1
|
Chen CX, Sun LN, Hou XX, Du PC, Wang XL, Du XC, Yu YF, Cai RK, Yu L, Li TJ, Luo MN, Shen Y, Lu C, Li Q, Zhang C, Gao HF, Ma X, Lin H, Cao ZF. Prevention and Control of Pathogens Based on Big-Data Mining and Visualization Analysis. Front Mol Biosci 2021; 7:626595. [PMID: 33718431 PMCID: PMC7947816 DOI: 10.3389/fmolb.2020.626595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Morbidity and mortality caused by infectious diseases rank first among all human illnesses. Many pathogenic mechanisms remain unclear, while misuse of antibiotics has led to the emergence of drug-resistant strains. Infectious diseases spread rapidly and pathogens mutate quickly, posing new threats to human health. However, with the increasing use of high-throughput screening of pathogen genomes, research based on big data mining and visualization analysis has gradually become a hot topic for studies of infectious disease prevention and control. In this paper, the framework was performed on four infectious pathogens (Fusobacterium, Streptococcus, Neisseria, and Streptococcus salivarius) through five functions: 1) genome annotation, 2) phylogeny analysis based on core genome, 3) analysis of structure differences between genomes, 4) prediction of virulence genes/factors with their pathogenic mechanisms, and 5) prediction of resistance genes/factors with their signaling pathways. The experiments were carried out from three angles: phylogeny (macro perspective), structure differences of genomes (micro perspective), and virulence and drug-resistance characteristics (prediction perspective). Therefore, the framework can not only provide evidence to support the rapid identification of new or unknown pathogens and thus plays a role in the prevention and control of infectious diseases, but also help to recommend the most appropriate strains for clinical and scientific research. This paper presented a new genome information visualization analysis process framework based on big data mining technology with the accommodation of the depth and breadth of pathogens in molecular level research.
Collapse
Affiliation(s)
- Cui-Xia Chen
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Li-Na Sun
- National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xue-Xin Hou
- National Institute for Communicable Disease Control and Prevention, Beijing, China
| | | | - Xiao-Long Wang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Chen Du
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Fei Yu
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Rui-Kun Cai
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Lei Yu
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Tian-Jun Li
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Min-Na Luo
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Yue Shen
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Chao Lu
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Qian Li
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Chuan Zhang
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Hua-Fang Gao
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zong-Fu Cao
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| |
Collapse
|
2
|
Feller L, Khammissa RAG, Altini M, Lemmer J. Noma (cancrum oris): An unresolved global challenge. Periodontol 2000 2019; 80:189-199. [PMID: 31090145 PMCID: PMC7328761 DOI: 10.1111/prd.12275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Noma (canrum oris) is a mutilating necrotizing disease of uncertain etiology, but it is accepted that it is caused primarily by a polybacterial infection with secondary ischemia. The consequent necrotizing fasciitis, myonecrosis, and osteonecrosis results in destruction of facial structures with severe functional impairment and disfigurement. It most frequently affects children, particularly in sub‐Saharan Africa, who are malnourished or debilitated by systemic conditions including but not limited to malaria, measles, and tuberculosis; and less frequently debilitated HIV‐seropositive subjects. In the vast majority of cases, in susceptible subjects, noma is preceded by necrotizing stomatitis. However, it has been reported, albeit rarely, that noma can arise without any preceding oral lesions being observed. Noma is not recurrent and is not transmissible.
Collapse
Affiliation(s)
- Liviu Feller
- Department of Periodontology and Oral Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Razia A G Khammissa
- Department of Periodontology and Oral Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Mario Altini
- Division of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Johan Lemmer
- Department of Periodontology and Oral Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
3
|
De Witte C, Demeyere K, De Bruyckere S, Taminiau B, Daube G, Ducatelle R, Meyer E, Haesebrouck F. Characterization of the non-glandular gastric region microbiota in Helicobacter suis-infected versus non-infected pigs identifies a potential role for Fusobacterium gastrosuis in gastric ulceration. Vet Res 2019; 50:39. [PMID: 31126330 PMCID: PMC6534906 DOI: 10.1186/s13567-019-0656-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023] Open
Abstract
Helicobacter suis has been associated with development of gastric ulcers in the non-glandular part of the porcine stomach, possibly by affecting gastric acid secretion and altering the gastric microbiota. Fusobacterium gastrosuis is highly abundant in the gastric microbiota of H. suis-infected pigs and it was hypothesized that this micro-organism could play a role in the development of gastric ulceration. The aim of this study was to obtain further insights in the influence of a naturally acquired H. suis infection on the microbiota of the non-glandular part of the porcine stomach and in the pathogenic potential of F. gastrosuis. Infection with H. suis influenced the relative abundance of several taxa at phylum, family, genus and species level. H. suis-infected pigs showed a significantly higher colonization rate of F. gastrosuis in the non-glandular gastric region compared to non-infected pigs. In vitro, viable F. gastrosuis strains as well as their lysate induced death of both gastric and oesophageal epithelial cell lines. These gastric cell death inducing bacterial components were heat-labile. Genomic analysis revealed that genes are present in the F. gastrosuis genome with sequence similarity to genes described in other Fusobacterium spp. that encode factors involved in adhesion, invasion and induction of cell death as well as in immune evasion. We hypothesize that, in a gastric environment altered by H. suis, colonization and invasion of the non-glandular porcine stomach region and production of epithelial cell death inducing metabolites by F. gastrosuis, play a role in gastric ulceration.
Collapse
Affiliation(s)
- Chloë De Witte
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Kristel Demeyere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie De Bruyckere
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bernard Taminiau
- Department of Food Sciences, FARAH, University of Liège, Liège, Belgium
| | - Georges Daube
- Department of Food Sciences, FARAH, University of Liège, Liège, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|