1
|
Pereira BA, Ritchie S, Chambers CR, Gordon KA, Magenau A, Murphy KJ, Nobis M, Tyma VM, Liew YF, Lucas MC, Naeini MM, Barkauskas DS, Chacon-Fajardo D, Howell AE, Parker AL, Warren SC, Reed DA, Lee V, Metcalf XL, Lee YK, O’Regan LP, Zhu J, Trpceski M, Fontaine ARM, Stoehr J, Rouet R, Lin X, Chitty JL, Porazinski S, Wu SZ, Filipe EC, Cadell AL, Holliday H, Yang J, Papanicolaou M, Lyons RJ, Zaratzian A, Tayao M, Da Silva A, Vennin C, Yin J, Dew AB, McMillan PJ, Goldstein LD, Deveson IW, Croucher DR, Samuel MS, Sim HW, Batten M, Chantrill L, Grimmond SM, Gill AJ, Samra J, Jeffry Evans TR, Sasaki T, Phan TG, Swarbrick A, Sansom OJ, Morton JP, Pajic M, Parker BL, Herrmann D, Cox TR, Timpson P. Temporally resolved proteomics identifies nidogen-2 as a cotarget in pancreatic cancer that modulates fibrosis and therapy response. SCIENCE ADVANCES 2024; 10:eadl1197. [PMID: 38959305 PMCID: PMC11221519 DOI: 10.1126/sciadv.adl1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+) and poorly metastatic KPflC (Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPflC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs). Using biomechanical assessments, second harmonic generation imaging, and birefringence analysis, we show that NID2 reduction by CRISPR interference (CRISPRi) in CAFs reduces stiffness and matrix remodeling in three-dimensional models, leading to impaired cancer cell invasion. Intravital imaging revealed improved vascular patency in live NID2-depleted tumors, with enhanced response to gemcitabine/Abraxane. In orthotopic models, NID2 CRISPRi tumors had less liver metastasis and increased survival, highlighting NID2 as a potential PDAC cotarget.
Collapse
Affiliation(s)
- Brooke A. Pereira
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Shona Ritchie
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Cecilia R. Chambers
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Katie A. Gordon
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Astrid Magenau
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Kendelle J. Murphy
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Max Nobis
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Victoria M. Tyma
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Ying Fei Liew
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Morghan C. Lucas
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marjan M. Naeini
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Deborah S. Barkauskas
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- ACRF INCITe Intravital Imaging Centre, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Diego Chacon-Fajardo
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anna E. Howell
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Amelia L. Parker
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Sean C. Warren
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Daniel A. Reed
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Victoria Lee
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Xanthe L. Metcalf
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Young Kyung Lee
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Luke P. O’Regan
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Jessie Zhu
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Michael Trpceski
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Angela R. M. Fontaine
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- ACRF INCITe Intravital Imaging Centre, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Janett Stoehr
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Romain Rouet
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Xufeng Lin
- Data Science Platform, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Jessica L. Chitty
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Sean Porazinski
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Sunny Z. Wu
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Genentech Inc., South San Francisco, CA, USA
| | - Elysse C. Filipe
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Antonia L. Cadell
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Holly Holliday
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jessica Yang
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Michael Papanicolaou
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Ruth J. Lyons
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anaiis Zaratzian
- Histopathology Platform, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Tayao
- Histopathology Platform, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Andrew Da Silva
- Histopathology Platform, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Claire Vennin
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Division of Molecular Pathology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Julia Yin
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Alysha B. Dew
- Centre for Advanced Histology & Microscopy, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Paul J. McMillan
- Centre for Advanced Histology & Microscopy, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Biological Optical Microscopy Platform, The University of Melbourne, Parkville, Victoria, Australia
| | - Leonard D. Goldstein
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Data Science Platform, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Ira W. Deveson
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - David R. Croucher
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael S. Samuel
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- Basil Hetzel Institute for Translational Health Research, Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Hao-Wen Sim
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Marcel Batten
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Lorraine Chantrill
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- Department of Medical Oncology, Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Sean M. Grimmond
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J. Gill
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Jaswinder Samra
- Department of Surgery, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Thomas R. Jeffry Evans
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Takako Sasaki
- Department of Biochemistry, Faculty of Medicine, Oita University, Oita, Japan
| | - Tri G. Phan
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Precision Immunology Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer P. Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Marina Pajic
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Benjamin L. Parker
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Thomas R. Cox
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
2
|
Matthews I, Birnbaum A, Gromova A, Huang AW, Liu K, Liu EA, Coutinho K, McGraw M, Patterson DC, Banks MT, Nobles AC, Nguyen N, Merrihew GE, Wang L, Baeuerle E, Fernandez E, Musi N, MacCoss MJ, Miranda HC, La Spada AR, Cortes CJ. Skeletal muscle TFEB signaling promotes central nervous system function and reduces neuroinflammation during aging and neurodegenerative disease. Cell Rep 2023; 42:113436. [PMID: 37952157 PMCID: PMC10841857 DOI: 10.1016/j.celrep.2023.113436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023] Open
Abstract
Skeletal muscle has recently arisen as a regulator of central nervous system (CNS) function and aging, secreting bioactive molecules known as myokines with metabolism-modifying functions in targeted tissues, including the CNS. Here, we report the generation of a transgenic mouse with enhanced skeletal muscle lysosomal and mitochondrial function via targeted overexpression of transcription factor E-B (TFEB). We discovered that the resulting geroprotective effects in skeletal muscle reduce neuroinflammation and the accumulation of tau-associated pathological hallmarks in a mouse model of tauopathy. Muscle-specific TFEB overexpression significantly ameliorates proteotoxicity, reduces neuroinflammation, and promotes transcriptional remodeling of the aged CNS, preserving cognition and memory in aged mice. Our results implicate the maintenance of skeletal muscle function throughout aging in direct regulation of CNS health and disease and suggest that skeletal muscle originating factors may act as therapeutic targets against age-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Ian Matthews
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Allison Birnbaum
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Anastasia Gromova
- Department of Pathology and Laboratory Medicine, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Amy W Huang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Kailin Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Eleanor A Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Kristen Coutinho
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Megan McGraw
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dalton C Patterson
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Macy T Banks
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amber C Nobles
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nhat Nguyen
- Department of Pathology and Laboratory Medicine, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eric Baeuerle
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care Network, San Antonio, TX 78229, USA
| | - Elizabeth Fernandez
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care Network, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Helen C Miranda
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; RNA Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Albert R La Spada
- Department of Pathology and Laboratory Medicine, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology and Department of Biological Chemistry, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| | - Constanza J Cortes
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA.
| |
Collapse
|
3
|
Xie J, Wang J, Wang X, Chen M, Yao B, Dong Y, Li X, Yang Q, Tredget EE, Xu RH, Wu Y. An Engineered Dermal Substitute with Mesenchymal Stem Cells Enhances Cutaneous Wound Healing. Tissue Eng Part A 2023; 29:491-505. [PMID: 37212289 DOI: 10.1089/ten.tea.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
The treatment of refractory cutaneous wounds remains to be a clinical challenge. There is growing evidence to show that mesenchymal stem cells (MSCs) have great potential in promoting wound healing. However, the therapeutic effects of MSCs are greatly dampened by their poor survival and engraftment in the wounds. To address this limitation, in this study, MSCs were grown into a collagen-glycosaminoglycan (C-GAG) matrix to form a dermis-like tissue sheet, named engineered dermal substitute (EDS). When seeded on C-GAG matrix, MSCs adhered rapidly, migrated into the pores, and proliferated readily. When applied onto excisional wounds in healthy and diabetic mice, the EDS survived well, and accelerated wound closure, compared with C-GAG matrix alone or MSCs in collagen hydrogel. Histological analysis revealed that EDS prolonged the retention of MSCs in the wounds, associated with increased macrophage infiltration and enhanced angiogenesis. RNA-Seq analysis of EDS-treated wounds uncovered the expression of abundant human chemokines and proangiogenic factors and their corresponding murine receptors, suggesting a mechanism of ligand/receptor-mediated signals in wound healing. Thus, our results indicate that EDS prolongs the survival and retention of MSCs in the wounds and enhances wound healing.
Collapse
Affiliation(s)
- Jundong Xie
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Jinmei Wang
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Department of Pharmacology and Toxicology, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Xiaoxiao Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Min Chen
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Bin Yao
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Yankai Dong
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaosong Li
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Qingyang Yang
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Edward E Tredget
- Wound Healing Research Group, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| |
Collapse
|
4
|
Kalita E, Panda M, Rao A, Prajapati VK. Exploring the role of secretory proteins in the human infectious diseases diagnosis and therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:231-269. [PMID: 36707203 DOI: 10.1016/bs.apcsb.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secretory proteins are playing important role during the host-pathogen interaction to develop the infection or protection into the cell. Pathogens developing infectious disease to human being are taken up by host macrophages or number of immune cells, play an important role in physiological, developmental and immunological function. At the same time, infectious agents are also secreting various proteins to neutralize the resistance caused by host cells and also helping the pathogens to develop the infection. Secretory proteins (secretome) are only developed at the time of host-pathogen interaction, therefore they become very important to develop the targeted and potential therapeutic strategies. Pathogen specific secretory proteins released during interaction with host cell provide opportunity to develop point of care and rapid diagnostic kits. Proteins secreted by pathogens at the time of interaction with host cell have also been found as immunogenic in nature and numbers of vaccines have been developed to control the spread of human infectious diseases. This chapter highlights the importance of secretory proteins in the development of diagnostic and therapeutic strategies to fight against human infectious diseases.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
5
|
Moiseeva V, Cisneros A, Sica V, Deryagin O, Lai Y, Jung S, Andrés E, An J, Segalés J, Ortet L, Lukesova V, Volpe G, Benguria A, Dopazo A, Benitah SA, Urano Y, Del Sol A, Esteban MA, Ohkawa Y, Serrano AL, Perdiguero E, Muñoz-Cánoves P. Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration. Nature 2023; 613:169-178. [PMID: 36544018 DOI: 10.1038/s41586-022-05535-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 11/07/2022] [Indexed: 12/24/2022]
Abstract
Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.
Collapse
Affiliation(s)
- Victoria Moiseeva
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Andrés Cisneros
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Valentina Sica
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Oleg Deryagin
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Sascha Jung
- CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
| | - Eva Andrés
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Juan An
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Science and Technology of China, Hefei, China
| | - Jessica Segalés
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Laura Ortet
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Vera Lukesova
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Giacomo Volpe
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Alberto Benguria
- Genomic Unit, Centro Nacional de Investigaciones Cardiovasculares and CIBERCV, Madrid, Spain
| | - Ana Dopazo
- Genomic Unit, Centro Nacional de Investigaciones Cardiovasculares and CIBERCV, Madrid, Spain
| | - Salvador Aznar Benitah
- ICREA, Barcelona, Spain.,Institute for Research in Biomedicine and BIST, Barcelona, Spain
| | - Yasuteru Urano
- Laboratory of Chemistry & Biology, Graduate School of Pharmaceutical Sciences and School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Antonio Del Sol
- CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain.,Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Yasuyuki Ohkawa
- Division of Transcriptomics. Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Antonio L Serrano
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain.,Altos labs Inc, San Diego, CA, USA
| | - Eusebio Perdiguero
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain. .,CIBERNED, Barcelona, Spain. .,Altos labs Inc, San Diego, CA, USA.
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain. .,CIBERNED, Barcelona, Spain. .,ICREA, Barcelona, Spain. .,Altos labs Inc, San Diego, CA, USA. .,Cardiovascular Regeneration Program, CNIC Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
6
|
Identification of Potential Biomarkers for Cancer Cachexia and Anti-Fn14 Therapy. Cancers (Basel) 2022; 14:cancers14225533. [PMID: 36428623 PMCID: PMC9688504 DOI: 10.3390/cancers14225533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Developing therapies for cancer cachexia has not been successful to date, in part due to the challenges of achieving robust quantitative measures as a readout of patient treatment. Hence, identifying biomarkers to assess the outcomes of treatments for cancer cachexia is of great interest and important for accelerating future clinical trials. METHODS We established a novel xenograft model for cancer cachexia with a cachectic human PC3* cell line, which was responsive to anti-Fn14 mAb treatment. Using RNA-seq and secretomic analysis, genes differentially expressed in cachectic and non-cachectic tumors were identified and validated by digital droplet PCR (ddPCR). Correlation analysis was performed to investigate their impact on survival in cancer patients. RESULTS A total of 46 genes were highly expressed in cachectic PC3* tumors, which were downregulated by anti-Fn14 mAb treatment. High expression of the top 10 candidates was correlated with low survival and high cachexia risk in different cancer types. Elevated levels of LCN2 were observed in serum samples from cachectic patients compared with non-cachectic cancer patients. CONCLUSION The top 10 candidates identified in this study are candidates as potential biomarkers for cancer cachexia. The diagnostic value of LCN2 in detecting cancer cachexia is confirmed in patient samples.
Collapse
|
7
|
Hu B, Lelek S, Spanjaard B, El-Sammak H, Simões MG, Mintcheva J, Aliee H, Schäfer R, Meyer AM, Theis F, Stainier DYR, Panáková D, Junker JP. Origin and function of activated fibroblast states during zebrafish heart regeneration. Nat Genet 2022; 54:1227-1237. [PMID: 35864193 PMCID: PMC7613248 DOI: 10.1038/s41588-022-01129-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
The adult zebrafish heart has a high capacity for regeneration following injury. However, the composition of the regenerative niche has remained largely elusive. Here, we dissected the diversity of activated cell states in the regenerating zebrafish heart based on single-cell transcriptomics and spatiotemporal analysis. We observed the emergence of several transient cell states with fibroblast characteristics following injury, and we outlined the proregenerative function of collagen-12-expressing fibroblasts. To understand the cascade of events leading to heart regeneration, we determined the origin of these cell states by high-throughput lineage tracing. We found that activated fibroblasts were derived from two separate sources: the epicardium and the endocardium. Mechanistically, we determined Wnt signalling as a regulator of the endocardial fibroblast response. In summary, our work identifies specialized activated fibroblast cell states that contribute to heart regeneration, thereby opening up possible approaches to modulating the regenerative capacity of the vertebrate heart. Single-cell RNA sequencing and spatiotemporal analysis of the regenerating zebrafish heart identify transient proregenerative fibroblast-like cells that are derived from the epicardium and the endocardium. Wnt signalling regulates the endocardial fibroblast response.
Collapse
Affiliation(s)
- Bo Hu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Sara Lelek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany
| | - Bastiaan Spanjaard
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Hadil El-Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Rhine/Main, Frankfurt, Germany
| | - Mariana Guedes Simões
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Hananeh Aliee
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
| | - Ronny Schäfer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Alexander M Meyer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Fabian Theis
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Rhine/Main, Frankfurt, Germany
| | - Daniela Panáková
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany.
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany.
| |
Collapse
|
8
|
Park A, Choi SJ, Park S, Kim SM, Lee HE, Joo M, Kim KK, Kim D, Chung DH, Im JB, Jung J, Shin SK, Oh BC, Choi C, Nam S, Lee DH. Plasma Aldo-Keto Reductase Family 1 Member B10 as a Biomarker Performs Well in the Diagnosis of Nonalcoholic Steatohepatitis and Fibrosis. Int J Mol Sci 2022; 23:ijms23095035. [PMID: 35563425 PMCID: PMC9101253 DOI: 10.3390/ijms23095035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
We found several blood biomarkers through computational secretome analyses, including aldo-keto reductase family 1 member B10 (AKR1B10), which reflected the progression of nonalcoholic fatty liver disease (NAFLD). After confirming that hepatic AKR1B10 reflected the progression of NAFLD in a subgroup with NAFLD, we evaluated the diagnostic accuracy of plasma AKR1B10 and other biomarkers for the diagnosis of nonalcoholic steatohepatitis (NASH) and fibrosis in replication cohort. We enrolled healthy control subjects and patients with biopsy-proven NAFLD (n = 102) and evaluated the performance of various diagnostic markers. Plasma AKR1B10 performed well in the diagnosis of NASH with an area under the receiver operating characteristic (AUROC) curve of 0.834 and a cutoff value of 1078.2 pg/mL, as well as advanced fibrosis (AUROC curve value of 0.914 and cutoff level 1078.2 pg/mL), with further improvement in combination with C3. When we monitored a subgroup of obese patients who underwent bariatric surgery (n = 35), plasma AKR1B10 decreased dramatically, and 40.0% of patients with NASH at baseline showed a decrease in plasma AKR1B10 levels to below the cutoff level after the surgery. In an independent validation study, we proved that plasma AKR1B10 was a specific biomarker of NAFLD progression across varying degrees of renal dysfunction. Despite perfect correlation between plasma and serum levels of AKR1B10 in paired sample analysis, its serum level was 1.4-fold higher than that in plasma. Plasma AKR1B10 alone and in combination with C3 could be a useful noninvasive biomarker for the diagnosis of NASH and hepatic fibrosis.
Collapse
Affiliation(s)
- Aron Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Korea; (A.P.); (M.J.); (J.B.I.)
| | - Seung Joon Choi
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea;
| | - Sungjin Park
- Department of Genome Medicine and Science, AI Convergence Center for Genome Medicine, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea;
| | - Seong Min Kim
- Department of Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea; (S.M.K.); (D.K.)
| | - Hye Eun Lee
- Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea; (H.E.L.); (S.K.S.); (C.C.)
| | - Minjae Joo
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Korea; (A.P.); (M.J.); (J.B.I.)
| | - Kyoung Kon Kim
- Department of Family Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea;
| | - Doojin Kim
- Department of Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea; (S.M.K.); (D.K.)
| | - Dong Hae Chung
- Department of Pathology, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea;
| | - Jae Been Im
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Korea; (A.P.); (M.J.); (J.B.I.)
- Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea; (H.E.L.); (S.K.S.); (C.C.)
| | - Jaehun Jung
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon 21565, Korea;
| | - Seung Kak Shin
- Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea; (H.E.L.); (S.K.S.); (C.C.)
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea;
| | - Cheolsoo Choi
- Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea; (H.E.L.); (S.K.S.); (C.C.)
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Korea; (A.P.); (M.J.); (J.B.I.)
- Department of Genome Medicine and Science, AI Convergence Center for Genome Medicine, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea;
- Correspondence: (S.N.); (D.H.L.); Tel.: +82-32-458-2737 (S.N.); +82-32-458-2733 (D.H.L.); Fax: +82-32-458-2875 (S.N.); +82-32-468-5836 (D.H.L.)
| | - Dae Ho Lee
- Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea; (H.E.L.); (S.K.S.); (C.C.)
- Correspondence: (S.N.); (D.H.L.); Tel.: +82-32-458-2737 (S.N.); +82-32-458-2733 (D.H.L.); Fax: +82-32-458-2875 (S.N.); +82-32-468-5836 (D.H.L.)
| |
Collapse
|
9
|
Stürzl M, Kunz M, Krug SM, Naschberger E. Angiocrine Regulation of Epithelial Barrier Integrity in Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:643607. [PMID: 34409045 PMCID: PMC8365087 DOI: 10.3389/fmed.2021.643607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease describes chronic inflammatory disorders. The incidence of the disease is rising. A major step in disease development is the breakdown of the epithelial cell barrier. Numerous blood vessels are directly located underneath this barrier. Diseased tissues are heavily vascularized and blood vessels significantly contribute to disease progression. The gut-vascular barrier (GVB) is an additional barrier controlling the entry of substances into the portal circulation and to the liver after passing the first epithelial barrier. The presence of the GVB rises the question, whether the vascular and endothelial barriers may communicate bi-directionally in the regulation of selective barrier permeability. Communication from epithelial to endothelial cells is well-accepted. In contrast, little is known on the respective backwards communication. Only recently, perfusion-independent angiocrine functions of endothelial cells were recognized in a way that endothelial cells release specific soluble factors that may directly act on the epithelial barrier. This review discusses the putative involvement of angiocrine inter-barrier communication in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander-University (FAU) of Erlangen-Nürnberg, Erlangen, and Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Susanne M. Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Kim JH, Park SH, Han J, Ko PW, Kwon D, Suk K. Gliome database: a comprehensive web-based tool to access and analyze glia secretome data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5879255. [PMID: 32743661 PMCID: PMC7396318 DOI: 10.1093/database/baaa057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Glial cells are phenotypically heterogeneous non-neuronal components of the central and peripheral nervous systems. These cells are endowed with diverse functions and molecular machineries to detect and regulate neuronal or their own activities by various secreted mediators, such as proteinaceous factors. In particular, glia-secreted proteins form a basis of a complex network of glia-neuron or glia-glia interactions in health and diseases. In recent years, the analysis and profiling of glial secretomes have raised new expectations for the diagnosis and treatment of neurological disorders due to the vital role of glia in numerous physiological or pathological processes of the nervous system. However, there is no online database of glia-secreted proteins available to facilitate glial research. Here, we developed a user-friendly 'Gliome' database (available at www.gliome.org), a web-based tool to access and analyze glia-secreted proteins. The database provides a vast collection of information on 3293 proteins that are released from glia of multiple species and have been reported to have differential functions under diverse experimental conditions. It contains a web-based interface with the following four key features regarding glia-secreted proteins: (i) fundamental information, such as signal peptide, SecretomeP value, functions and Gene Ontology category; (ii) differential expression patterns under distinct experimental conditions; (iii) disease association; and (iv) interacting proteins. In conclusion, the Gliome database is a comprehensive web-based tool to access and analyze glia-secretome data obtained from diverse experimental settings, whereby it may facilitate the integration of bioinformatics into glial research.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Su-Hyeong Park
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.,D&P BIOTECH, 807 Hoguk-ro, Buk-gu, Daegu, 41404, Republic of Korea
| | - Jin Han
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Pan-Woo Ko
- Department of Neurology, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, Republic of Korea
| | - Dongseop Kwon
- School of Software Convergence, Myongji University, 34 Geobukgol-ro, Seodaemun-gu, Seoul, 03674, Republic of Korea
| | - Kyoungho Suk
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| |
Collapse
|
11
|
Yeh CW, Huang WC, Hsu PH, Yeh KH, Wang LC, Hsu PWC, Lin HC, Chen YN, Chen SC, Yeang CH, Yen HCS. The C-degron pathway eliminates mislocalized proteins and products of deubiquitinating enzymes. EMBO J 2021; 40:e105846. [PMID: 33469951 PMCID: PMC8013793 DOI: 10.15252/embj.2020105846] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Protein termini are determinants of protein stability. Proteins bearing degradation signals, or degrons, at their amino‐ or carboxyl‐termini are eliminated by the N‐ or C‐degron pathways, respectively. We aimed to elucidate the function of C‐degron pathways and to unveil how normal proteomes are exempt from C‐degron pathway‐mediated destruction. Our data reveal that C‐degron pathways remove mislocalized cellular proteins and cleavage products of deubiquitinating enzymes. Furthermore, the C‐degron and N‐degron pathways cooperate in protein removal. Proteome analysis revealed a shortfall in normal proteins targeted by C‐degron pathways, but not of defective proteins, suggesting proteolysis‐based immunity as a constraint for protein evolution/selection. Our work highlights the importance of protein termini for protein quality surveillance, and the relationship between the functional proteome and protein degradation pathways.
Collapse
Affiliation(s)
- Chi-Wei Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Chieh Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Life Science, Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Li-Chin Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | | | - Hsiu-Chuan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Yi-Ning Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Chuan Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen-Hsiang Yeang
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Chi S Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Ding M, Tegel H, Sivertsson Å, Hober S, Snijder A, Ormö M, Strömstedt PE, Davies R, Holmberg Schiavone L. Secretome-Based Screening in Target Discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:535-551. [PMID: 32425085 PMCID: PMC7309359 DOI: 10.1177/2472555220917113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Secreted proteins and their cognate plasma membrane receptors regulate human physiology by transducing signals from the extracellular environment into cells resulting in different cellular phenotypes. Systematic use of secretome proteins in assays enables discovery of novel biology and signaling pathways. Several secretome-based phenotypic screening platforms have been described in the literature and shown to facilitate target identification in drug discovery. In this review, we summarize the current status of secretome-based screening. This includes annotation, production, quality control, and sample management of secretome libraries, as well as how secretome libraries have been applied to discover novel target biology using different disease-relevant cell-based assays. A workflow for secretome-based screening is shared based on the AstraZeneca experience. The secretome library offers several advantages compared with other libraries used for target discovery: (1) screening using a secretome library directly identifies the active protein and, in many cases, its cognate receptor, enabling a rapid understanding of the disease pathway and subsequent formation of target hypotheses for drug discovery; (2) the secretome library covers significant areas of biological signaling space, although the size of this library is small; (3) secretome proteins can be added directly to cells without additional manipulation. These factors make the secretome library ideal for testing in physiologically relevant cell types, and therefore it represents an attractive approach to phenotypic target discovery.
Collapse
Affiliation(s)
- Mei Ding
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Hanna Tegel
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Åsa Sivertsson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Arjan Snijder
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mats Ormö
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Per-Erik Strömstedt
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rick Davies
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
13
|
Brito GC, Schormann W, Gidda SK, Mullen RT, Andrews DW. Genome-wide analysis of Homo sapiens, Arabidopsis thaliana, and Saccharomyces cerevisiae reveals novel attributes of tail-anchored membrane proteins. BMC Genomics 2019; 20:835. [PMID: 31711414 PMCID: PMC6849228 DOI: 10.1186/s12864-019-6232-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Tail-anchored membrane proteins (TAMPs) differ from other integral membrane proteins, because they contain a single transmembrane domain at the extreme carboxyl-terminus and are therefore obliged to target to membranes post-translationally. Although 3-5% of all transmembrane proteins are predicted to be TAMPs only a small number are well characterized. RESULTS To identify novel putative TAMPs across different species, we used TAMPfinder software to identify 859, 657 and 119 putative TAMPs in human (Homo sapiens), plant (Arabidopsis thaliana), and yeast (Saccharomyces cerevisiae), respectively. Bioinformatics analyses of these putative TAMP sequences suggest that the list is highly enriched for authentic TAMPs. To experimentally validate the software predictions several human and plant proteins identified by TAMPfinder that were previously uncharacterized were expressed in cells and visualized at subcellular membranes by fluorescence microscopy and further analyzed by carbonate extraction or by bimolecular fluorescence complementation. With the exception of the pro-apoptotic protein harakiri, which is, peripherally bound to the membrane this subset of novel proteins behave like genuine TAMPs. Comprehensive bioinformatics analysis of the generated TAMP datasets revealed previously unappreciated common and species-specific features such as the unusual size distribution of and the propensity of TAMP proteins to be part of larger complexes. Additionally, novel features of the amino acid sequences that anchor TAMPs to membranes were also revealed. CONCLUSIONS The findings in this study more than double the number of predicted annotated TAMPs and provide new insights into the common and species-specific features of TAMPs. Furthermore, the list of TAMPs and annotations provide a resource for further investigation.
Collapse
Affiliation(s)
- Glauber Costa Brito
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Wiebke Schormann
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada. .,Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Blastocyst activation engenders transcriptome reprogram affecting X-chromosome reactivation and inflammatory trigger of implantation. Proc Natl Acad Sci U S A 2019; 116:16621-16630. [PMID: 31346081 DOI: 10.1073/pnas.1900401116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Implantation of the blastocyst into the uterus is the gateway for further embryonic development in mammals. Programming of blastocyst to an implantation-competent state known as blastocyst activation is the determining factor for implantation into the receptive uterus. However, it remains largely unclear how the blastocyst is globally programmed for implantation. Employing a delayed implantation mouse model, we show here that the blastocyst undergoes extensive programming essential for implantation. By analyzing the transcriptional profile of blastocysts with different implantation competency, we reveal the dynamic change in the biosynthesis, metabolism, and proliferation during blastocyst reactivation from diapause. We also demonstrate that reactivation of the X chromosome, one of the most important events during periimplantation of female embryonic development, is not completed even in blastocysts under conditions of dormancy, despite long term suspension in the uterus. Moreover, the mural trophectoderm (TE), but not the polar TE, differentiates to be more invasive through the weakened cell-cell tight junctions and extracellular matrices (ECMs). By analyzing the differentially expressed profile of secretory proteins, we further demonstrate that the blastocyst functions as a proinflammatory body to secrete proinflammatory signals, such as TNFα and S100A9, thereby triggering embryo-uterine attachment reaction during implantation. Collectively, our data systematically and comprehensively disclose the programming of blastocyst reactivation from diapause for implantation and uncover previously undefined roles of blastocyst during implantation.
Collapse
|
15
|
Macrin D, Alghadeer A, Zhao YT, Miklas JW, Hussein AM, Detraux D, Robitaille AM, Madan A, Moon RT, Wang Y, Devi A, Mathieu J, Ruohola-Baker H. Metabolism as an early predictor of DPSCs aging. Sci Rep 2019; 9:2195. [PMID: 30778087 PMCID: PMC6379364 DOI: 10.1038/s41598-018-37489-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Tissue resident adult stem cells are known to participate in tissue regeneration and repair that follows cell turnover, or injury. It has been well established that aging impedes the regeneration capabilities at the cellular level, but it is not clear if the different onset of stem cell aging between individuals can be predicted or prevented at an earlier stage. Here we studied the dental pulp stem cells (DPSCs), a population of adult stem cells that is known to participate in the repair of an injured tooth, and its properties can be affected by aging. The dental pulp from third molars of a diverse patient group were surgically extracted, generating cells that had a high percentage of mesenchymal stem cell markers CD29, CD44, CD146 and Stro1 and had the ability to differentiate into osteo/odontogenic and adipogenic lineages. Through RNA seq and qPCR analysis we identified homeobox protein, Barx1, as a marker for DPSCs. Furthermore, using high throughput transcriptomic and proteomic analysis we identified markers for DPSC populations with accelerated replicative senescence. In particular, we show that the transforming growth factor-beta (TGF-β) pathway and the cytoskeletal proteins are upregulated in rapid aging DPSCs, indicating a loss of stem cell characteristics and spontaneous initiation of terminal differentiation. Importantly, using metabolic flux analysis, we identified a metabolic signature for the rapid aging DPSCs, prior to manifestation of senescence phenotypes. This metabolic signature therefore can be used to predict the onset of replicative senescence. Hence, the present study identifies Barx1 as a DPSCs marker and dissects the first predictive metabolic signature for DPSCs aging.
Collapse
Affiliation(s)
- Dannie Macrin
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Ammar Alghadeer
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA.,Department of Biomedical Dental Sciences, Imam Abdulrahman bin Faisal University, College of Dentistry, Dammam, 31441, Saudi Arabia
| | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA
| | - Jason W Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Damien Detraux
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Aaron M Robitaille
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98109, USA
| | - Anup Madan
- Covance Genomics Laboratory, Redmond, WA, 98052, USA
| | - Randall T Moon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Arikketh Devi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Comparative Medicine, University of Washington, School of Medicine, Seattle, WA, 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA. .,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
16
|
Tang C, Wang M, Wang P, Wang L, Wu Q, Guo W. Neural Stem Cells Behave as a Functional Niche for the Maturation of Newborn Neurons through the Secretion of PTN. Neuron 2018; 101:32-44.e6. [PMID: 30497772 DOI: 10.1016/j.neuron.2018.10.051] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/20/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
In the neurogenic niches, adult neural stem and/or progenitor cells (NSCs) generate functional neurons throughout life, which has been implicated in learning and memory and affective behaviors. During adult neurogenesis, newborn neurons release feedback signals into the niches to regulate NSC proliferation and differentiation. However, whether and how NSCs contribute to the niche governing newborn neuron development is still unknown. Using a combination of cell ablation, retrovirus-mediated single-cell labeling, and signaling pathway modulation, we show that adult hippocampal NSCs continuously supply pleiotrophin factor to the newborn neurons. Without this feedforward signal, the newborn neurons display defective dendritic development and arborization. Thus, our findings reveal that NSCs behave as a functional niche for newly generated newborn neurons to regulate their maturation.
Collapse
Affiliation(s)
- Changyong Tang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of the Chinese Academy of Sciences, Beijing 100093, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peijian Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of the Chinese Academy of Sciences, Beijing 100093, China
| | - Lei Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of the Chinese Academy of Sciences, Beijing 100093, China
| | - Qingfeng Wu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of the Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|