGY 2019; 28:520-527. [PMID: 30719783 DOI: 10.1111/imb.12570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insecticidal crystal (Cry) proteins produced by the bacterium Bacillus thuringiensis (Bt) are toxic to a diverse range of insects. Transgenic rice expressing Cry1A, Cry2A and Cry1C toxins have been developed that are lethal to Chilo suppressalis, a devastating insect pest of rice in China. Identifying the mechanisms underlying the interactions of Cry toxins with susceptible hosts will improve both our understanding of Cry protein toxicology and long-term efficacy of Bt crops. In this study, we tested the hypothesis that V-ATPase subunit A contributes to the action of Cry1Ab/1Ac, Cry2Aa and Cry1Ca toxins in C. suppressalis. The full-length V-ATPase subunit A transcript was initially cloned from the C. suppressalis larval midgut and then used to generate double-stranded RNA (dsRNA)-producing bacteria. Toxicity assays using transgenic rice lines TT51 (Cry1Ab and Cry1Ac fusion genes), T2A-1 (Cry2Aa), and T1C-19 (Cry1Ca) in conjunction with V-ATPase subunit A dsRNA-treated C. suppressalis larvae revealed significantly reduced larval susceptibility to T2A-1 and T1C-19 transgenic rice, but not to TT51 rice. These results suggest that the V-ATPase subunit A plays a crucial role in mediating Cry2Aa and Cry1Ca toxicity in C. suppressalis. These findings will have significant implications on the development of future resistance management tools.
Collapse
Affiliation(s)
- L Qiu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Y Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Z Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - P Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - H Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - H Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - X Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - W Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
| | - Y Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
| | - W Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Dong X, Liao H, Zhu G, Khuhro SA, Ye Z, Yan Q, Dong S. CRISPR/Cas9-mediated PBP1 and PBP3 mutagenesis induced significant reduction in electrophysiological response to sex pheromones in male Chilo suppressalis. INSECT SCIENCE 2019; 26:388-399. [PMID: 29058383 PMCID: PMC7379591 DOI: 10.1111/1744-7917.12544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/27/2017] [Accepted: 09/03/2017] [Indexed: 05/12/2023]
Abstract
Pheromone-binding proteins (PBPs) are thought to bind and transport sex pheromones onto the olfactory receptors on the dendrite membrane of olfactory neurons, and thus play a vital role in sex pheromone perception. However, the function of PBPs has rarely been demonstrated in vivo. In this study, two PBPs (PBP1 and PBP3) of Chilo suppressalis, one of the most notorious pyralid pests, were in vivo functionally characterized using insects with the PBP gene knocked out by the CRISPR/Cas9 system. First, through direct injection of PBP-single guide RNA (sgRNA)/Cas9 messenger RNA into newly laid eggs, a high rate of target-gene editing (checked with polled eggs) was induced at 24 h after injection, 21.3% for PBP1-sgRNA injected eggs and 19.5% for PBP3-sgRNA injected eggs. Second, by an in-crossing strategy, insects with mutant PBP1 or PBP3 (both with a premature stop codon) were screened, and homozygous mutants were obtained in the G3 generation. Third, the mutant insects were measured for electroantennogram (EAG) response to female sex pheromones. As a result, both PBP mutant males displayed significant reduction in EAG response, and this reduction in PBP1 mutants was higher than that in PBP3 mutants, indicating a more important role of PBP1. Finally, the relative importance of two PBPs and the possible off target effect induced by sgRNA-injection are discussed. Taken together, our study provides a deeper insight into the function of and interaction between different PBP genes in sex pheromone perception of C. suppressalis, as well as a valuable reference in methodology for gene functional study in other genes and other moth species.
Collapse
Affiliation(s)
- Xiao‐Tong Dong
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Hui Liao
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Guan‐Heng Zhu
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Sajjad Ali Khuhro
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Zhan‐Feng Ye
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Qi Yan
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Shuang‐Lin Dong
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| |
Collapse
|
18
|
Dhania NK, Chauhan VK, Chaitanya R, Dutta-Gupta A. Midgut de novo transcriptome analysis and gene expression profiling of Achaea janata larvae exposed with Bacillus thuringiensis (Bt)-based biopesticide formulation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:81-90. [DOI: 10.1016/j.cbd.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/19/2018] [Accepted: 02/14/2019] [Indexed: 11/24/2022]
|
19
|
Lu MX, Song J, Xu J, Wang G, Liu Y, Du YZ. A Novel Aquaporin 12-like Protein from Chilo suppressalis: Characterization and Functional Analysis. Genes (Basel) 2019; 10:genes10040311. [PMID: 31010093 PMCID: PMC6523266 DOI: 10.3390/genes10040311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/16/2023] Open
Abstract
Aquaporins (AQPs), which are members of the major intrinsic protein (MIP) family, play an important role in the transport of water and other small, uncharged solutes across membranes. In this study, we identified gene encoding two aquaporin 12-like (AQP12L) proteins, CsAqp12L_v1 and CsAqp12L_v2, from Chilo suppressalis, a serious rice pest in Asia. Phylogenetic analysis indicated that CsAQP12L_V1 and CsAQP12L_V2 were grouped in a well-supported cluster that included other members of Lepidoptera. The two proteins are almost identical, except that CsAQP12L_V1 lacks 34 amino acids that are present in CsAQP12L_V2 at site 217. The qRT-PCR indicated that both CsAqp12L and CsAqp12L_v2 were expressed in heads, epidermis, foregut, midgut, and hindguts, with the highest level of expression in hindguts, heads, and epidermis. Expression of CsAqp12L and CsAqp12L_v2 was detected in all life stages and both sexes and was highest in first instar larvae and lowest in eggs. Expression of CsAqp12L and CsAqp12L_v2 was not significantly altered by exposure to brief changes in temperature. There were no significant differences in the third instar larvae, male and female pupae, and female adults in response to adverse humidity. However, the mRNA level of CsAqp12L in the fifth instar larvae and CsAqp12L_v2 in male adults was induced significantly by low humidity, respectively. Moreover, Xenopus oocytes injected with cRNAs of CsAQP12L_V1 and CsAQP12L_V2 showed no significant changes in permeability to water, glycerol, trehalose, or urea. The two CsAQP12L variants likely localize to an intracellular location in C. suppressalis and may respond to novel stimuli.
Collapse
Affiliation(s)
- Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Jie Song
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Jing Xu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100000, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100000, China.
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
20
|
Jia ZQ, Sheng CW, Tang T, Liu D, Leviticus K, Zhao CQ, Chang XL. Identification of the ionotropic GABA receptor-like subunits from the striped stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 155:36-44. [PMID: 30857625 DOI: 10.1016/j.pestbp.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Ionotropic γ-aminobutyric acid (GABA) receptors (GABARs) mediate rapid inhibitory neurotransmission in both vertebrates and invertebrates, and are important molecular targets of insecticides. However, components of insect GABARs remain elusive. In addition to CsRDL1 and CsRDL2, the complementary DNAs (cDNAs) of another two GABA receptor-like subunits, CsLCCH3 and Cs8916, were identified from the rice striped stem borer, Chilo suppressalis Walker in the present study. Both CsLCCH3 and Cs8916 subunits shared common structural features, such as a highly-conserved Cys-loop structure, six distinct regions involved in ligand binding (loops A-F), and four transmembrane domains (TM 1-4). Transcript analysis demonstrated that the relative mRNA expression levels of both CsLCCH3 and Cs8916 subunits were the highest in the ventral nerve cord. Regarding developmental stage, transcript levels of both subunits were highest in eggs. Injections of double-stranded RNAs (dsRNAs), including dsRDL1, dsRDL2, dsLCCH3, or ds8916, significantly reduced mRNA abundance after 24 and 48 h. However, no observable effects on the development of C. suppressalis were observed. Injection of dsRDL1 or dsRDL2 did significantly reduce the mortality of C. suppressalis treated with fluralaner. Our results indicated that CsRDLs mediated the susceptibility of C. suppressalis to fluralaner, whereas CsLCCH3 and CsL8916 did not. The current investigation enhances our knowledge of Lepidopteran GABARs and offers a molecular basis for the development of novel insecticides to control C. suppressalis.
Collapse
Affiliation(s)
- Zhong-Qiang Jia
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng-Wang Sheng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Tang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Di Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kipchoge Leviticus
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Qing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiao-Li Chang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai 201403, China.
| |
Collapse
|
21
|
He K, Xiao H, Sun Y, Ding S, Situ G, Li F. Transgenic microRNA-14 rice shows high resistance to rice stem borer. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:461-471. [PMID: 30044049 PMCID: PMC6335064 DOI: 10.1111/pbi.12990] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 05/21/2023]
Abstract
Rice stem borer (RSB, Chilo suppressalis) is an insect pest that causes huge economic losses every year. Control efforts rely heavily on chemical insecticides, which leads to serious problems such as insecticide resistance, environment pollution, and food safety issues. Therefore, developing alternative pest control methods is an important task. Here, we identified an insect-specific microRNA, miR-14, in RSB, which was predicted to target Spook (Spo) and Ecdysone receptor (EcR) in the ecdysone signalling network. In-vitro dual luciferase assays using HEK293T cells confirmed the interactions of Csu-miR-14 with CsSpo and with CsEcR. Csu-miR-14 exhibited high levels of expression at the end of each larval instar stage, and its expression was negatively correlated with the expression of its two target genes. Overexpression of Csu-miR-14 at the third day of the fifth instar stage led to high mortality and developmental defects in RSB individuals. We produced 35 rice transformants to express miR-14 and found that three lines had a single copy with highly abundant miR-14 mature transcripts. Feeding bioassays using both T0 and T1 generations of transgenic miR-14 rice indicated that at least one line (C#24) showed high resistance to RSB. These results indicated that the approach of miRNAs as targets has potential for improving pest control methods. Moreover, using insect-specific miRNAs rather than protein-encoding genes for pest control may prove benign to non-insect species, and thus is worthy of further exploration.
Collapse
Affiliation(s)
- Kang He
- Institute of Insect Sciences/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect PestsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Huamei Xiao
- College of Life Sciences and Resource EnvironmentYichun UniversityYichunChina
- Department of EntomologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yang Sun
- Department of EntomologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Institute of Plant ProtectionJiangxi Academy of Agricultural SciencesNanchangChina
| | - Simin Ding
- Institute of Insect Sciences/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect PestsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Gongming Situ
- Department of EntomologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Fei Li
- Institute of Insect Sciences/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect PestsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
22
|
Tu XH, Zhuo YL, Jiang XY, Liu HL, Cao Y, Liu S. Molecular Characterization of a Mitochondrial Manganese Superoxide Dismutase From Chilo suppressalis (Lepidoptera: Crambidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2391-2400. [PMID: 29939281 DOI: 10.1093/jee/toy180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Indexed: 06/08/2023]
Abstract
In insects, superoxide dismutases (SODs) play a critical role in the scavenging of harmful reactive oxygen species (ROS) and protecting against oxidative stress induced by various environmental stresses. The Asiatic rice borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), is an economically important insect pest of rice crops. In this study, a mitochondrial manganese SOD (Cs-mMnSOD) gene was characterized in C. suppressalis. The deduced Cs-mMnSOD protein has typical highly conserved features of mitochondrial manganese SODs, including four manganese binding residues, the signature DVWEHAYY peptide, and a mitochondrial-targeting sequence at the N-terminus. Transcription of Cs-mMnSOD was detectable at all developmental stages, but highest in pupae. Furthermore, the mRNA level of Cs-mMnSOD was strongly upregulated (more than twofold increase) following exposure to low and high temperatures (4, 30 and 35°C), insecticides (chlorpyrifos and chlorantraniliprole), and chemical reagents (cumene hydroperoxide, paraquat, H2O2 and CdCl2), but slightly elevated (less than twofold increase) in response to 8°C, abamectin and CuSO4. Additionally, the Cs-mMnSOD transcription results were consistent with the enzymatic activity data of the protein product. Purified recombinant Cs-mMnSOD protein expressed in Escherichia coli displayed SOD activity and thermostability. Furthermore, E. coli cells overexpressing Cs-mMnSOD exhibited long-term resistance to the oxidative inducers cumene hydroperoxide and paraquat. Our findings indicate that Cs-mMnSOD plays an important role in protecting C. suppressalis against oxidative damage.
Collapse
Affiliation(s)
- Xiao-Hui Tu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Yu-Li Zhuo
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiu-Yun Jiang
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Hong-Li Liu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Ye Cao
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Su Liu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
23
|
Cao Y, Yang Q, Tu XH, Li SG, Liu S. Molecular characterization of a typical 2-Cys thioredoxin peroxidase from the Asiatic rice borer Chilo suppressalis and its role in oxidative stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21476. [PMID: 29873106 DOI: 10.1002/arch.21476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In insects, thioredoxin peroxidase (TPX) plays an important role in protecting against oxidative damage. However, studies on the molecular characteristics of TPXs in the Asiatic rice borer, Chilo suppressalis, are limited. In this work, a cDNA sequence (CsTpx3) encoding a TPX was identified from C. suppressalis. The deduced CsTPX3 protein shares high sequence identity and two positionally conserved cysteines with orthologs from other insect species, and was classified as a typical 2-Cys TPX. CsTpx3 was expressed most highly during the fifth-instar larval stage, and transcripts were most abundant in the midgut. Recombinant CsTPX3 protein expressed in Escherichia coli displayed the expected peroxidase activity by removing H2 O2 . Furthermore, CsTPX3 protected DNA from oxidative damage, and E. coli cells overexpressing CsTPX3 exhibited long-term resistance to oxidative stress. Exposure to various oxidative stressors, such as cold (8°C), heat (35°C), bacteria (E. coli), and two insecticides (chlorpyrifos and lambda-cyhalothrin), significantly upregulated transcription of CsTpx3. However, exposure to abamectin had no such effect. Our results provide valuable information for future studies on the antioxidant mechanism in this insect species.
Collapse
Affiliation(s)
- Ye Cao
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Qing Yang
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiao-Hui Tu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Shi-Guang Li
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Su Liu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
24
|
Sun Y, Xu L, Chen Q, Qin W, Huang S, Jiang Y, Qin H. Chlorantraniliprole resistance and its biochemical and new molecular target mechanisms in laboratory and field strains of Chilo suppressalis (Walker). PEST MANAGEMENT SCIENCE 2018; 74:1416-1423. [PMID: 29235708 DOI: 10.1002/ps.4824] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/25/2017] [Accepted: 12/05/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND The rice striped stem borer (SSB), Chilo suppressalis (Walker), is one of the most economically important and destructive rice pests in China. To date, the efficiency of conventional insecticides has decreased greatly because of the development of high resistance. Since the introduction of chlorantraniliprole in 2008, SSB has presented resistance issues. RESULTS In this study, laboratory resistant strains R1 and R2 [resistance ratio (RR) of 38.8 and 110.4, respectively] were established and a field population HR (RR of 249.6) was collected. Synergist assessment and enzyme activity data suggested the potential involvement of P450s and esterases in the resistance mechanism. No target (ryanodine receptor, RyR) mutation was found in R1, but a novel mutation Y4667D was found in R2. At the same position of RyR in HR strain, Y4667D and Y4667C were observed at low frequencies. In addition, the conserved mutation I4758M was found with a frequency of 94.4%. RyR mRNA expression was significantly lower in R1, R2 and HR than in S. When treated with chlorantraniliprole, RyR mRNA expression in all four strains was downregulated to ∼ 50%. CONCLUSIONS A comprehensive analysis, including biochemical, target mutations and target mRNA expression, was conducted in an attempt to interpret the chlorantraniliprole resistance mechanism in both laboratory and field SSB strains. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Sun
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang, China
| | - Lu Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiong Chen
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang, China
| | - Wenjing Qin
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang, China
| | - Shuijin Huang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang, China
| | - Ying Jiang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang, China
| | - Houguo Qin
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang, China
| |
Collapse
|
25
|
Sheng CW, Jia ZQ, Ozoe Y, Huang QT, Han ZJ, Zhao CQ. Molecular cloning, spatiotemporal and functional expression of GABA receptor subunits RDL1 and RDL2 of the rice stem borer Chilo suppressalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 94:18-27. [PMID: 29408355 DOI: 10.1016/j.ibmb.2018.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
Insect γ-aminobutyric acid (GABA) receptor (GABAR) is one of the major targets of insecticides. In the present study, cDNAs (CsRDL1A and CsRDL2S) encoding the two isoforms of RDL subunits were cloned from the rice stem borer Chilo suppressalis. Transcripts of both genes demonstrated similar expression patterns in different tissues and developmental stages, although CsRDL2S was ∼2-fold more abundant than CsRDL1A throughout all development stages. To investigate the function of channels formed by CsRDL subunits, both genes were expressed in Xenopus laevis oocytes singly or in combination in different ratios. Electrophysiological results using a two-electrode voltage clamp demonstrated that GABA activated currents in oocytes injected with both cRNAs. The EC50 value of GABA in activating currents was smaller in oocytes co-injected with CsRDL1A and CsRDL2S than in oocytes injected singly. The IC50 value of the insecticide fluralaner in inhibiting GABA responses was smaller in oocytes co-injected with different cRNAs than in oocytes injected singly. Co-injection also changed the potency of the insecticide dieldrin in oocytes injected singly. These findings suggested that heteromeric GABARs were formed by the co-injections of CsRDL1A and CsRDL2S in oocytes. Although the presence of Ser at the 2'-position in the second transmembrane segment was responsible for the insensitivity of GABARs to dieldrin, this amino acid did not affect the potencies of the insecticides fipronil and fluralaner. These results lead us to hypothesize that C. suppressalis may adapt to insecticide pressure by regulating the expression levels of CsRDL1A and CsRDL2S and the composition of both subunits in GABARs.
Collapse
Affiliation(s)
- Cheng-Wang Sheng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhong-Qiang Jia
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, 690-8504, Japan
| | - Qiu-Tang Huang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhao-Jun Han
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chun-Qing Zhao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
26
|
Lu MX, Pan DD, Xu J, Liu Y, Wang GR, Du YZ. Identification and Functional Analysis of the First Aquaporin from Striped Stem Borer, Chilo suppressalis. Front Physiol 2018; 9:57. [PMID: 29467668 PMCID: PMC5808226 DOI: 10.3389/fphys.2018.00057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/17/2018] [Indexed: 01/20/2023] Open
Abstract
Aquaporins are integral membrane proteins some of which form high capacity water-selective channels, promoting water permeation across cell membranes. In this study, we isolated the aquaporin transcript (CsDrip1) of Chilo suppressalis, one of the important rice pests. CsDrip1 included two variants, CsDrip1_v1 and CsDrip1_v2. Although CsDrip1_v2 sequence (>409 bp) was longer than CsDrip1_v1, they possessed the same open reading frame (ORF). Protein structure and topology of CsDrip1 was analyzed using a predicted model, and the results demonstrated the conserved properties of insect water-specific aquaporins, including 6 transmembrane domains, 2 NPA motifs, ar/R constriction region (Phe69, His194, Ser203, and Arg209) and the C-terminal peptide sequence ending in "SYDF." Our data revealed that the Xenopus oocytes expressing CsDrip1 indicated CsDrip1 could transport water instead of glycerol, trehalose and urea. Further, the transcript of CsDrip1 expressed ubiquitously but differentially in different tissues or organs and developmental stages of C. suppressalis. CsDrip1 mRNA exhibited the highest level of expression within hindgut and the third instar larvae. Regardless of pupae and adults, there were significantly different expression levels of CsDrip1 gene between male and female. Different from at low temperature, the transcript of CsDrip1 in larvae exposed to high temperature was increased significantly. Moreover, the mRNA levels of CsDrip1 in the third instar larvae, the fifth instar larvae, pupae (male and female), and adults (male and female) under different humidities were investigated. However, the mRNA levels of CsDrip1 of only female and male adults were changed remarkably. In conclusions, CsDrip1 plays important roles in maintaining water homeostasis in this important rice pest.
Collapse
Affiliation(s)
- Ming-Xing Lu
- College of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Dan-Dan Pan
- College of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jing Xu
- College of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Triant DA, Cinel SD, Kawahara AY. Lepidoptera genomes: current knowledge, gaps and future directions. CURRENT OPINION IN INSECT SCIENCE 2018; 25:99-105. [PMID: 29602369 DOI: 10.1016/j.cois.2017.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
Butterflies and moths (Lepidoptera) are one of the most ecologically diverse and speciose insect orders. With recent advances in genomics, new Lepidoptera genomes are regularly being sequenced, and many of them are playing principal roles in genomics studies, particularly in the fields of phylo-genomics and functional genomics. Thus far, assembled genomes are only available for <10 of the 43 Lepidoptera superfamilies. Nearly all are model species, found in the speciose clade Ditrysia. Community support for Lepidoptera genomics is growing with successful management and dissemination of data and analytical tools in centralized databases. With genomic studies quickly becoming integrated with ecological and evolutionary research, the Lepidoptera community will unquestionably benefit from new high-quality reference genomes that are more evenly distributed throughout the order.
Collapse
Affiliation(s)
- Deborah A Triant
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| | - Scott D Cinel
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
28
|
Qiu L, Wang P, Wu T, Li B, Wang X, Lei C, Lin Y, Zhao J, Ma W. Downregulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines. INSECT MOLECULAR BIOLOGY 2018; 27:83-89. [PMID: 28940938 DOI: 10.1111/imb.12349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Insecticidal crystal (Cry) proteins produced by the bacterium Bacillus thuringiensis are highly toxic to lepidopteran pests. Strains of transgenic rice expressing cry genes have been developed that are resistant to rice pests. Understanding the mode of action of Cry toxins in rice pests will improve our ability to use them effectively as insecticides. In this study, we tested the hypothesis that alkaline phosphatases (ALPs) are involved in Cry1A, Cry2Aa and Cry1Ca toxicity in Chilo suppressalis, an important insect pest of rice crops in China. We first cloned three novel C. suppressalis alps (Csalps) from the larval midgut of C. suppressalis. RNA interference knockdown of six different Csalp genes (Csalp1, Csalp2, Csalp3, Csalp4, Csalp5 and Csalp6) showed that knockdown of three of these, Csalp1, Csalp2 and Csalp4, reduced larval mortality to the transgenic rice strain TT51, which expresses a fusion protein of Cry1Ab and Cry1Ac, whereas suppression of Csalp1, Csalp2, Csalp3, Csalp4 and Csalp6 transcripts decreased the susceptibility of larvae to the transgenic rice strain T2A-1, which expresses cry2Aa. Moreover, downregulation of Csalp1, Csalp2, Csalp3, Csalp4 and Csalp5 transcripts conferred significant tolerance to the transgenic rice strain T1C-19, which expresses cry1Ca. These results suggest that these ALPs play a key role in the toxicity of Cry1A, Cry2A and Cry1C to C. suppressalis.
Collapse
Affiliation(s)
- L Qiu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - P Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - T Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - B Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - X Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - C Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Y Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - J Zhao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - W Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Pan DD, Lu MX, Li QY, Du YZ. Characteristics and expression of genes encoding two small heat shock protein genes lacking introns from Chilo suppressalis. Cell Stress Chaperones 2018; 23:55-64. [PMID: 28687981 PMCID: PMC5741581 DOI: 10.1007/s12192-017-0823-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/07/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022] Open
Abstract
Small heat shock proteins (sHSPs) constitute a large, diverse, and functionally uncharacterized family of heat shock proteins. To gain insight regarding the function of sHSPs in insects, we identified genes encoding two sHSPs, Cshsp22.9b and Cshsp24.3, from the rice pest Chilo suppressalis. The cDNAs of Cshsp22.9b and Cshsp24.3 encoded proteins of 206 and 216 amino acids with isoelectric points of 5.79 and 9.28, respectively. Further characterization indicated that both Cshsp22.9b and Cshsp24.3 lacked introns. Real-time quantitative PCR indicated that Cshsp22.9b and Cshsp24.3 were expressed at higher levels within the fat body as compared to other tissues (head, epidermis, foregut, midgut, hindgut, Malpighian tubules, and hemocytes). Expression of Cshsp22.9b and Cshsp24.3 was lowest in the hindgut and Malpighian tubules, respectively. Cshsp22.9b and Cshsp24.3 showed identical patterns in response to thermal stress from -11 to 43 °C, and both genes were up-regulated by hot and cold temperatures. The mRNA (messenger ribonucleic acid) expression levels of Cshsp22.9b (KY701308) and Cshsp24.3 (KY701309) were highest after a 2-h exposure at 39 °C and started to decline at 42 °C. In response to cold temperatures, both Cshsp22.9b and Cshsp24.3 showed maximal expression after a 2-h exposure to -3 °C. The two Cshsps were more responsive to hot than cold temperature stress and were not induced by mildly cold or warm temperatures. In conclusion, Cshsp22.9b and Cshsp24.3 could play a very important role in the regulation of physiological activities in C. suppressalis that are impacted by environmental stimuli.
Collapse
Affiliation(s)
- Dan-Dan Pan
- School of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
| | - Ming-Xing Lu
- School of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Qiu-Yu Li
- School of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
30
|
He K, Sun Y, Xiao H, Ge C, Li F, Han Z. Multiple miRNAs jointly regulate the biosynthesis of ecdysteroid in the holometabolous insects, Chilo suppressalis. RNA (NEW YORK, N.Y.) 2017; 23:1817-1833. [PMID: 28860304 PMCID: PMC5689003 DOI: 10.1261/rna.061408.117] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/18/2017] [Indexed: 05/30/2023]
Abstract
The accurate rise and fall of active hormones is important for insect development. The ecdysteroids must be cleared in a timely manner. However, the mechanism of suppressing the ecdysteroid biosynthesis at the right time remains unclear. Here, we sequenced a small RNA library of Chilo suppressalis and identified 300 miRNAs in this notorious rice insect pest. Microarray analysis yielded 54 differentially expressed miRNAs during metamorphosis development. Target prediction and in vitro dual-luciferase assays confirmed that seven miRNAs (two conserved and five novel miRNAs) jointly targeted three Halloween genes in the ecdysteroid biosynthesis pathway. Overexpression of these seven miRNAs reduced the titer of 20-hydroxyecdysone (20E), induced mortality, and retarded development, which could be rescued by treatment with 20E. Comparative analysis indicated that the miRNA regulation of metamorphosis development is a conserved process but that the miRNAs involved are highly divergent. In all, we present evidence that both conserved and lineage-specific miRNAs have crucial roles in regulating development in insects by controlling ecdysteroid biosynthesis, which is important for ensuring developmental convergence and evolutionary diversity.
Collapse
Affiliation(s)
- Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yang Sun
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Huamei Xiao
- College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, China
| | - Chang Ge
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhaojun Han
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
31
|
Fan Y, Wang T, Qiu Z, Peng J, Zhang C, He Y. Fast Detection of Striped Stem-Borer (Chilo suppressalis Walker) Infested Rice Seedling Based on Visible/Near-Infrared Hyperspectral Imaging System. SENSORS 2017; 17:s17112470. [PMID: 29077040 PMCID: PMC5713110 DOI: 10.3390/s17112470] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 11/16/2022]
Abstract
Striped stem-borer (SSB) infestation is one of the most serious sources of damage to rice growth. A rapid and non-destructive method of early SSB detection is essential for rice-growth protection. In this study, hyperspectral imaging combined with chemometrics was used to detect early SSB infestation in rice and identify the degree of infestation (DI). Visible/near-infrared hyperspectral images (in the spectral range of 380 nm to 1030 nm) were taken of the healthy rice plants and infested rice plants by SSB for 2, 4, 6, 8 and 10 days. A total of 17 characteristic wavelengths were selected from the spectral data extracted from the hyperspectral images by the successive projection algorithm (SPA). Principal component analysis (PCA) was applied to the hyperspectral images, and 16 textural features based on the gray-level co-occurrence matrix (GLCM) were extracted from the first two principal component (PC) images. A back-propagation neural network (BPNN) was used to establish infestation degree evaluation models based on full spectra, characteristic wavelengths, textural features and features fusion, respectively. BPNN models based on a fusion of characteristic wavelengths and textural features achieved the best performance, with classification accuracy of calibration and prediction sets over 95%. The accuracy of each infestation degree was satisfactory, and the accuracy of rice samples infested for 2 days was slightly low. In all, this study indicated the feasibility of hyperspectral imaging techniques to detect early SSB infestation and identify degrees of infestation.
Collapse
Affiliation(s)
- Yangyang Fan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China.
| | - Tao Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China.
| | - Zhengjun Qiu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China.
| | - Jiyu Peng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China.
| | - Chu Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China.
| |
Collapse
|
32
|
RNA-seq of Rice Yellow Stem Borer Scirpophaga incertulas Reveals Molecular Insights During Four Larval Developmental Stages. G3-GENES GENOMES GENETICS 2017; 7:3031-3045. [PMID: 28717048 PMCID: PMC5592929 DOI: 10.1534/g3.117.043737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The yellow stem borer (YSB), Scirpophaga incertulas, is a prominent pest in rice cultivation causing serious yield losses. The larval stage is an important stage in YSB, responsible for maximum infestation. However, limited knowledge exists on the biology and mechanisms underlying the growth and differentiation of YSB. To understand and identify the genes involved in YSB development and infestation, so as to design pest control strategies, we performed de novo transcriptome analysis at the first, third, fifth, and seventh larval developmental stages employing Illumina Hi-seq. High-quality reads (HQR) of ∼229 Mb were assembled into 24,775 transcripts with an average size of 1485 bp. Genes associated with various metabolic processes, i.e., detoxification mechanism [CYP450, GSTs, and carboxylesterases (CarEs)], RNA interference (RNAi) machinery (Dcr-1, Dcr-2, Ago-1, Ago-2, Sid-1, Sid-2, Sid-3, and Sid-1-related gene), chemoreception (CSPs, GRs, OBPs, and ORs), and regulators [transcription factors (TFs) and hormones] were differentially regulated during the developmental stages. Identification of stage-specific transcripts made it possible to determine the essential processes of larval development. Comparative transcriptome analysis revealed that YSB has not evolved much with respect to the detoxification mechanism, but showed the presence of distinct RNAi machinery. The presence of strong specific visual recognition coupled with chemosensory mechanisms supports the monophagous nature of YSB. Designed expressed sequenced tags-simple-sequence repeats (EST-SSRs) will facilitate accurate estimation of the genetic diversity of YSB. This is the first report on characterization of the YSB transcriptome and the identification of genes involved in key processes, which will help researchers and industry to devise novel pest control strategies. This study also opens up a new avenue to develop next-generation resistant rice using RNAi or genome editing approaches.
Collapse
|
33
|
Knockdown of two Cadherin genes confers resistance to Cry2A and Cry1C in Chilo suppressalis. Sci Rep 2017; 7:5992. [PMID: 28729614 PMCID: PMC5519675 DOI: 10.1038/s41598-017-05110-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
Bacillus thuringiensis (Bt) Cry toxins play an important role in the management of insect pests. Resistance to Bt toxins has been reported in many pest insects but the mechanism responsible for this resistance in rice crop pests remains largely unknown. Cadherin is one of several Bt toxin receptors. At present, only one cadherin gene, CsCAD1, has been documented in the striped rice stem borer, Chilo suppressalis. We amplified a nearly full-length transcript of another C. suppressalis cadherin gene, CsCAD2, and found that it has a different expression pattern to CsCAD1. CsCAD1 was highly expressed in fifth and sixth instar larvae, especially in the midgut, while the expression levels of CsCA2 were equably in each developmental stage. Newly hatched larvae were fed on rice smeared with synthesized siRNA to knockdown either CsCAD1 or CsCAD2, and then were fed transgenic rice expressing either the Cry2A or Cry1C toxins. The siRNA-treatment groups had lower mortality and higher survival rates than the control group, suggesting that reduced expression of CsCAD1 or CsCAD2 increased resistance to Cry2A and Cry1C. We conclude that CsCAD1 and CsCAD2 interact with Bt toxins in C. suppressalis and that this interaction could be the mechanism underlying Bt resistance in this insect.
Collapse
|
34
|
Jiang S, Wu H, Liu H, Zheng J, Lin Y, Chen H. The overexpression of insect endogenous small RNAs in transgenic rice inhibits growth and delays pupation of striped stem borer (Chilo suppressalis). PEST MANAGEMENT SCIENCE 2017; 73:1453-1461. [PMID: 27862861 DOI: 10.1002/ps.4477] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/02/2016] [Accepted: 11/06/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND The striped stem borer (SSB), Chilo suppressalis Walker, is a major rice insect pest worldwide. RNA interference (RNAi) has become a promising strategy for developing insect-resistant crops. In a previous study, five double-stranded RNAs (dsRNAs) targeting important SSB housekeeping genes were overexpressed in rice, but none of the acquired dsRNA-transgenic rice plants showed significant effects on SSB. RESULTS Thirteen selected SSB endogenous small RNAs, predicted as SSB novel microRNAs (miRNAs), were overexpressed in rice using artificial miRNA (amiRNA) expression technology. Feeding tests showed that two out of 13 selected SSB novel miRNAs caused significant growth inhibition for feeding SSB larvae based on transgenic rice expression. Pupation was delayed 4 days when SSB larvae consecutively fed on transgenic rice expressing the SSB novel miRNA candidate csu-novel-miR15 (csu-15 rice). Gene expression analysis confirmed that the expression levels of at least six SSB unigenes significantly changed (i.e., were up- or down-regulated) after feeding on csu-15 rice. CONCLUSIONS Our research demonstrated a novel RNAi strategy using SSB endogenous small RNAs to develop RNAi crops for pest management; this strategy is different from the common RNAi resulting from transgenic dsRNAs or amiRNAs targeting certain insect endogenous genes. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shan Jiang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Hao Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Haoju Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jie Zheng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Yang CH, Yang PC, Zhang SF, Shi ZY, Kang L, Zhang AB. Identification, expression pattern, and feature analysis of cuticular protein genes in the pine moth Dendrolimus punctatus (Lepidoptera: Lasiocampidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:94-106. [PMID: 28284855 DOI: 10.1016/j.ibmb.2017.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/19/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Cuticular proteins (CPs) are vital components of the insects' cuticle that support movement and protect insect from adverse environmental conditions. The CPs exist in a large number and diversiform structures, thus, the accurate annotation is the first step to interpreting their roles in insect growth. The rapid development of sequencing technology has simplified the access to the information on protein sequences, especially for non-model species. Dendrolimus punctatus is a Lepidopteran defoliator, and its periodic outbreaks cause severe damage to the coniferous forests. The transcriptome of D. punctatus integrating the whole developmental periods are available for the potential investigation of CPs. In this study, we identified 216 CPs from D. punctatus, including 147 from CPR family, 4 from TWDL family, 3 from CPF/CPFL families, 22 from CPAP families, 8 low complexity proteins, 1 CPCPC and 31 from other CP families. The putative CPs were compared with homologs in other species such as Bombyx mori, Manduca sexta and Drosophila melanogaster. We further identified five co-orthologous groups have highly similar sequences of CRPs in nine lepidopteran species, which exclusively presented in RR-2 subfamily rather than RR-1. We inferred that in Lepidoptera the difference in RR-2 numbers was maintained by homologs in co-orthologous groups, coincided with observation in Drosophila and Anopheles that gene cluster was the model and source for the expansion of RR-2 genes. In combination with the variation of members in each CP family among different species, these results indicated the evolution of CPs was highly correlated to the adaptation of insect to environment. Furthermore, we compared the amino acid composition of the different types CPRs, and examined the expression patterns of CP genes in various developmental stages. The comprehensive overview of CPs from our study provides an insight into their evolution and the association between them and insect development.
Collapse
Affiliation(s)
- Cong-Hui Yang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Peng-Cheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Su-Fang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, 100091, China
| | - Zhi-Yong Shi
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ai-Bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
36
|
Xu J, Lu MX, Cui YD, Du YZ. Selection and Evaluation of Reference Genes for Expression Analysis Using qRT-PCR in Chilo suppressalis (Lepidoptera: Pyralidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:683-691. [PMID: 28115499 DOI: 10.1093/jee/tow297] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Quantitative real-time polymerase chain reaction (qRT-PCR) is a valuable tool for estimating gene expression; however, the validity is largely dependent on the selection of stable reference genes. The suitability of various reference genes for qRT-PCR analysis was evaluated in, Chilo suppressalis (Walker). The ΔCt method, geNorm, NormFinder, and BestKeeper were used to evaluate the suitability of nine candidate reference genes for normalizing gene expression in larval tissues and organs and during high and low temperature stress. The ΔCt method, geNorm, and NormFinder produced similar stability rankings; H3, UBI, and EF1 were the most stable reference genes for monitoring gene expression in larval tissue and organs, and EF1, TUB, and AK were the optimal genes for thermal stress. However, for thermal stress, RPS11 was the most stable gene based on BestKeeper. To validate these recommendations, the expression profile of the gene encoding heat shock protein 60 (Hsp60) was investigated. Hsp60 transcript levels showed significant differences when normalized to the most versus least stable reference genes. These results further confirm the importance of testing reference genes using the selected experimental parameters. The reference genes identified in the present study will improve the quality of gene expression data obtained for C. suppressalis and will facilitate future studies aimed at understanding the biology of this important insect pest.
Collapse
Affiliation(s)
- Jing Xu
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China ( ; ; )
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ming-Xing Lu
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China ( ; ; )
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ya-Dong Cui
- Department of Life Science, Fuyang Normal College, Fuyang 236032, China
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China ( ; ; )
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
37
|
Sun Y, Huang S, Wang S, Guo D, Ge C, Xiao H, Jie W, Yang Q, Teng X, Li F. Large-scale identification of differentially expressed genes during pupa development reveals solute carrier gene is essential for pupal pigmentation in Chilo suppressalis. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:117-125. [PMID: 28041944 DOI: 10.1016/j.jinsphys.2016.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/22/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Insects undergo metamorphosis, involving an abrupt change in body structure through cell growth and differentiation. Rice stem stripped borer (SSB), Chilo suppressalis, is one of the most destructive rice pests. However, little is known about the regulation mechanism of metamorphosis development in this notorious insect pest. Here, we studied the expression of 22,197 SSB genes at seven time points during pupa development with a customized microarray, identifying 622 differentially expressed genes (DEG) during pupa development. Gene ontology (GO) analysis of these DEGs indicated that the genes related to substance metabolism were highly expressed in the early pupa, which participate in the physiological processes of larval tissue disintegration at these stages. In comparison, highly expressed genes in the late pupal stages were mainly associated with substance biosynthesis, consistent with adult organ formation at these stages. There were 27 solute carrier (SLC) genes that were highly expressed during pupa development. We knocked down SLC22A3 at the prepupal stage, demonstrating that silencing SLC22A3 induced a deficiency in pupa stiffness and pigmentation. The RNAi-treated individuals had white and soft pupa, suggesting that this gene has an essential role in pupal development.
Collapse
Affiliation(s)
- Yang Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuijin Huang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Shuping Wang
- Technical Centre for Animal Plant and Food Inspection and Quarantine, Shanghai Entry-exit Inspection and Quarantine Bureau, Shanghai 200135, China
| | - Dianhao Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Ge
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huamei Xiao
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wencai Jie
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiupu Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolu Teng
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Li
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
38
|
Peng YC, Sheng CW, Casida JE, Zhao CQ, Han ZJ. Ryanodine receptor genes of the rice stem borer, Chilo suppressalis: Molecular cloning, alternative splicing and expression profiling. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:69-77. [PMID: 28043334 DOI: 10.1016/j.pestbp.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 05/14/2023]
Abstract
The ryanodine receptor (RyR) of the calcium release channel is the main target of anthranilic and phthalic diamide insecticides which have high selective insecticidal activity relative to mammalian toxicity. In this study, the full-length cDNA of Chilo suppressalis RyR (CsRyR) was isolated and characterized. The CsRyR mRNA has an open reading frame (ORF) of 15,387bp nucleotides, which encodes 5128 amino acids with GenBank ID: KR088972. Comparison of protein sequences showed that CsRyR shared high identities with other insects of 77-96% and lower identity to mammals and nematodes with only 42-45%. One alternative splicing site (KENLG) unique to Lepidoptera was found and two exclusive exons of CsRyR (I /II) were revealed. Spatial and temporal expression of CsRyR mRNA was at the highest relative level in 3rd instar larvae and head (including brain and muscle), and at the lowest expression level in egg and fat body. The expression levels of whole body CsRyR mRNA were increased remarkably after injection of 4th instar larvae with chlorantraniliprole at 0.004 to 0.4μg/g. This structural and functional information on CsRyR provides the basis for further understanding the selective action of chlorantraniliprole and possibly other diamide insecticides.
Collapse
Affiliation(s)
- Y C Peng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - C W Sheng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - John E Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3112, USA
| | - C Q Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Z J Han
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
39
|
He K, Lin K, Wang G, Li F. Genome Sizes of Nine Insect Species Determined by Flow Cytometry and k-mer Analysis. Front Physiol 2016; 7:569. [PMID: 27932995 PMCID: PMC5121235 DOI: 10.3389/fphys.2016.00569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/08/2016] [Indexed: 11/13/2022] Open
Abstract
The flow cytometry method was used to estimate the genome sizes of nine agriculturally important insects, including two coleopterans, five Hemipterans, and two hymenopterans. Among which, the coleopteran Lissorhoptrus oryzophilus (Kuschel) had the largest genome of 981 Mb. The average genome size was 504 Mb, suggesting that insects have a moderate-size genome. Compared with the insects in other orders, hymenopterans had small genomes, which were averagely about ~200 Mb. We found that the genome sizes of four insect species were different between male and female, showing the organismal complexity of insects. The largest difference occurred in the coconut leaf beetle Brontispa longissima (Gestro). The male coconut leaf beetle had a 111 Mb larger genome than females, which might be due to the chromosome number difference between the sexes. The results indicated that insect invasiveness was not related to genome size. We also determined the genome sizes of the small brown planthopper Laodelphax striatellus (Fallén) and the parasitic wasp Macrocentrus cingulum (Brischke) using k-mer analysis with Illunima Solexa sequencing data. There were slight differences in the results from the two methods. k-mer analysis indicated that the genome size of L. striatellus was 500–700 Mb and that of M. cingulum was ~150 Mb. In all, the genome sizes information presented here should be helpful for designing the genome sequencing strategy when necessary.
Collapse
Affiliation(s)
- Kang He
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| | - Kejian Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Fei Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China; Ministry of Agriculture, Key Lab of Agricultural Entomology and Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
40
|
Yang K, Liu Y, Niu DJ, Wei D, Li F, Wang GR, Dong SL. Identification of novel odorant binding protein genes and functional characterization of OBP8 in Chilo suppressalis (Walker). Gene 2016; 591:425-32. [DOI: 10.1016/j.gene.2016.06.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 01/13/2023]
|
41
|
Su C, Tu G, Huang S, Yang Q, Shahzad MF, Li F. Genome-wide analysis of chitinase genes and their varied functions in larval moult, pupation and eclosion in the rice striped stem borer, Chilo suppressalis. INSECT MOLECULAR BIOLOGY 2016; 25:401-412. [PMID: 27080989 DOI: 10.1111/imb.12227] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Some insect chitinases are required to degrade chitin and ensure successful metamorphosis. Although chitinase genes have been well characterized in several model insects, no reports exist for the rice striped stem borer, Chilo suppressalis, a highly destructive pest that causes huge yield losses in rice production. Here, we conducted a genome-level analysis of chitinase genes in C. suppressalis. After amplification of full-length transcripts with rapid amplification of cDNA ends, we identified 12 chitinase genes in C. suppressalis. All these genes had the conserved domains and motifs of glycoside hydrolase family 18 and grouped phylogenetically into five subgroups. C. suppressalis chitinase 1 (CsCht1) was highly expressed in late pupae, whereas CsCht3 was abundant in early pupae. Both CsCht2 and CsCht4 were highly expressed in larvae. CsCht2 was abundant specifically in the third-instar larvae and CsCht4 showed periodic high expression in 2- to 5-day-old larvae in each instar. Tissue specific expression analysis indicated that CsCht1 and CsCht3 were highly expressed in epidermis whereas CsCht2 and CsCht4 were specifically abundant in the midgut. Knockdown of CsCht1 resulted in adults with curled wings, indicating that CsCht1 might have an important role in wing expansion. Silencing of CsCht2 or CsCht4 arrested moulting, suggesting essential roles in larval development. When the expression of CsCht3 was interfered, defects in pupation occurred. Overall, we provide here the first catalogue of chitinase genes in the rice striped stem borer and have elucidated the functions of four chitinases in metamorphosis.
Collapse
Affiliation(s)
- C Su
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G Tu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - S Huang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang, China
| | - Q Yang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - M F Shahzad
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - F Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- MOA Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Yin C, Shen G, Guo D, Wang S, Ma X, Xiao H, Liu J, Zhang Z, Liu Y, Zhang Y, Yu K, Huang S, Li F. InsectBase: a resource for insect genomes and transcriptomes. Nucleic Acids Res 2015; 44:D801-7. [PMID: 26578584 PMCID: PMC4702856 DOI: 10.1093/nar/gkv1204] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/26/2015] [Indexed: 12/02/2022] Open
Abstract
The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96 925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22 536 pathways of 78 insects, 678 881 untranslated regions (UTR) of 84 insects and 160 905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes.
Collapse
Affiliation(s)
- Chuanlin Yin
- Ministry of Agriculture, Key Lab of Agricultural Entomology and Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gengyu Shen
- Library of Nanjing Agricultural University, Nanjing 210095, China
| | - Dianhao Guo
- Ministry of Agriculture, Key Lab of Agricultural Entomology and Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuping Wang
- Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, China
| | - Xingzhou Ma
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huamei Xiao
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China Department of City Construction, Shaoyang University, Shaoyang 422000, China
| | - Jinding Liu
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Zan Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ying Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Yiqun Zhang
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Kaixiang Yu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuiqing Huang
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Fei Li
- Ministry of Agriculture, Key Lab of Agricultural Entomology and Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
43
|
Zhang J, Xing Y, Li Y, Yin C, Ge C, Li F. DNA methyltransferases have an essential role in female fecundity in brown planthopper, Nilaparvata lugens. Biochem Biophys Res Commun 2015; 464:83-8. [DOI: 10.1016/j.bbrc.2015.05.114] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/30/2015] [Indexed: 12/19/2022]
|