1
|
Gibson C, Jauffur S, Guo B, Frigon D. Activated sludge microbial community assembly: the role of influent microbial community immigration. Appl Environ Microbiol 2024; 90:e0059824. [PMID: 38995046 PMCID: PMC11337844 DOI: 10.1128/aem.00598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 07/13/2024] Open
Abstract
Wastewater treatment plants (WWTPs) are host to diverse microbial communities and receive a constant influx of microbes from influent wastewater. However, the impact of immigrants on the structure and activities of the activated sludge (AS) microbial community remains unclear. To gain insight on this phenomenon known as perpetual community coalescence, the current study utilized controlled manipulative experiments that decoupled the influent wastewater composition from the microbial populations to reveal the fundamental mechanisms involved in immigration between sewers and AS-WWTP. The immigration dynamics of heterotrophs were analyzed by harvesting wastewater biomass solids from three different sewer systems and adding to synthetic wastewater. Immigrating influent populations were observed to contribute up to 14% of the sequencing reads in the AS. By modeling the net growth rate of taxa, it was revealed that immigrants primarily exhibited low or negative net growth rates. By developing a protocol to reproducibly grow AS-WWTP communities in the lab, we have laid down the foundational principles for the testing of operational factors creating community variations with low noise and appropriate replication. Understanding the processes that drive microbial community diversity and assembly is a key question in microbial ecology. In the future, this knowledge can be used to manipulate the structure of microbial communities and improve system performance in WWTPs.IMPORTANCEIn biological wastewater treatment processes, the microbial community composition is essential in the performance and stability of the system. This study developed a reproducible protocol to investigate the impact of influent immigration (or perpetual coalescence of the sewer and activated sludge communities) with appropriate reproducibility and controls, allowing intrinsic definitions of core and immigrant populations to be established. The method developed herein will allow sequential manipulative experiments to be performed to test specific hypothesis and optimize wastewater treatment processes to meet new treatment goals.
Collapse
Affiliation(s)
- Claire Gibson
- Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, Canada
| | - Shameem Jauffur
- Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, Canada
| | - Bing Guo
- Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, Canada
- Department of Civil and Environmental Engineering, Center for Environmental Health and Engineering, University of Surrey, Surrey, United Kingdom
| | - Dominic Frigon
- Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Shi Z, Long X, Zhang C, Chen Z, Usman M, Zhang Y, Zhang S, Luo G. Viral and Bacterial Community Dynamics in Food Waste and Digestate from Full-Scale Biogas Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13010-13022. [PMID: 38989650 DOI: 10.1021/acs.est.4c04109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Anaerobic digestion (AD) is commonly used in food waste treatment. Prokaryotic microbial communities in AD of food waste have been comprehensively studied. The role of viruses, known to affect microbial dynamics and metabolism, remains largely unexplored. This study employed metagenomic analysis and recovered 967 high-quality viral bins within food waste and digestate derived from 8 full-scale biogas plants. The diversity of viral communities was higher in digestate. In silico predictions linked 20.8% of viruses to microbial host populations, highlighting possible virus predators of key functional microbes. Lineage-specific virus-host ratio varied, indicating that viral infection dynamics might differentially affect microbial responses to the varying process parameters. Evidence for virus-mediated gene transfer was identified, emphasizing the potential role of viruses in controlling the microbiome. AD altered the specific process parameters, potentially promoting a shift in viral lifestyle from lysogenic to lytic. Viruses encoding auxiliary metabolic genes (AMGs) were involved in microbial carbon and nutrient cycling, and most AMGs were transcriptionally expressed in digestate, meaning that viruses with active functional states were likely actively involved in AD. These findings provided a comprehensive profile of viral and bacterial communities and expanded knowledge of the interactions between viruses and hosts in food waste and digestate.
Collapse
Affiliation(s)
- Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xinyi Long
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Yalei Zhang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| |
Collapse
|
3
|
Dueholm MKD, Andersen KS, Korntved AKC, Rudkjøbing V, Alves M, Bajón-Fernández Y, Batstone D, Butler C, Cruz MC, Davidsson Å, Erijman L, Holliger C, Koch K, Kreuzinger N, Lee C, Lyberatos G, Mutnuri S, O'Flaherty V, Oleskowicz-Popiel P, Pokorna D, Rajal V, Recktenwald M, Rodríguez J, Saikaly PE, Tooker N, Vierheilig J, De Vrieze J, Wurzbacher C, Nielsen PH. MiDAS 5: Global diversity of bacteria and archaea in anaerobic digesters. Nat Commun 2024; 15:5361. [PMID: 38918384 PMCID: PMC11199495 DOI: 10.1038/s41467-024-49641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Anaerobic digestion of organic waste into methane and carbon dioxide (biogas) is carried out by complex microbial communities. Here, we use full-length 16S rRNA gene sequencing of 285 full-scale anaerobic digesters (ADs) to expand our knowledge about diversity and function of the bacteria and archaea in ADs worldwide. The sequences are processed into full-length 16S rRNA amplicon sequence variants (FL-ASVs) and are used to expand the MiDAS 4 database for bacteria and archaea in wastewater treatment systems, creating MiDAS 5. The expansion of the MiDAS database increases the coverage for bacteria and archaea in ADs worldwide, leading to improved genus- and species-level classification. Using MiDAS 5, we carry out an amplicon-based, global-scale microbial community profiling of the sampled ADs using three common sets of primers targeting different regions of the 16S rRNA gene in bacteria and/or archaea. We reveal how environmental conditions and biogeography shape the AD microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 692 genera and 1013 species. These represent 84-99% and 18-61% of the accumulated read abundance, respectively, across samples depending on the amplicon primers used. Finally, we examine the global diversity of functional groups with known importance for the anaerobic digestion process.
Collapse
Affiliation(s)
- Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Kasper Skytte Andersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anne-Kirstine C Korntved
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Vibeke Rudkjøbing
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Madalena Alves
- Centre of Biological Engineering, University of Minho, Minho, Portugal
| | | | - Damien Batstone
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, Brisbane, Australia
| | - Caitlyn Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mercedes Cecilia Cruz
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Åsa Davidsson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Leonardo Erijman
- INGEBI-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), Garching, Germany
| | - Norbert Kreuzinger
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Changsoo Lee
- Department of Civil, Urban, Earth, and Environmental Engineering & Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Gerasimos Lyberatos
- School of Chemical Engineering, National Technical University of Athens, Zografou, Greece
| | - Srikanth Mutnuri
- Applied Environmental Biotechnology Laboratory, Birla Institute of Technology and Science (BITS-Pilani), Pilani, Goa campus, Goa, India
| | - Vincent O'Flaherty
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Poznan, Poland
| | - Dana Pokorna
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Veronica Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | | | - Jorge Rodríguez
- Chemical Engineering Department, Khalifa University, Khalifa, UAE
| | - Pascal E Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Nick Tooker
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Julia Vierheilig
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), Garching, Germany
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
4
|
Otto P, Puchol-Royo R, Ortega-Legarreta A, Tanner K, Tideman J, de Vries SJ, Pascual J, Porcar M, Latorre-Pérez A, Abendroth C. Multivariate comparison of taxonomic, chemical and operational data from 80 different full-scale anaerobic digester-related systems. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:84. [PMID: 38902807 PMCID: PMC11191226 DOI: 10.1186/s13068-024-02525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The holistic characterization of different microbiomes in anaerobic digestion (AD) systems can contribute to a better understanding of these systems and provide starting points for bioengineering. The present study investigates the microbiome of 80 European full-scale AD systems. Operational, chemical and taxonomic data were thoroughly collected, analysed and correlated to identify the main drivers of AD processes. RESULTS The present study describes chemical and operational parameters for a broad spectrum of different AD systems. With this data, Spearman correlation and differential abundance analyses were applied to narrow down the role of the individual microorganisms detected. The authors succeeded in further limiting the number of microorganisms in the core microbiome for a broad range of AD systems. Based on 16S rRNA gene amplicon sequencing, MBA03, Proteiniphilum, a member of the family Dethiobacteraceae, the genus Caldicoprobacter and the methanogen Methanosarcina were the most prevalent and abundant organisms identified in all digesters analysed. High ratios for Methanoculleus are often described for agricultural co-digesters. Therefore, it is remarkable that Methanosarcina was surprisingly high in several digesters reaching ratios up to 47.2%. The various statistical analyses revealed that the microorganisms grouped according to different patterns. A purely taxonomic correlation enabled a distinction between an acetoclastic cluster and a hydrogenotrophic one. However, in the multivariate analysis with chemical parameters, the main clusters corresponded to hydrolytic and acidogenic microorganisms, with SAOB bacteria being particularly important in the second group. Including operational parameters resulted in digester-type specific grouping of microbes. Those with separate acidification stood out among the many reactor types due to their unexpected behaviour. Despite maximizing the organic loading rate in the hydrolytic pretreatments, these stages turned into extremely robust methane production units. CONCLUSIONS From 80 different AD systems, one of the most holistic data sets is provided. A very distinct formation of microbial clusters was discovered, depending on whether taxonomic, chemical or operational parameters were combined. The microorganisms in the individual clusters were strongly dependent on the respective reference parameters.
Collapse
Affiliation(s)
- Pascal Otto
- Institute of Waste Management and Circular Economy, Technische Universität Dresden, Pirna, Germany
| | - Roser Puchol-Royo
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Asier Ortega-Legarreta
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Kristie Tanner
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | | | | | - Javier Pascual
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Manuel Porcar
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, (University of Valencia - CSIC), Paterna, Spain
| | - Adriel Latorre-Pérez
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Christian Abendroth
- Chair of Circular Economy, Brandenburgische Technische Universität Cottbus-Senftenberg, Lehrgebäude 4A R2.25, Siemens-Halske-Ring 8, 03046, Cottbus, Germany.
| |
Collapse
|
5
|
Liang C, Svendsen SB, de Jonge N, Carvalho PN, Nielsen JL, Bester K. Eat seldom is better than eat frequently: Pharmaceuticals degradation kinetics, enantiomeric profiling and microorganisms in moving bed biofilm reactors are affected by feast famine cycle times. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133739. [PMID: 38401210 DOI: 10.1016/j.jhazmat.2024.133739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
Feast-famine (FF) regimes improved the removal of recalcitrant pharmaceuticals in moving bed biofilm reactors (MBBRs), but the optimal FF cycle remained unresolved. The effects of FF cycle time on the removal of bulk substrates (organic carbon and nitrogen) and trace pharmaceuticals by MBBR are systematically evaluated in this study. The feast to famine ratio was fixed to 1:2 to keep the same loading rate, but the time for the FF cycles varied from 18 h to 288 h. The MBBR adapted to the longest FF cycle time (288 h equaling 48 × HRT) resulted in significantly higher degradation rates (up to +183%) for 12 out of 28 pharmaceuticals than a continuously fed (non-FF) reactor. However, other FF cycle times (18, 36, 72 and 144 h) only showed a significant up-regulation for 2-3 pharmaceuticals compared to the non-FF reactor. Enantioselective degradation of metoprolol and propranolol occurred in the second phase of a two phase degradation, which was different for the longer FF cycle time. N-oxidation and N-demethylation pathways of tramadol and venlafaxine differed across the FF cycle time suggestin the FF cycle time varied the predominant transformation pathways of pharmaceuticals. The abundance of bacteria in the biofilms varied considerably between different FF cycle times, which possibly caused the biofilm to remove more recalcitrant bulk organic C and pharmaceuticals under long cycle times.
Collapse
Affiliation(s)
- Chuanzhou Liang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Sif B Svendsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark.
| |
Collapse
|
6
|
Verhoeven MD, Nielsen PH, Dueholm MKD. Amplicon-guided isolation and cultivation of previously uncultured microbial species from activated sludge. Appl Environ Microbiol 2023; 89:e0115123. [PMID: 38051071 PMCID: PMC10734543 DOI: 10.1128/aem.01151-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Biological wastewater treatment relies on complex microbial communities that assimilate nutrients and break down pollutants in the wastewater. Knowledge about the physiology and metabolism of bacteria in wastewater treatment plants (WWTPs) may therefore be used to improve the efficacy and economy of wastewater treatment. Our current knowledge is largely based on 16S rRNA gene amplicon profiling, fluorescence in situ hybridization studies, and predictions based on metagenome-assembled genomes. Bacterial isolates are often required to validate genome-based predictions as they allow researchers to analyze a specific species without interference from other bacteria and with simple bulk measurements. Unfortunately, there are currently very few pure cultures representing the microbes commonly found in WWTPs. To address this, we introduce an isolation strategy that takes advantage of state-of-the-art microbial profiling techniques to uncover suitable growth conditions for key WWTP microbes. We furthermore demonstrate that this information can be used to isolate key organisms representing global WWTPs.
Collapse
Affiliation(s)
- Maarten D. Verhoeven
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per H. Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Morten K. D. Dueholm
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| |
Collapse
|
7
|
Petriglieri F, Kondrotaite Z, Singleton C, Nierychlo M, Dueholm MKD, Nielsen PH. A comprehensive overview of the Chloroflexota community in wastewater treatment plants worldwide. mSystems 2023; 8:e0066723. [PMID: 37992299 PMCID: PMC10746286 DOI: 10.1128/msystems.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023] Open
Abstract
IMPORTANCE Chloroflexota are often abundant members of the biomass in wastewater treatment plants (WWTPs) worldwide, typically with a filamentous morphology, forming the backbones of the activated sludge floc. However, their overgrowth can often cause operational issues connected to poor settling or foaming, impairing effluent quality and increasing operational costs. Despite their importance, few Chloroflexota genera have been characterized so far. Here, we present a comprehensive overview of Chloroflexota abundant in WWTPs worldwide and an in-depth characterization of their morphology, phylogeny, and ecophysiology, obtaining a broad understanding of their ecological role in activated sludge.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten K. D. Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H. Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Liu B, Sträuber H, Centler F, Harms H, da Rocha UN, Kleinsteuber S. Functional Redundancy Secures Resilience of Chain Elongation Communities upon pH Shifts in Closed Bioreactor Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18350-18361. [PMID: 37097211 PMCID: PMC10666546 DOI: 10.1021/acs.est.2c09573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
For anaerobic mixed cultures performing microbial chain elongation, it is unclear how pH alterations affect the abundance of key players, microbial interactions, and community functioning in terms of medium-chain carboxylate yields. We explored pH effects on mixed cultures enriched in continuous anaerobic bioreactors representing closed model ecosystems. Gradual pH increase from 5.5 to 6.5 induced dramatic shifts in community composition, whereas product range and yields returned to previous states after transient fluctuations. To understand community responses to pH perturbations over long-term reactor operation, we applied Aitchison PCA clustering, linear mixed-effects models, and random forest classification on 16S rRNA gene amplicon sequencing and process data. Different pH preferences of two key chain elongation species─one Clostridium IV species related to Ruminococcaceae bacterium CPB6 and one Clostridium sensu stricto species related to Clostridium luticellarii─were determined. Network analysis revealed positive correlations of Clostridium IV with lactic acid bacteria, which switched from Olsenella to Lactobacillus along the pH increase, illustrating the plasticity of the food web in chain elongation communities. Despite long-term cultivation in closed systems over the pH shift experiment, the communities retained functional redundancy in fermentation pathways, reflected by the emergence of rare species and concomitant recovery of chain elongation functions.
Collapse
Affiliation(s)
- Bin Liu
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research − UFZ, 04318 Leipzig, Germany
- KU
Leuven, Department of Microbiology,
Immunology and Transplantation, Rega Institute for Medical Research,
Laboratory of Molecular Bacteriology, BE-3000 Leuven, Belgium
| | - Heike Sträuber
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research − UFZ, 04318 Leipzig, Germany
| | - Florian Centler
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research − UFZ, 04318 Leipzig, Germany
- School
of Life Sciences, University of Siegen, 57076 Siegen, Germany
| | - Hauke Harms
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research − UFZ, 04318 Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research − UFZ, 04318 Leipzig, Germany
| | - Sabine Kleinsteuber
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research − UFZ, 04318 Leipzig, Germany
| |
Collapse
|
9
|
Khairunisa BH, Heryakusuma C, Ike K, Mukhopadhyay B, Susanti D. Evolving understanding of rumen methanogen ecophysiology. Front Microbiol 2023; 14:1296008. [PMID: 38029083 PMCID: PMC10658910 DOI: 10.3389/fmicb.2023.1296008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Production of methane by methanogenic archaea, or methanogens, in the rumen of ruminants is a thermodynamic necessity for microbial conversion of feed to volatile fatty acids, which are essential nutrients for the animals. On the other hand, methane is a greenhouse gas and its production causes energy loss for the animal. Accordingly, there are ongoing efforts toward developing effective strategies for mitigating methane emissions from ruminant livestock that require a detailed understanding of the diversity and ecophysiology of rumen methanogens. Rumen methanogens evolved from free-living autotrophic ancestors through genome streamlining involving gene loss and acquisition. The process yielded an oligotrophic lifestyle, and metabolically efficient and ecologically adapted descendants. This specialization poses serious challenges to the efforts of obtaining axenic cultures of rumen methanogens, and consequently, the information on their physiological properties remains in most part inferred from those of their non-rumen representatives. This review presents the current knowledge of rumen methanogens and their metabolic contributions to enteric methane production. It also identifies the respective critical gaps that need to be filled for aiding the efforts to mitigate methane emission from livestock operations and at the same time increasing the productivity in this critical agriculture sector.
Collapse
Affiliation(s)
| | - Christian Heryakusuma
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Kelechi Ike
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Biswarup Mukhopadhyay
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Dwi Susanti
- Microbial Discovery Research, BiomEdit, Greenfield, IN, United States
| |
Collapse
|
10
|
Gutkoski JP, Schneider EE, Michels C. How effective is biological activated carbon in removing micropollutants? A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119434. [PMID: 39492392 DOI: 10.1016/j.jenvman.2023.119434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Micropollutants (MPs), also called emerging contaminants, are detected in various environmental compartments. Wastewater is their main entry pathway due to the incomplete removal of MPs in wastewater treatment plants (WWTPs). These contaminants are a risk to human health and the integrity of the ecosystem because they are persistent and toxic to organisms. Complementary treatments such as adsorption are studied to increase the efficiency of existing WWTPs. However, a disadvantage of using activated carbon is its high cost of production and regeneration. Biological activated carbon (BAC) is an alternative to overpass this scenario. In BAC, biofilm development occurs on the surface of activated carbon, which enables bioregeneration of the adsorbent and extends its lifetime. This review focused on the studies that applied BAC to remove MPs in aqueous matrices. The review methodology was based on bibliometric and systematic analysis. Tables and thematic maps were presented to investigate trends and gaps in research and related themes. The study points out the leading MPs researched in adsorption in the last ten years. The systematic analysis showed that most studies bring sequential treatments with real wastewater/water, in which BAC is the final process. BAC has the potential to be a complementary treatment for removing MPs. However, there is a lack of articles investigating only BAC as the main tertiary treatment. Topics that should be further investigated in this area are the microbiological community formed in the biofilm, the column's lifetime, and the cost analysis of BAC implementation and operation.
Collapse
Affiliation(s)
- Júlia Pedó Gutkoski
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Elisângela Edila Schneider
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Camila Michels
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
11
|
Villard D, Nesbø Goa IA, Leena Angell I, Eikaas S, Saltnes T, Johansen W, Rudi K. Spatiotemporal succession of phosphorous accumulating biofilms during the first year of establishment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:381-391. [PMID: 37522440 PMCID: wst_2023_214 DOI: 10.2166/wst.2023.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Many wastewater treatment plants are dependent on the utilization of microorganisms in biofilms. Our knowledge about the establishment of these biofilms is limited, particular with respect to biofilms involved in enhanced biological phosphorus removal (EBPR). These biofilms rely on polyphosphate-accumulating organisms (PAOs), requiring alternating oxic and anaerobic conditions for phosphorous uptake. This challenge has been solved using the Hias process, which combines moving-bed biofilm-reactor (MBBR) technology with physical transfer of biofilm-carriers from oxic to anaerobic zones. We combined biofilm fractionation with temporal analyses to unveil the establishment in the Hias process. A stable phosphorous removal efficiency of >95% was reached within 16 weeks of operation. Phosphorus removal, however, was not correlated with the establishment of known PAOs. The biofilms seemed associated with an outer microbiota layer with rapid turnover and an inner layer with a slow expansion. The inner layer showed an overrepresentation of known PAOs. In conclusion, our spatiotemporal analyses of phosphorous accumulating biofilm establishment lead to a new model for biofilm growth, while the mechanisms for phosphorous removal remain largely unresolved.
Collapse
Affiliation(s)
- Didrik Villard
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway E-mail:
| | - Inger Andrea Nesbø Goa
- Faculty of Chemistry, Biotechnology and Food Science, University of Life Sciences, Ås, Norway
| | - Inga Leena Angell
- Faculty of Chemistry, Biotechnology and Food Science, University of Life Sciences, Ås, Norway
| | | | - Torgeir Saltnes
- Hias, Ottestad, Hamar, Norway; Hias How2O, Ottestad, Hamar, Norway
| | - Wenche Johansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Knut Rudi
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway; Faculty of Chemistry, Biotechnology and Food Science, University of Life Sciences, Ås, Norway
| |
Collapse
|
12
|
Mills S, Yen Nguyen TP, Ijaz UZ, Lens PNL. Process stability in expanded granular sludge bed bioreactors enhances resistance to organic load shocks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118271. [PMID: 37269726 DOI: 10.1016/j.jenvman.2023.118271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Environmental perturbations such as changes in organic loading rate (OLR) can have deleterious effects on the anaerobic digestion process, leading to VFA accumulation and process failure. However, the operational history of a reactor, such as prior exposure to VFA build up, can impact a reactor's resistance to shock loads. In the present study, the effects of long term (>100 days) bioreactor (un)stability on OLR shock resistance were assessed. Three 4 L EGSB bioreactors were subjected to varying levels of process stability. Operational conditions such as OLR, temperature and pH were maintained stable in R1; R2 was subjected to a series of minor OLR perturbations and R3 was subjected to a series of non-OLR perturbations, including ammonium, temperature, pH and sulfide. The effect of these different operational histories on each reactor's resistance to a sudden 8-fold increase in OLR were assessed by monitoring COD removal efficiency and biogas production. The microbial communities of each reactor were monitored using 16S rRNA gene sequencing to understand the relationship between microbial diversity and reactor stability. It was determined that the stable (un-perturbed) reactor performed best in terms of its resistance to a large OLR shock, despite its lower microbial community diversity.
Collapse
Affiliation(s)
- Simon Mills
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland.
| | - Thi Phi Yen Nguyen
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland
| | - Umer Zeeshan Ijaz
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland; Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, United Kingdom; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Piet N L Lens
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
13
|
Sieborg MU, Ottosen LDM, Kofoed MVW. Enhanced process control of trickle-bed reactors for biomethanation by vertical profiling directed by hydrogen microsensor monitoring. BIORESOURCE TECHNOLOGY 2023:129242. [PMID: 37263445 DOI: 10.1016/j.biortech.2023.129242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Biomethanation is an emerging Power-to-X technology enabling CO2 valorisation to produce biomethane using renewable H2. A promising reactor for facilitating biomethanation is the trickle bed reactor (TBR), however, these bioreactors are conventionally operated with a black-box approach, where the system is solely described by the input and output characteristics. This study employed a novel approach for process surveillance of internal dynamics in TBRs by installing multiple H2 microsensors along its vertical axis. The H2 microsensor monitoring was demonstrated for 135 days in a TBR integrated into a full-scale biogas plant. Despite achieving an overall CH4 productivity of 12.6 L L-1 d-1, the vertical positioning of microsensors revealed a clear zonation with CH4 productivity zones reaching 54.8 L L-1 d-1 and enabled early warning detection of deteriorating process performance days before detecting it in the product gas. Thus, vertically positioned microsensors present a promising solution for securing process stability.
Collapse
Affiliation(s)
- Mads Ujarak Sieborg
- Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N., Denmark
| | - Lars Ditlev Mørck Ottosen
- Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N., Denmark; The Novo Nordisk Foundation CO2 Research Center (CORC), Aarhus University, Gustav Wieds Vej 10C, DK-8000, Denmark
| | - Michael Vedel Wegener Kofoed
- Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N., Denmark; The Novo Nordisk Foundation CO2 Research Center (CORC), Aarhus University, Gustav Wieds Vej 10C, DK-8000, Denmark.
| |
Collapse
|
14
|
Lobanov V, Gobet A, Joyce A. Ecosystem-specific microbiota and microbiome databases in the era of big data. ENVIRONMENTAL MICROBIOME 2022; 17:37. [PMID: 35842686 PMCID: PMC9287977 DOI: 10.1186/s40793-022-00433-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/29/2022] [Indexed: 05/05/2023]
Abstract
The rapid development of sequencing methods over the past decades has accelerated both the potential scope and depth of microbiota and microbiome studies. Recent developments in the field have been marked by an expansion away from purely categorical studies towards a greater investigation of community functionality. As in-depth genomic and environmental coverage is often distributed unequally across major taxa and ecosystems, it can be difficult to identify or substantiate relationships within microbial communities. Generic databases containing datasets from diverse ecosystems have opened a new era of data accessibility despite costs in terms of data quality and heterogeneity. This challenge is readily embodied in the integration of meta-omics data alongside habitat-specific standards which help contextualise datasets both in terms of sample processing and background within the ecosystem. A special case of large genomic repositories, ecosystem-specific databases (ES-DB's), have emerged to consolidate and better standardise sample processing and analysis protocols around individual ecosystems under study, allowing independent studies to produce comparable datasets. Here, we provide a comprehensive review of this emerging tool for microbial community analysis in relation to current trends in the field. We focus on the factors leading to the formation of ES-DB's, their comparison to traditional microbial databases, the potential for ES-DB integration with meta-omics platforms, as well as inherent limitations in the applicability of ES-DB's.
Collapse
Affiliation(s)
- Victor Lobanov
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | | | - Alyssa Joyce
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden.
| |
Collapse
|
15
|
Cydzik-Kwiatkowska A, de Jonge N, Poulsen JS, Nielsen JL. Unravelling gradient layers of microbial communities, proteins, and chemical structure in aerobic granules. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154253. [PMID: 35276168 DOI: 10.1016/j.scitotenv.2022.154253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Most bacteria live in microbial assemblages like biofilms and granules, and each layer of these assemblages provides a niche for certain bacteria with specific metabolic functions. In this study, a gentle (non-destructive) extraction approach based on a cation exchange resin and defined shear was employed to gradually disintegrate biomass and collect single layers of aerobic granules from a full-scale municipal wastewater treatment plant. The microbial community composition of granule layers was characterized using next-generation sequencing (NGS) targeting the 16S rRNA gene, and protein composition was investigated using metaproteomics. The chemical composition of eroded layers was explored using Fourier Transformed Infrared Spectroscopy. On the surface of the granules, the microbial structure (flocculation-supporting Nannocystis sp.) as well as composition of extracellular polymers (extracellular DNA) and proteome (chaperonins and binding proteins) favored microbial aggregation. Extracellular polymeric substances in the granules were composed of mostly proteins and EPS-producers, such as Tetrasphaera sp. and Zoogloea sp., were evenly distributed throughout the granule structure. The interior of the granules harbored several denitrifiers (e.g., Thauera sp.), phosphate-accumulating denitrifiers (Candidatus Accumulibacter, Dechloromonas sp.) and nitrifiers (Candidatus Nitrotoga). Proteins associated with glycolytic activity were identified in the outer and middle granule layers, and proteins associated with phosphorus conversions, in the deeper layers. In conclusion, the use of an existing cation-exchange resin for gradual biomass disintegration, combined with NGS and metaproteomic analysis was demonstrated as a promising approach for simultaneously investigating the identity and functions of microbes in multilayered biofilm structures.
Collapse
Affiliation(s)
- Agnieszka Cydzik-Kwiatkowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna 45G, Olsztyn, Poland
| | - Nadieh de Jonge
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Jan Struckmann Poulsen
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Jeppe Lund Nielsen
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| |
Collapse
|
16
|
Bagi A, Skogerbø G. Tracking bacterial pollution at a marine wastewater outfall site - A case study from Norway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154257. [PMID: 35247400 DOI: 10.1016/j.scitotenv.2022.154257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Coastal marine environments are increasingly affected by anthropogenic impacts, such as the release of sewage at outfall sites and agricultural run-off. Fecal pollution introduced to the sea through these activities poses risks of spreading microbial diseases and disseminating antibiotic resistant bacteria and their genes. The study area of this research, Bore beach, is situated between two such point sources, an outfall site where treated sewage is released 1 km off the coast and a stream that carries run-off from an agricultural area to the northern end of the beach. In order to investigate whether and to what extent fecal contamination from the sewage outfall reached the beach, we used microbial source tracking, based on whole community analysis. Samples were collected from sea water at varying distances from the sewage outfall site and along the beach, as well as from the sewage effluent and the stream. Amplicon sequencing of 16S rRNA genes from all the collected samples was carried out at two time points (June and September). In addition, the seawater at the sewage outfall site and the sewage effluent were subject to shotgun metagenomics. To estimate the contribution of the sewage effluent and the stream to the microbial communities at Bore beach, we employed SourceTracker2, a program that uses a Bayesian algorithm to perform such quantification. The SourceTracker2 results suggested that the sewage effluent is likely to spread fecal contamination towards the beach to a greater extent than anticipated based on the prevailing sea current. The estimated mixing proportions of sewage at the near-beach site (P4) were 0.22 and 0.035% in June and September, respectively. This was somewhat below that stream's contribution in June (0.028%) and 10-fold higher than the stream's contribution in September (0.004%). Our analysis identified a sewage signal in all the tested seawater samples.
Collapse
Affiliation(s)
- Andrea Bagi
- NORCE Norwegian Research Centre, Marine Ecology, Mekjarvik 12, 4070 Randaberg, Norway.
| | | |
Collapse
|
17
|
Reevaluation of the Phylogenetic Diversity and Global Distribution of the Genus " Candidatus Accumulibacter". mSystems 2022; 7:e0001622. [PMID: 35467400 PMCID: PMC9238405 DOI: 10.1128/msystems.00016-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
“Candidatus Accumulibacter” was the first microorganism identified as a polyphosphate-accumulating organism (PAO) important for phosphorus removal from wastewater. Members of this genus are diverse, and the current phylogeny and taxonomic framework appear complicated, with most publicly available genomes classified as “Candidatus Accumulibacter phosphatis,” despite notable phylogenetic divergence. The ppk1 marker gene allows for a finer-scale differentiation into different “types” and “clades”; nevertheless, taxonomic assignments remain inconsistent across studies. Therefore, a comprehensive reevaluation is needed to establish a common understanding of this genus, in terms of both naming and basic conserved physiological traits. Here, we provide this reassessment using a comparison of genome, ppk1, and 16S rRNA gene-based approaches from comprehensive data sets. We identified 15 novel species, along with “Candidatus Accumulibacter phosphatis,” “Candidatus Accumulibacter delftensis,” and “Candidatus Accumulibacter aalborgensis.” To compare the species in situ, we designed new species-specific fluorescence in situ hybridization (FISH) probes and revealed their morphology and arrangement in activated sludge. Based on the MiDAS global survey, “Ca. Accumulibacter” species were widespread in wastewater treatment plants (WWTPs) with phosphorus removal, indicating process design as a major driver for their abundance. Genome mining for PAO-related pathways and FISH-Raman microspectroscopy confirmed the potential for PAO metabolism in all “Ca. Accumulibacter” species, with detection in situ of the typical PAO storage polymers. Genome annotation further revealed differences in the nitrate/nitrite reduction pathways. This provides insights into the niche differentiation of these lineages, potentially explaining their coexistence in the same ecosystem while contributing to overall phosphorus and nitrogen removal. IMPORTANCE “Candidatus Accumulibacter” is the most studied PAO, with a primary role in biological nutrient removal. However, the species-level taxonomy of this lineage is convoluted due to the use of different phylogenetic markers or genome sequencing approaches. Here, we redefined the phylogeny of these organisms, proposing a comprehensive approach which could be used to address the classification of other diverse and uncultivated lineages. Using genome-resolved phylogeny, compared to phylogeny based on the 16S rRNA gene and other phylogenetic markers, we obtained a higher-resolution taxonomy and established a common understanding of this genus. Furthermore, genome mining of genes and pathways of interest, validated in situ by application of a new set of FISH probes and Raman microspectroscopy, provided additional high-resolution metabolic insights into these organisms.
Collapse
|
18
|
Nitrate Removal from Groundwater by Heterotrophic and Electro-Autotrophic Denitrification. WATER 2022. [DOI: 10.3390/w14111759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A heterotrophic and autotrophic denitrification (HAD) system shows satisfactory performance for groundwater with nitrate contamination. In this study, an HAD system combining solid-phase heterotrophic denitrification and electrochemical hydrogen autotrophic denitrification (SHD-EHD) was developed for the treatment of nitrate-contaminated groundwater, in which polycaprolactone (PCL) was used as the carbon source to enhance the nitrate removal performance and prevent secondary pollution of the electrochemical hydrogen autotrophic denitrification (EHD) system. The denitrification performance, microbial community structure and nitrogen metabolism were investigated. The results showed that a high nitrate removal rate of 99.04% was achieved with an influent nitrate concentration of 40 mg/L, a current of 40 mA and a hydraulic retention time (HRT) of 4 h. By comparing the performance with the EHD system, it was found that the HAD system with PCL promoted the complete denitrification and reduced the accumulation of NO2−-N. Analysis of the microbial community structure identified the key denitrifying bacteria: Dechloromonas, Thauera and Hydrogenophaga. A comparison of microbial communities from SHD-EHD and solid-phase heterotrophic denitrification (SHD) demonstrated that electrical stimulation promoted the abundance of the dominant denitrifying bacteria and the electroactive bacteria. Analysis of the nitrogen metabolic pathway revealed that the conversion of NO to N2O was the rate-limiting step in the overall denitrification pathway. The SHD-EHD developed in this study showed great potential for groundwater nitrate removal.
Collapse
|
19
|
Ercole E, Adamo M, Lumini E, Fusconi A, Mucciarelli M. Alpine constructed wetlands: A metagenomic analysis reveals microbial complementary structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153640. [PMID: 35124050 DOI: 10.1016/j.scitotenv.2022.153640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands (CWs) are used to water treatment worldwide, however their application at high-altitude is poorly studied. In order to survive mountain winters, CWs rely on native flora and associated microbial communities. However, the choice of plant-microbes pairs more suitable for water treatment is challenging in alpine environments. Using a metagenomic approach, we investigated the composition of prokaryotes and fungal communities, through extensive sampling inside a constructed wetland in the SW-Alps. Best performing plant species were searched among those hosting the most diverse and resilient microbial communities and to this goal, we analysed them in the natural environment also. Our results showed that microbial communities were less diverse in the CW than at natural conditions, and they differed from plant to plant, revealing a clear variation in taxonomic composition between forbs and gramineous plants. Carex rostrata, Deschampsia caespitosa and Rumex alpinus hosted bacteria very active in N-cycles. Moreover, fungal and prokaryotic communities associated to R. alpinus (Polygonaceae) turned to be the richest and stable among the studied species. In our opinion, this species should be prioritized in CWs at high elevations, also in consideration of its low maintenance requirements.
Collapse
Affiliation(s)
- Enrico Ercole
- University of Torino, Department of Life Sciences and Systems Biology, Torino, Italy
| | - Martino Adamo
- University of Torino, Department of Life Sciences and Systems Biology, Torino, Italy
| | - Erica Lumini
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), Torino, Italy
| | - Anna Fusconi
- University of Torino, Department of Life Sciences and Systems Biology, Torino, Italy
| | - Marco Mucciarelli
- University of Torino, Department of Life Sciences and Systems Biology, Torino, Italy.
| |
Collapse
|
20
|
Petriglieri F, Petersen JF, Peces M, Nierychlo M, Hansen K, Baastrand CE, Nielsen UG, Reitzel K, Nielsen PH. Quantification of Biologically and Chemically Bound Phosphorus in Activated Sludge from Full-Scale Plants with Biological P-Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5132-5140. [PMID: 35358387 PMCID: PMC9022429 DOI: 10.1021/acs.est.1c02642] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is present in activated sludge from wastewater treatment plants in the form of metal salt precipitates, extracellular polymeric substances, or bound into the biomass, for example, as intracellular polyphosphate (poly-P). Several methods for a reliable quantification of the different P-fractions have recently been developed, and this study combines them to obtain a comprehensive P mass-balance of activated sludge from four enhanced biological phosphate removal (EBPR) plants. Chemical characterization by ICP-OES and sequential P fractionation showed that chemically bound P constituted 38-69% of total P, most likely in the form of Fe, Mg, or Al minerals. Raman microspectroscopy, solution state 31P NMR, and 31P MAS NMR spectroscopy applied before and after anaerobic P-release experiments, were used to quantify poly-P, which constituted 22-54% of total P and was found in approximately 25% of all bacterial cells. Raman microspectroscopy in combination with fluorescence in situ hybridization was used to quantify poly-P in known polyphosphate-accumulating organisms (PAO) (Tetrasphaera, Candidatus Accumulibacter, and Dechloromonas) and other microorganisms known to possess high level of poly-P, such as the filamentous Ca. Microthrix. Interestingly, only 1-13% of total P was stored by unidentified PAO, highlighting that most PAOs in the full-scale EBPR plants investigated are known.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Jette F. Petersen
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Miriam Peces
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Marta Nierychlo
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Kamilla Hansen
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Cecilie E. Baastrand
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ulla Gro Nielsen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kasper Reitzel
- Department
of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Per Halkjær Nielsen
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| |
Collapse
|
21
|
Dueholm MKD, Nierychlo M, Andersen KS, Rudkjøbing V, Knutsson S, Albertsen M, Nielsen PH. MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants. Nat Commun 2022; 13:1908. [PMID: 35393411 PMCID: PMC8989995 DOI: 10.1038/s41467-022-29438-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Microbial communities are responsible for biological wastewater treatment, but our knowledge of their diversity and function is still poor. Here, we sequence more than 5 million high-quality, full-length 16S rRNA gene sequences from 740 wastewater treatment plants (WWTPs) across the world and use the sequences to construct the ‘MiDAS 4’ database. MiDAS 4 is an amplicon sequence variant resolved, full-length 16S rRNA gene reference database with a comprehensive taxonomy from domain to species level for all sequences. We use an independent dataset (269 WWTPs) to show that MiDAS 4, compared to commonly used universal reference databases, provides a better coverage for WWTP bacteria and an improved rate of genus and species level classification. Taking advantage of MiDAS 4, we carry out an amplicon-based, global-scale microbial community profiling of activated sludge plants using two common sets of primers targeting regions of the 16S rRNA gene, revealing how environmental conditions and biogeography shape the activated sludge microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 966 genera and 1530 species that represent approximately 80% and 50% of the accumulated read abundance, respectively. Finally, we show that for well-studied functional guilds, such as nitrifiers or polyphosphate-accumulating organisms, the same genera are prevalent worldwide, with only a few abundant species in each genus. Microbial communities are responsible for biological wastewater treatment. Here, Dueholm et al. generate more than 5 million high-quality, full-length 16S rRNA gene sequences from wastewater treatment plants across the world to construct a database with a comprehensive taxonomy, providing insights into diversity and function of these microbial communities.
Collapse
Affiliation(s)
- Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Kasper Skytte Andersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Vibeke Rudkjøbing
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Simon Knutsson
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
22
|
Liu B, Sträuber H, Saraiva J, Harms H, Silva SG, Kasmanas JC, Kleinsteuber S, Nunes da Rocha U. Machine learning-assisted identification of bioindicators predicts medium-chain carboxylate production performance of an anaerobic mixed culture. MICROBIOME 2022; 10:48. [PMID: 35331330 PMCID: PMC8952268 DOI: 10.1186/s40168-021-01219-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/17/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND The ability to quantitatively predict ecophysiological functions of microbial communities provides an important step to engineer microbiota for desired functions related to specific biochemical conversions. Here, we present the quantitative prediction of medium-chain carboxylate production in two continuous anaerobic bioreactors from 16S rRNA gene dynamics in enriched communities. RESULTS By progressively shortening the hydraulic retention time (HRT) from 8 to 2 days with different temporal schemes in two bioreactors operated for 211 days, we achieved higher productivities and yields of the target products n-caproate and n-caprylate. The datasets generated from each bioreactor were applied independently for training and testing machine learning algorithms using 16S rRNA genes to predict n-caproate and n-caprylate productivities. Our dataset consisted of 14 and 40 samples from HRT of 8 and 2 days, respectively. Because of the size and balance of our dataset, we compared linear regression, support vector machine and random forest regression algorithms using the original and balanced datasets generated using synthetic minority oversampling. Further, we performed cross-validation to estimate model stability. The random forest regression was the best algorithm producing more consistent results with median of error rates below 8%. More than 90% accuracy in the prediction of n-caproate and n-caprylate productivities was achieved. Four inferred bioindicators belonging to the genera Olsenella, Lactobacillus, Syntrophococcus and Clostridium IV suggest their relevance to the higher carboxylate productivity at shorter HRT. The recovery of metagenome-assembled genomes of these bioindicators confirmed their genetic potential to perform key steps of medium-chain carboxylate production. CONCLUSIONS Shortening the hydraulic retention time of the continuous bioreactor systems allows to shape the communities with desired chain elongation functions. Using machine learning, we demonstrated that 16S rRNA amplicon sequencing data can be used to predict bioreactor process performance quantitatively and accurately. Characterizing and harnessing bioindicators holds promise to manage reactor microbiota towards selection of the target processes. Our mathematical framework is transferrable to other ecosystem processes and microbial systems where community dynamics is linked to key functions. The general methodology used here can be adapted to data types of other functional categories such as genes, transcripts, proteins or metabolites. Video Abstract.
Collapse
Affiliation(s)
- Bin Liu
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - João Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sandra Godinho Silva
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico Universidade de Lisboa, Lisbon, Portugal
| | - Jonas Coelho Kasmanas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil
- Department of Computer Science and Interdisciplinary Center of Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
23
|
Adler A, Poirier S, Pagni M, Maillard J, Holliger C. Disentangle genus microdiversity within a complex microbial community by using a multi-distance long-read binning method: example of Candidatus Accumulibacter. Environ Microbiol 2022; 24:2136-2156. [PMID: 35315560 PMCID: PMC9311429 DOI: 10.1111/1462-2920.15947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/19/2022] [Indexed: 11/26/2022]
Abstract
Complete genomes can be recovered from metagenomes by assembling and binning DNA sequences into metagenome assembled genomes (MAGs). Yet, the presence of microdiversity can hamper the assembly and binning processes, possibly yielding chimeric, highly fragmented and incomplete genomes. Here, the metagenomes of four samples of aerobic granular sludge bioreactors containing Candidatus (Ca.) Accumulibacter, a phosphate-accumulating organism of interest for wastewater treatment, were sequenced with both PacBio and Illumina. Different strategies of genome assembly and binning were investigated, including published protocols and a binning procedure adapted to the binning of long contigs (MuLoBiSC). Multiple criteria were considered to select the best strategy for Ca. Accumulibacter, whose multiple strains in every sample represent a challenging microdiversity. In this case, the best strategy relies on long-read only assembly and a custom binning procedure including MuLoBiSC in metaWRAP. Several high-quality Ca. Accumulibacter MAGs, including a novel species, were obtained independently from different samples. Comparative genomic analysis showed that MAGs retrieved in different samples harbour genomic rearrangements in addition to accumulation of point mutations. The microdiversity of Ca. Accumulibacter, likely driven by mobile genetic elements, causes major difficulties in recovering MAGs, but it is also a hallmark of the panmictic lifestyle of these bacteria.
Collapse
Affiliation(s)
- Aline Adler
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simon Poirier
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,IFP Energie nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Dynamics of Microbial Communities in Phototrophic Polyhydroxyalkanoate Accumulating Cultures. Microorganisms 2022; 10:microorganisms10020351. [PMID: 35208806 PMCID: PMC8874877 DOI: 10.3390/microorganisms10020351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Phototrophic mixed cultures (PMC) are versatile systems which can be applied for waste streams, valorisation and production of added-value compounds, such as polyhydroxyalkanoates (PHA). This work evaluates the influence of different operational conditions on the bacterial communities reported in PMC systems with PHA production capabilities. Eleven PMCs, fed either with acetate or fermented wastewater, and selected under either feast and famine (FF) or permanent feast (PF) regimes, were evaluated. Overall, results identified Chromatiaceae members as the main phototrophic PHA producers, along with Rhodopseudomonas, Rhodobacter and Rhizobium. The findings show that Chromatiaceae were favoured under operating conditions with high carbon concentrations, and particularly under the PF regime. In FF systems fed with fermented wastewater, the results indicate that increasing the organic loading rate enriches for Rhodopseudomonas, Rhizobium and Hyphomicrobiaceae, which together with Rhodobacter and Chromatiaceae, were likely responsible for PHA storage. In addition, high-sugar feedstock impairs PHA production under PF conditions (fermentative bacteria dominance), which does not occur under FF. This characterization of the communities responsible for PHA accumulation helps to define improved operational strategies for PHA production with PMC.
Collapse
|
25
|
Nittami T, Batinovic S. Recent advances in understanding the ecology of the filamentous bacteria responsible for activated sludge bulking. Lett Appl Microbiol 2021; 75:759-775. [PMID: 34919734 DOI: 10.1111/lam.13634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023]
Abstract
Activated sludge bulking caused by filamentous bacteria is still a problem in wastewater treatment plants around the world. Bulking is a microbiological problem, and so its solution on species-specific basis is likely to be reached only after their ecology, physiology and metabolism is better understood. Culture-independent molecular methods have provided much useful information about this group of organisms, and in this review, the methods employed and the information they provide are critically assessed. Their application to understanding bulking caused by the most frequently seen filament in Japan, 'Ca. Kouleothrix', is used here as an example of how these techniques might be used to develop control strategies. Whole genome sequences are now available for some of filamentous bacteria responsible for bulking, and so it is possible to understand why these filaments might thrive in activated sludge plants, and provide clues as to how eventually they might be controlled specifically.
Collapse
Affiliation(s)
- T Nittami
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - S Batinovic
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
26
|
Petriglieri F, Singleton C, Peces M, Petersen JF, Nierychlo M, Nielsen PH. "Candidatus Dechloromonas phosphoritropha" and "Ca. D. phosphorivorans", novel polyphosphate accumulating organisms abundant in wastewater treatment systems. THE ISME JOURNAL 2021; 15:3605-3614. [PMID: 34155336 PMCID: PMC8630035 DOI: 10.1038/s41396-021-01029-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Members of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants. The two most abundant species worldwide revealed in situ dynamics of important intracellular storage polymers, measured by FISH-Raman in activated sludge from four full-scale EBPR plants and from a lab-scale reactor fed with different substrates. Moreover, seven distinct Dechloromonas species were determined from a set of ten high-quality metagenome-assembled genomes (MAGs) from Danish EBPR plants, each encoding the potential for polyphosphate (poly-P), glycogen, and polyhydroxyalkanoates (PHA) accumulation. The two species exhibited an in situ phenotype in complete accordance with the metabolic information retrieved by the MAGs, with dynamic levels of poly-P, glycogen, and PHA during feast-famine anaerobic-aerobic cycling, legitimately placing these microorganisms among the important PAOs. They are potentially involved in denitrification showing niche partitioning within the genus and with other important PAOs. As no isolates are available for the two species, we propose the names Candidatus Dechloromonas phosphoritropha and Candidatus Dechloromonas phosphorivorans.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Miriam Peces
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jette F Petersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
27
|
Knudsen JK, Michaelsen TY, Bundgaard-Nielsen C, Nielsen RE, Hjerrild S, Leutscher P, Wegener G, Sørensen S. Faecal microbiota transplantation from patients with depression or healthy individuals into rats modulates mood-related behaviour. Sci Rep 2021; 11:21869. [PMID: 34750433 PMCID: PMC8575883 DOI: 10.1038/s41598-021-01248-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 02/02/2023] Open
Abstract
Differences in gut microbiota composition have been observed in patients with major depressive disorder (MDD) compared to healthy individuals. Here, we investigated if faecal microbiota transplantation (FMT) from patients with MDD into rats could induce a depressive-like phenotype. We performed FMT from patients with MDD (FMT-MDD) and healthy individuals (FMT-Healthy) into male Flinders Sensitive Line (FSL) and Flinders Resistant Line (FRL) rats and assessed depressive-like behaviour. No behavioural differences were observed in the FSL rats. In FRL rats, the FMT-Healthy group displayed significantly less depressive-like behaviour than the FMT-MDD group. However, there was no difference in behaviour between FMT-MDD FRL rats and negative controls, indicating that FMT-Healthy FRL rats received beneficial bacteria. We additionally found different taxa between the FMT-MDD and the FMT-Healthy FRL rats, which could be traced to the donors. Four taxa, three belonging to the family Ruminococcaceae and the genus Lachnospira, were significantly elevated in relative abundance in FMT-MDD rats, while the genus Coprococcus was depleted. In this study, the FMT-MDD group was different from the FMT-Healthy group based on behaviour and intestinal taxa.
Collapse
Affiliation(s)
- Julie Kristine Knudsen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, 9800, Hjørring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Caspar Bundgaard-Nielsen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, 9800, Hjørring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - René Ernst Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Psychiatry, Aalborg University Hospital, Aalborg, Denmark
| | - Simon Hjerrild
- Psychosis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Peter Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, 9800, Hjørring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, 9800, Hjørring, Denmark. .,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
28
|
Cai W, Zhao M, Kong J, Riggio S, Finnigan T, Stuckey D, Guo M. Linkage of community composition and function over short response time in anaerobic digestion systems with food fermentation wastewater. iScience 2021; 24:102958. [PMID: 34466784 PMCID: PMC8384924 DOI: 10.1016/j.isci.2021.102958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/11/2021] [Accepted: 08/03/2021] [Indexed: 01/28/2023] Open
Abstract
We investigated the short-term dynamics of microbial composition and function in bioreactors with inocula collected from full-scale and laboratory-based anaerobic digestion (AD) systems. The Bray-Curtis dissimilarity of both inocula was approximately 10% of the predicted Kyoto Encyclopedia of Genes and Genomes pathway and 40% of the taxonomic composition and yet resulted in a similar performance in methane production, implying that the variation of community composition may be decoupled from performance. However, the significant correlation of volatile fatty acids with taxonomic variation suggested that the pathways of AD could be different because of the varying genus. The predicted function of the significantly varying genus was mostly related to fermentation, which strengthened the conclusion that most microbial variation occurred within the fermentative species and led to alternative routes to result in similar methane production in methanogenic bioreactors. This finding sheds some light on the understanding of AD community regulation, which depends on the aims to recover intermediates or methane.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.,Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Mingxing Zhao
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK.,Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.,School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jianyao Kong
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Silvio Riggio
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Tim Finnigan
- Quorn Foods, Station Road, Stokesley, North Yorkshire TS9 7AB, UK
| | - David Stuckey
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Miao Guo
- Department of Engineering, King's College London, London WC2R 2LS, UK.,Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
29
|
Chen Y, Wang Y, Paez-Espino D, Polz MF, Zhang T. Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants. Nat Commun 2021; 12:5398. [PMID: 34518545 PMCID: PMC8438041 DOI: 10.1038/s41467-021-25678-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
As one of the largest biotechnological applications, activated sludge (AS) systems in wastewater treatment plants (WWTPs) harbor enormous viruses, with 10-1,000-fold higher concentrations than in natural environments. However, the compositional variation and host-connections of AS viruses remain poorly explored. Here, we report a catalogue of ~50,000 prokaryotic viruses from six WWTPs, increasing the number of described viral species of AS by 23-fold, and showing the very high viral diversity which is largely unknown (98.4-99.6% of total viral contigs). Most viral genera are represented in more than one AS system with 53 identified across all. Viral infection widely spans 8 archaeal and 58 bacterial phyla, linking viruses with aerobic/anaerobic heterotrophs, and other functional microorganisms controlling nitrogen/phosphorous removal. Notably, Mycobacterium, notorious for causing AS foaming, is associated with 402 viral genera. Our findings expand the current AS virus catalogue and provide reference for the phage treatment to control undesired microorganisms in WWTPs.
Collapse
Affiliation(s)
- Yiqiang Chen
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - David Paez-Espino
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Muñoz-Palazon B, Rodriguez-Sanchez A, Hurtado-Martinez M, Gonzalez-Lopez J, Vahala R, Gonzalez-Martinez A. Evaluating the nitrogen-contaminated groundwater treatment by a denitrifying granular sludge bioreactor: effect of organic matter loading. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41351-41364. [PMID: 33783701 DOI: 10.1007/s11356-021-13648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
A sequential bed granular bioreactor was adapted to treat nitrate-polluted synthetic groundwater under anaerobic conditions and agitation with denitrification gas, achieving very efficient performance in total nitrogen removal at influent organic carbon concentrations of 1 g L-1 (80-90%) and 0.5 g L-1 (70-80%) sodium acetate, but concentrations below 0.5 g L-1 caused accumulation of nitrite and nitrate and led to system failure (30-40% removal). Biomass size and settling velocity were higher above 0.5 g L-1 sodium acetate. Trichosporonaceae dominated the fungal populations at all times, while a dominance of terrestrial group Thaumarchaeota and Acidovorax at 1 and 0.5 g L-1 passed to a domination of Methanobrevibacter and an unclassified Comamonadaceae clone for NaAc lower than 0.5 g L-1. The results obtained pointed out that the denitrifying granular sludge technology is a feasible solution for the treatment of nitrogen-contaminated groundwater, and that influent organic matter plays an important role on the conformation of microbial communities within it and, therefore, on the overall efficiency of the system.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | | | - Miguel Hurtado-Martinez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Jesús Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Riku Vahala
- Department of Built Environment, School of Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | | |
Collapse
|
31
|
Burut-Archanai S, Ubertino D, Chumtong P, Mhuantong W, Powtongsook S, Piyapattanakorn S. Dynamics of Microbial Community During Nitrification Biofilter Acclimation with Low and High Ammonia. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:671-681. [PMID: 34414527 DOI: 10.1007/s10126-021-10056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The acclimation of a nitrifying biofilter is a crucial and time-consuming task for setting up a recirculating aquaculture system (RAS). Gaining a better understanding of the dynamics of the microbial community during the acclimation period in the system could be useful for the development of mature nitrifying biofilters. In this study, high-throughput DNA sequencing was applied to monitor the microbial communities on a biofilter during the acclimation period (7 weeks) in high (100 mg N/L) and low (5 mg N/L) total ammonia nitrogen (TAN) treatments. Both treatments were successful for developing a mature nitrifying biofilter, dominated by Proteobacteria, Bacteroidetes, and Nitrospirae. Complete nitrification was found after 7 days of biofilter acclimation as indicated by decreasing TAN concentration, increasing nitrate concentration, and high abundances of the nitrifying bacteria, Nitrosomonadaceae and Nitrospiraceae. The beta diversity analysis of microbial communities showed different clustering of the samples between high and low TAN treatment groups. A greater abundance of nitrifying bacteria was found in the high TAN treatments (27-51%) than in the low TAN treatment (15-29%). The bacterial diversity in biofilters acclimated at high TAN concentration (Shannon's index 5.40-6.15) were lower than those found at low TAN treatment levels (Shannon's index 6.40-7.01). The higher diversity in biofilters acclimated at low TAN concentrations, consisting of Planctomycetes and Archaea, might benefit the nutrient recycling in the system. Although nitrification activity was observed from the first week of the acclimation period, the acclimation period should be taken as at least 6 weeks for full development of nitrifying biofilm. Moreover, the reduction of potentially pathogenic Vibrio on biofilters was found at that period.
Collapse
Affiliation(s)
- Surachet Burut-Archanai
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Déborah Ubertino
- University of Clermont Auvergne, 49 bd Francois Mitterrand, 63000, Clermont-Ferrand, France
| | - Parichat Chumtong
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Sorawit Powtongsook
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sanit Piyapattanakorn
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
32
|
Niederdorfer R, Fragner L, Yuan L, Hausherr D, Wei J, Magyar P, Joss A, Lehmann MF, Ju F, Bürgmann H. Distinct growth stages controlled by the interplay of deterministic and stochastic processes in functional anammox biofilms. WATER RESEARCH 2021; 200:117225. [PMID: 34052477 DOI: 10.1016/j.watres.2021.117225] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Mainstream anaerobic ammonium oxidation (anammox) represents one of the most promising energy-efficient mechanisms of fixed nitrogen elimination from wastewaters. However, little is known about the exact processes and drivers of microbial community assembly within the complex microbial biofilms that support anammox in engineered ecosystems. Here, we followed anammox biofilm development on fresh carriers in an established 8m3 mainstream anammox reactor that is exposed to seasonal temperature changes (~25-12°C) and varying NH4+ concentrations (5-25 mg/L). We use fluorescence in situ hybridization and 16S rRNA gene sequencing to show that three distinct stages of biofilm development emerge naturally from microbial community composition and biofilm structure. Neutral modelling and network analysis are employed to elucidate the relative importance of stochastic versus deterministic processes and synergistic and antagonistic interactions in the biofilms during their development. We find that the different phases are characterized by a dynamic succession and an interplay of both stochastic and deterministic processes. The observed growth stages (Colonization, Succession and Maturation) appear to be the prerequisite for the anticipated growth of anammox bacteria and for reaching a biofilm community structure that supports the desired metabolic and functional capacities observed for biofilm carriers already present in the system (~100gNH4-N m3 d-1). We discuss the relevance of this improved understanding of anammox-community ecology and biofilm development in the context of its practical application in the start-up, configuration, and optimization of anammox biofilm reactors.
Collapse
Affiliation(s)
- Robert Niederdorfer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Department of Surface Waters-Research and Management, 6047 Kastanienbaum, Switzerland.
| | - Lisa Fragner
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Department of Surface Waters-Research and Management, 6047 Kastanienbaum, Switzerland
| | - Ling Yuan
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Damian Hausherr
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Department of Process Engineering, 8600 Duebendorf, Switzerland
| | - Jing Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution & Environmental Technology, 8600 Duebendorf, Switzerland
| | - Paul Magyar
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Adriano Joss
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Department of Process Engineering, 8600 Duebendorf, Switzerland
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Department of Surface Waters-Research and Management, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
33
|
Hugenholtz P, Chuvochina M, Oren A, Parks DH, Soo RM. Prokaryotic taxonomy and nomenclature in the age of big sequence data. THE ISME JOURNAL 2021; 15:1879-1892. [PMID: 33824426 PMCID: PMC8245423 DOI: 10.1038/s41396-021-00941-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/01/2023]
Abstract
The classification of life forms into a hierarchical system (taxonomy) and the application of names to this hierarchy (nomenclature) is at a turning point in microbiology. The unprecedented availability of genome sequences means that a taxonomy can be built upon a comprehensive evolutionary framework, a longstanding goal of taxonomists. However, there is resistance to adopting a single framework to preserve taxonomic freedom, and ever increasing numbers of genomes derived from uncultured prokaryotes threaten to overwhelm current nomenclatural practices, which are based on characterised isolates. The challenge ahead then is to reach a consensus on the taxonomic framework and to adapt and scale the existing nomenclatural code, or create a new code, to systematically incorporate uncultured taxa into the chosen framework.
Collapse
Affiliation(s)
- Philip Hugenholtz
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Maria Chuvochina
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Aharon Oren
- grid.9619.70000 0004 1937 0538Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Edmond J. Safra campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Donovan H. Parks
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Rochelle M. Soo
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
34
|
Jensen MB, de Jonge N, Dolriis MD, Kragelund C, Fischer CH, Eskesen MR, Noer K, Møller HB, Ottosen LDM, Nielsen JL, Kofoed MVW. Cellulolytic and Xylanolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion. Front Microbiol 2021; 12:645174. [PMID: 34113323 PMCID: PMC8186499 DOI: 10.3389/fmicb.2021.645174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
The enzymatic hydrolysis of lignocellulosic polymers is generally considered the rate-limiting step to methane production in anaerobic digestion of lignocellulosic biomass. The present study aimed to investigate how the hydrolytic microbial communities of three different types of anaerobic digesters adapted to lignocellulose-rich wheat straw in continuous stirred tank reactors operated for 134 days. Cellulase and xylanase activities were monitored weekly using fluorescently-labeled model substrates and the enzymatic profiles were correlated with changes in microbial community compositions based on 16S rRNA gene amplicon sequencing to identify key species involved in lignocellulose degradation. The enzymatic activity profiles and microbial community changes revealed reactor-specific adaption of phylogenetically different hydrolytic communities. The enzymatic activities correlated significantly with changes in specific taxonomic groups, including representatives of Ruminiclostridium, Caldicoprobacter, Ruminofilibacter, Ruminococcaceae, Treponema, and Clostridia order MBA03, all of which have been linked to cellulolytic and xylanolytic activity in the literature. By identifying microorganisms with similar development as the cellulase and xylanase activities, the proposed correlation method constitutes a promising approach for deciphering essential cellulolytic and xylanolytic microbial groups for anaerobic digestion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Mads Borgbjerg Jensen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- NIRAS A/S, Aalborg, Denmark
| | - Maja Duus Dolriis
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | | | | | | | - Karoline Noer
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Henrik Bjarne Møller
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | | | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
35
|
González-Martínez A, Muñoz-Palazon B, Kruglova A, Vilpanen M, Kuokkanen A, Mikola A, Heinonen M. Performance and microbial community structure of a full-scale ANITA TMMox bioreactor for treating reject water located in Finland. CHEMOSPHERE 2021; 271:129526. [PMID: 33445025 DOI: 10.1016/j.chemosphere.2020.129526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The aim of this work was to study the operational performance and the microbial community dynamics during the start-up of ANITATMMox technology implemented at full-scale wastewater treatment plant in Finland to treat reject water from anaerobic digesters. The average ammonium removal in the studied setup reached around 90%, withstanding ammonium loads up to 0.13 g N m-2h-1. The nitrite concentration in the effluent did not exceed 10 mg L-1, and there was a slight accumulation of NO3--N during the operation which was controlled. Thus, the result showed a robust success to high ammonium loading in presence of organic matter. The sequencing showed a heterogeneous microbial population where Methanosaeta, WCHA1-57 genus, Sphingobacteriia, Chlorobia and diverse unknown fungi were found as dominant phylotypes. Moreover, members of the Brocadiaceae family were dominant in the adhered biomass, mostly represented by Candidatus Scalindua, rarely reported in WWTPs. Overall, the results demonstrated a drastic effect of region-specific operational conditions on carrier biofilm microbial communities as it was demonstrated by the microbial studies.
Collapse
Affiliation(s)
- A González-Martínez
- Department of Microbiology, Campus Universitario de la Cartuja C.P. 18071 University of Granada, Spain; Institute of Water Research, C.P. 18071 University of Granada, Spain
| | - B Muñoz-Palazon
- Department of Microbiology, Campus Universitario de la Cartuja C.P. 18071 University of Granada, Spain; Institute of Water Research, C.P. 18071 University of Granada, Spain.
| | - A Kruglova
- Aalto University, P.O. Box 15200, FI-00076 AALTO, Tietotie 1E, Espoo, Finland
| | - M Vilpanen
- Helsinki Region Environmental Services Authority, FI-00066 HSY, Helsinki, Finland
| | - A Kuokkanen
- Helsinki Region Environmental Services Authority, FI-00066 HSY, Helsinki, Finland
| | - A Mikola
- Aalto University, P.O. Box 15200, FI-00076 AALTO, Tietotie 1E, Espoo, Finland
| | - M Heinonen
- Helsinki Region Environmental Services Authority, FI-00066 HSY, Helsinki, Finland
| |
Collapse
|
36
|
Muñoz-Palazon B, Rosa-Masegosa A, Hurtado-Martinez M, Rodriguez-Sanchez A, Link A, Vilchez-Vargas R, Gonzalez-Martinez A, Lopez JG. Total and Metabolically Active Microbial Community of Aerobic Granular Sludge Systems Operated in Sequential Batch Reactors: Effect of Pharmaceutical Compounds. TOXICS 2021; 9:93. [PMID: 33922816 PMCID: PMC8146427 DOI: 10.3390/toxics9050093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
Two aerobic granular sludge (AGS) sequential batch reactors were operated at a mild (15 °C) temperature for 180 days. One of those bioreactors was exposed to a mixture of diclofenac, naproxen, trimethoprim, and carbamazepine. The AGS system, operating under pressure from emerging contaminants, showed a decrease in COD, BOD5, and TN removal capacity, mainly observed during the first 100 days, in comparison with the removal ratios detected in the control bioreactor. After an acclimatisation period, the removal reached high-quality effluent for COD and TN, close to 95% and 90%, respectively. In the steady-state period, trimethoprim and diclofenac were successfully removed with values around 50%, while carbamazepine and naproxen were more recalcitrant. The dominant bacterial OTUs were affected by the presence of a mixture of pharmaceutical compounds, under which the dominant phylotypes changed to OTUs classified among the Pseudomonas, Gemmobacter, and Comamonadaceae. The RT-qPCR and qPCR results showed the deep effects of pharmaceutical compounds on the number of copies of target genes. Statistical analyses allowed for linking the total and active microbial communities with the physico-chemical performance, describing the effects of pharmaceutical compounds in pollution degradation, as well as the successful adaptation of the system to treat wastewater in the presence of toxic compounds.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Aurora Rosa-Masegosa
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Miguel Hurtado-Martinez
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Alejandro Rodriguez-Sanchez
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907, USA;
| | - Alexander Link
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, 39120 Magdeburg, Germany; (A.L.); (R.V.-V.)
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, 39120 Magdeburg, Germany; (A.L.); (R.V.-V.)
| | - Alejandro Gonzalez-Martinez
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Jesus Gonzalez Lopez
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| |
Collapse
|
37
|
Priya AK, Pachaiappan R, Kumar PS, Jalil AA, Vo DVN, Rajendran S. The war using microbes: A sustainable approach for wastewater management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116598. [PMID: 33581625 DOI: 10.1016/j.envpol.2021.116598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/16/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic activities and population growth have resulted in a reduced availability of drinking water. To ensure consistency in the existence of drinking water, it is inevitable to establish wastewater treatment plants (WWTPs). 70% of India's rural population was found to be without WWTP, waste disposal, and good sanitation. Wastewater has emerged from kitchens, washrooms, etc., with industry activities. This scenario caused severe damage to water resources, leading to degradation of water quality and pathogenic insects. Thus, it is a need of an hour to prompt for better WWTPs for both rural and urban areas. Many parts of the world have started to face severe water shortages in recent years, and wastewater reuse methods need to be updated. Clean water supply is not enough to satisfy the needs of the planet as a whole, and the majority of freshwater in the polar regions takes the form of ice and snow. The increasing population requires clean water for drinks, hygiene, irrigation, and various other applications. Lack of water and contamination of water result from human activities. 90% of wastewater is released to water systems without treatment in developing countries. Studies show that about 730 megatons of waste are annually discharged into water from sewages and other effluents. The sustenance of water resources, applying wastewater treatment technologies, and calling down the percentage of potable water has to be strictly guided by mankind. This review compares the treatment of domestic sewage to its working conditions, energy efficiency, etc. In this review, several treatment methods with different mechanisms involved in waste treatment, industrial effluents, recovery/recycling were discussed. The feasibility of bioaugmentation should eventually be tested through data from field implementation as an important technological challenge, and this analysis identifies many promising areas to be explored in the future.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai, 600086, Tamilnadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| |
Collapse
|
38
|
Daisley BA, Reid G. BEExact: a Metataxonomic Database Tool for High-Resolution Inference of Bee-Associated Microbial Communities. mSystems 2021; 6:e00082-21. [PMID: 33824193 PMCID: PMC8546966 DOI: 10.1128/msystems.00082-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
High-throughput 16S rRNA gene sequencing technologies have robust potential to improve our understanding of bee (Hymenoptera: Apoidea)-associated microbial communities and their impact on hive health and disease. Despite recent computation algorithms now permitting exact inferencing of high-resolution exact amplicon sequence variants (ASVs), the taxonomic classification of these ASVs remains a challenge due to inadequate reference databases. To address this, we assemble a comprehensive data set of all publicly available bee-associated 16S rRNA gene sequences, systematically annotate poorly resolved identities via inclusion of 618 placeholder labels for uncultivated microbial dark matter, and correct for phylogenetic inconsistencies using a complementary set of distance-based and maximum likelihood correction strategies. To benchmark the resultant database (BEExact), we compare performance against all existing reference databases in silico using a variety of classifier algorithms to produce probabilistic confidence scores. We also validate realistic classification rates on an independent set of ∼234 million short-read sequences derived from 32 studies encompassing 50 different bee types (36 eusocial and 14 solitary). Species-level classification rates on short-read ASVs range from 80 to 90% using BEExact (with ∼20% due to "bxid" placeholder names), whereas only ∼30% at best can be resolved with current universal databases. A series of data-driven recommendations are developed for future studies. We conclude that BEExact (https://github.com/bdaisley/BEExact) enables accurate and standardized microbiota profiling across a broad range of bee species-two factors of key importance to reproducibility and meaningful knowledge exchange within the scientific community that together, can enhance the overall utility and ecological relevance of routine 16S rRNA gene-based sequencing endeavors.IMPORTANCE The failure of current universal taxonomic databases to support the rapidly expanding field of bee microbiota research has led to many investigators relying on "in-house" reference sets or manual classification of sequence reads (usually based on BLAST searches), often with vague identity thresholds and subjective taxonomy choices. This time-consuming, error- and bias-prone process lacks standardization, cripples the potential for comparative cross-study analysis, and in many cases is likely to incorrectly sway study conclusions. BEExact is structured on and leverages several complementary bioinformatic techniques to enable refined inference of bee host-associated microbial communities without any other methodological modifications necessary. It also bridges the gap between current practical outcomes (i.e., phylotype-to-genus level constraints with 97% operational taxonomic units [OTUs]) and the theoretical resolution (i.e., species-to-strain level classification with 100% ASVs) attainable in future microbiota investigations. Other niche habitats could also likely benefit from customized database curation via implementation of the novel approaches introduced in this study.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
- Department of Surgery, Schulich School of Medicine, London, Ontario, Canada
| |
Collapse
|
39
|
Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY, Andersen MH, Kondrotaite Z, Karst SM, Dueholm MS, Nielsen PH, Albertsen M. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat Commun 2021; 12:2009. [PMID: 33790294 PMCID: PMC8012365 DOI: 10.1038/s41467-021-22203-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Microorganisms play crucial roles in water recycling, pollution removal and resource recovery in the wastewater industry. The structure of these microbial communities is increasingly understood based on 16S rRNA amplicon sequencing data. However, such data cannot be linked to functional potential in the absence of high-quality metagenome-assembled genomes (MAGs) for nearly all species. Here, we use long-read and short-read sequencing to recover 1083 high-quality MAGs, including 57 closed circular genomes, from 23 Danish full-scale wastewater treatment plants. The MAGs account for ~30% of the community based on relative abundance, and meet the stringent MIMAG high-quality draft requirements including full-length rRNA genes. We use the information provided by these MAGs in combination with >13 years of 16S rRNA amplicon sequencing data, as well as Raman microspectroscopy and fluorescence in situ hybridisation, to uncover abundant undescribed lineages belonging to important functional groups.
Collapse
Affiliation(s)
- Caitlin M Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jannie M Kristensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Rasmus H Kirkegaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Y Michaelsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Martin H Andersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten S Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
40
|
Jiang C, McIlroy SJ, Qi R, Petriglieri F, Yashiro E, Kondrotaite Z, Nielsen PH. Identification of microorganisms responsible for foam formation in mesophilic anaerobic digesters treating surplus activated sludge. WATER RESEARCH 2021; 191:116779. [PMID: 33401166 DOI: 10.1016/j.watres.2020.116779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/06/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Foaming is a common operational problem in anaerobic digestion (AD) systems, where hydrophobic filamentous microorganisms are usually considered to be the major cause. However, little is known about the identity of foam-stabilising microorganisms in AD systems, and control measures are lacking. This study identified putative foam forming microorganisms in 13 full-scale mesophilic digesters located at 11 wastewater treatment plants in Denmark, using 16S rRNA gene amplicon sequencing with species-level resolution and fluorescence in situ hybridization (FISH) for visualization. A foaming potential aeration test was applied to classify the digester sludges according to their foaming propensity. A high foaming potential for sludges was linked to the abundance of species from the genus Candidatus Microthrix, immigrating with the feed stream (surplus activated sludge), but also to several novel phylotypes potentially growing in the digester. These species were classified to the genera Ca. Brevefilum (Ca. B. fermentans) and Tetrasphaera (midas_s_5), the families ST-12K33 (midas_s_22), and Rikenellaceae (midas_s_141), and the archaeal genus Methanospirillum (midas_s_2576). Application of FISH showed that these potential foam-forming organisms all had a filamentous morphology. Additionally, it was shown that concentrations of ammonium and total nitrogen correlated strongly to the presence of foam-formers. This study provided new insight into the identity of putative foam-forming microorganisms in mesophilic AD systems, allowing for the subsequent surveillance of their abundances and studies of their ecology. Such information will importantly inform the development of control measures for these problematic microorganisms.
Collapse
Affiliation(s)
- Chenjing Jiang
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, SOA, Hangzhou, 310012, China
| | - Simon Jon McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Rong Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China
| | - Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Erika Yashiro
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
41
|
Khan MD, Li D, Tabraiz S, Shamurad B, Scott K, Khan MZ, Yu EH. Integrated air cathode microbial fuel cell-aerobic bioreactor set-up for enhanced bioelectrodegradation of azo dye Acid Blue 29. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143752. [PMID: 33279191 DOI: 10.1016/j.scitotenv.2020.143752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/18/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
In this study, an azo dye (Acid Blue 29 or AB29) was efficiently degraded with acetate as co-substrate into less contaminated biodegraded products using an integrated single chamber microbial fuel cell (SMFC)-aerobic bioreactor set-up. The decolorization efficiencies were varied from 91 ± 2% to 94 ± 1.9% and more than 85% of chemical oxygen demand (COD) removal was achieved for all dye concentrations after different operating time. The highest coulombic efficiency (CE) and cell potential were 3.18 ± 0.45% and 287.2 mV, respectively, for SMFC treating 100 mg L-1 of AB29. Electrochemical impedance spectroscopy (EIS) revealed that the anode resistance was 0.3 Ω representing an entirely grown biofilm on the anode surface resulted in higher electron transfer rate. Gas chromatography coupled mass spectrometry (GC-MS) investigation demonstrated that initially biodegradation of AB29 started with the cleavage of the azo bond (-N=N-), resulted the biotransformation into aromatic amines. In successive aerobic treatment stage, these amines were biodegraded into lower molecular weight compounds. The 16S rRNA microbial community analysis indicated that at phylum level, both inoculum and dye acclimated cultures were mainly consisting of Proteobacteria which was 27.9, 53.6 and 68.9% in inoculum, suspension and anodic biofilm, respectively. At genus level, both suspension and biofilm contained decolorization as well as electrochemically active bacteria. The outcomes exhibited that the AB29 decolorization would contest with electrogenic bacteria for electrons.
Collapse
Affiliation(s)
- Mohammad Danish Khan
- Industrial Chemistry Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India; School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Da Li
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Shamas Tabraiz
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Burhan Shamurad
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Keith Scott
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Mohammad Zain Khan
- Industrial Chemistry Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Eileen Hao Yu
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
42
|
Logroño W, Popp D, Nikolausz M, Kluge P, Harms H, Kleinsteuber S. Microbial Communities in Flexible Biomethanation of Hydrogen Are Functionally Resilient Upon Starvation. Front Microbiol 2021; 12:619632. [PMID: 33643248 PMCID: PMC7904901 DOI: 10.3389/fmicb.2021.619632] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Ex situ biomethanation allows the conversion of hydrogen produced from surplus electricity to methane. The flexibility of the process was recently demonstrated, yet it is unknown how intermittent hydrogen feeding impacts the functionality of the microbial communities. We investigated the effect of starvation events on the hydrogen consumption and methane production rates (MPRs) of two different methanogenic communities that were fed with hydrogen and carbon dioxide. Both communities showed functional resilience in terms of hydrogen consumption and MPRs upon starvation periods of up to 14 days. The origin of the inoculum, community structure and dominant methanogens were decisive for high gas conversion rates. Thus, pre-screening a well performing inoculum is essential to ensure the efficiency of biomethanation systems operating under flexible gas feeding regimes. Our results suggest that the type of the predominant hydrogenotrophic methanogen (here: Methanobacterium) is important for an efficient process. We also show that flexible biomethanation of hydrogen and carbon dioxide with complex microbiota is possible while avoiding the accumulation of acetate, which is relevant for practical implementation. In our study, the inoculum from an upflow anaerobic sludge blanket reactor treating wastewater from paper industry performed better compared to the inoculum from a plug flow reactor treating cow manure and corn silage. Therefore, the implementation of the power-to-gas concept in wastewater treatment plants of the paper industry, where biocatalytic biomass is readily available, may be a viable option to reduce the carbon footprint of the paper industry.
Collapse
Affiliation(s)
- Washington Logroño
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Denny Popp
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Marcell Nikolausz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Paul Kluge
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
43
|
Song Y, Mhuantong W, Liu SY, Pisutpaisal N, Wongwilaiwalin S, Kanokratana P, Wang AJ, Jiang CY, Champreda V, Qiu DR, Liu SJ. Tropical and temperate wastewater treatment plants assemble different and diverse microbiomes. Appl Microbiol Biotechnol 2021; 105:853-867. [PMID: 33409607 DOI: 10.1007/s00253-020-11082-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/22/2020] [Accepted: 12/27/2020] [Indexed: 11/24/2022]
Abstract
The diversity and assembly of activated sludge microbiomes play a key role in the performances of municipal wastewater treatment plants (WWTPs), which are the most widely applied biotechnological process systems. In this study, we investigated the microbiomes of municipal WWTPs in Bangkok, Wuhan, and Beijing that respectively represent tropical, subtropical, and temperate climate regions, and also explored how microbiomes assembled in these municipal WWTPs. Our results showed that the microbiomes from these municipal WWTPs were significantly different. The assembly of microbiomes in municipal WWTPs followed deterministic and stochastic processes governed by geographical location, temperature, and nutrients. We found that both taxonomic and phylogenetic α-diversities of tropical Bangkok municipal WWTPs were the highest and were rich in yet-to-be-identified microbial taxa. Nitrospirae and β-Proteobacteria were more abundant in tropical municipal WWTPs, but did not result in better removal efficiencies of ammonium and total nitrogen. Overall, these results suggest that tropical and temperate municipal WWTPs harbored diverse and unique microbial resources, and the municipal WWTP microbiomes were assembled with different processes. Implications of these findings for designing and running tropical municipal WWTPs were discussed. KEY POINTS: • Six WWTPs of tropical Thailand and subtropical and temperate China were investigated. • Tropical Bangkok WWTPs had more diverse and yet-to-be-identified microbial taxa. • Microbiome assembly processes were associated with geographical location.
Collapse
Affiliation(s)
- Yang Song
- IMCAS-RCEES joint lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wuttichai Mhuantong
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Shuang-Yuan Liu
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Nipon Pisutpaisal
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Sarunyou Wongwilaiwalin
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Pattanop Kanokratana
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Ai-Jie Wang
- IMCAS-RCEES joint lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng-Ying Jiang
- IMCAS-RCEES joint lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Verawat Champreda
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Dong-Ru Qiu
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shuang-Jiang Liu
- IMCAS-RCEES joint lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
44
|
Abstract
Over the past decades, anaerobic biotechnology is commonly used for treating high-strength wastewaters from different industries. This biotechnology depends on interactions and co-operation between microorganisms in the anaerobic environment where many pollutants’ transformation to energy-rich biogas occurs. Properties of wastewater vary across industries and significantly affect microbiome composition in the anaerobic reactor. Methanogenic archaea play a crucial role during anaerobic wastewater treatment. The most abundant acetoclastic methanogens in the anaerobic reactors for industrial wastewater treatment are Methanosarcina sp. and Methanotrix sp. Hydrogenotrophic representatives of methanogens presented in the anaerobic reactors are characterized by a wide species diversity. Methanoculleus sp., Methanobacterium sp. and Methanospirillum sp. prevailed in this group. This work summarizes the relation of industrial wastewater composition and methanogen microbial communities present in different reactors treating these wastewaters.
Collapse
|
45
|
Adler A, Holliger C. Multistability and Reversibility of Aerobic Granular Sludge Microbial Communities Upon Changes From Simple to Complex Synthetic Wastewater and Back. Front Microbiol 2020; 11:574361. [PMID: 33324361 PMCID: PMC7726351 DOI: 10.3389/fmicb.2020.574361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/12/2020] [Indexed: 01/31/2023] Open
Abstract
Aerobic granular sludge (AGS) is a promising alternative wastewater treatment to the conventional activated sludge system allowing space and energy saving. Basic understanding of AGS has mainly been obtained using simple wastewater containing acetate and propionate as carbon source. Yet, the aspect and performances of AGS grown in such model systems are different from those obtained in reactor treating real wastewater. The impact of fermentable and hydrolyzable compounds on already formed AGS was assessed separately by changing the composition of the influent from simple wastewater containing volatile fatty acids to complex monomeric wastewater containing amino acids and glucose, and then to complex polymeric wastewater containing also starch and peptone. The reversibility of the observed changes was assessed by changing the composition of the wastewater from complex monomeric back to simple. The introduction of fermentable compounds in the influent left the settling properties and nutrient removal performance unchanged, but had a significant impact on the bacterial community. The proportion of Gammaproteobacteria diminished to the benefit of Actinobacteria and the Saccharibateria phylum. On the other hand, the introduction of polymeric compounds altered the settling properties and denitrification efficiency, but induced smaller changes in the bacterial community. The changes induced by the wastewater transition were only partly reversed. Seven distinct stables states of the bacterial community were detected during the 921 days of experiment, four of them observed with the complex monomeric wastewater. The transitions between these states were not only caused by wastewater changes but also by operation failures and other incidences. However, the nutrient removal performance and settling properties of the AGS were globally maintained due to the functional redundancy of its bacterial community.
Collapse
Affiliation(s)
- Aline Adler
- Laboratory for Environmental Biotechnology, School for Architecture, Civil and Environmental Engineering, Environmental Engineering Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
46
|
Ragab A, Shaw DR, Katuri KP, Saikaly PE. Effects of set cathode potentials on microbial electrosynthesis system performance and biocathode methanogen function at a metatranscriptional level. Sci Rep 2020; 10:19824. [PMID: 33188217 PMCID: PMC7666199 DOI: 10.1038/s41598-020-76229-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Microbial electrosynthesis exploits the catalytic activity of microorganisms to utilize a cathode as an electron donor for reducing waste CO2 to valuable fuels and chemicals. Electromethanogenesis is the process of CO2 reduction to CH4 catalyzed by methanogens using the cathode directly as a source of electrons or indirectly via H2. Understanding the effects of different set cathode potentials on the functional dynamics of electromethanogenic communities is crucial for the rational design of cathode materials. Replicate enriched electromethanogenic communities were subjected to different potentials (- 1.0 V and - 0.7 V vs. Ag/AgCl) and the potential-induced changes were analyzed using a metagenomic and metatranscriptomic approach. The most abundant and transcriptionally active organism on the biocathodes was a novel species of Methanobacterium sp. strain 34x. The cathode potential-induced changes limited electron donor availability and negatively affected the overall performance of the reactors in terms of CH4 production. Although high expression of key genes within the methane and carbon metabolism pathways was evident, there was no significant difference in transcriptional response to the different set potentials. The acetyl-CoA decarbonylase/synthase (ACDS) complex were the most highly expressed genes, highlighting the significance of carbon assimilation under limited electron donor conditions and its link to the methanogenesis pathway.
Collapse
Affiliation(s)
- Ala'a Ragab
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dario Rangel Shaw
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Krishna P Katuri
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
47
|
Białasek M, Miłobędzka A. Revealing antimicrobial resistance in stormwater with MinION. CHEMOSPHERE 2020; 258:127392. [PMID: 32947654 PMCID: PMC7297696 DOI: 10.1016/j.chemosphere.2020.127392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 05/17/2020] [Accepted: 06/10/2020] [Indexed: 05/14/2023]
Abstract
Discharge of urban stormwater containing organic matter, heavy metals and sometime human feces, to the natural aquatic reservoirs without any treatment is not only an environmental problem. It can lead to prevalence of antibiotic resistant bacteria in stormwater systems and transmission of antibiotic resistance genes to the environment. We performed antibiotic resistome identification and virus detection in stormwater samples from Stockholm, using publicly available metagenomic sequencing MinION data. A MinION platform offers low-cost, precise environmental metagenomics analysis. 37 groups of antibiotic resistant bacteria (ARB), 11 resistance types with 26 resistance mechanisms - antibiotic resistance genes (ARGs) giving tolerance to the aminoglycoside, beta-lactams, fosmidomycin, MLS, multidrug and vancomycin were identified using ARGpore pipeline. The majority of the identified bacteria species were related to the natural environment such as soil and were not dangerous to human. Alarmingly, human pathogenic bacteria carrying resistance to antibiotics currently used against them (Bordetella resistant to macrolides and multidrug resistant Propionibacterium avidum) were also found in the samples. Most abundant viruses identified belonged to Caudovirales and Herpesvirales and they were not carrying ARGs. Unlike the virome, resistome and ARB were not unique for stormwater sampling points. This results underline the need for extensive monitoring of the microbial community structure in the urban stormwater systems to assess antimicrobial resistance spread.
Collapse
Affiliation(s)
- Maciej Białasek
- Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland; Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Aleksandra Miłobędzka
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
48
|
The community compositions of three nitrogen removal wastewater treatment plants of different configurations in Victoria, Australia, over a 12-month operational period. Appl Microbiol Biotechnol 2020; 104:9839-9852. [DOI: 10.1007/s00253-020-10901-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/06/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022]
|
49
|
Dueholm MS, Andersen KS, McIlroy SJ, Kristensen JM, Yashiro E, Karst SM, Albertsen M, Nielsen PH. Generation of Comprehensive Ecosystem-Specific Reference Databases with Species-Level Resolution by High-Throughput Full-Length 16S rRNA Gene Sequencing and Automated Taxonomy Assignment (AutoTax). mBio 2020; 11:e01557-20. [PMID: 32963001 PMCID: PMC7512547 DOI: 10.1128/mbio.01557-20] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
High-throughput 16S rRNA gene amplicon sequencing is an essential method for studying the diversity and dynamics of microbial communities. However, this method is presently hampered by the lack of high-identity reference sequences for many environmental microbes in the public 16S rRNA gene reference databases and by the absence of a systematic and comprehensive taxonomy for the uncultured majority. Here, we demonstrate how high-throughput synthetic long-read sequencing can be applied to create ecosystem-specific full-length 16S rRNA gene amplicon sequence variant (FL-ASV) resolved reference databases that include high-identity references (>98.7% identity) for nearly all abundant bacteria (>0.01% relative abundance) using Danish wastewater treatment systems and anaerobic digesters as an example. In addition, we introduce a novel sequence identity-based approach for automated taxonomy assignment (AutoTax) that provides a complete seven-rank taxonomy for all reference sequences, using the SILVA taxonomy as a backbone, with stable placeholder names for unclassified taxa. The FL-ASVs are perfectly suited for the evaluation of taxonomic resolution and bias associated with primers commonly used for amplicon sequencing, allowing researchers to choose those that are ideal for their ecosystem. Reference databases processed with AutoTax greatly improves the classification of short-read 16S rRNA ASVs at the genus- and species-level, compared with the commonly used universal reference databases. Importantly, the placeholder names provide a way to explore the unclassified environmental taxa at different taxonomic ranks, which in combination with in situ analyses can be used to uncover their ecological roles.
Collapse
Affiliation(s)
- Morten Simonsen Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Kasper Skytte Andersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Simon Jon McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jannie Munk Kristensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Erika Yashiro
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Søren Michael Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
50
|
Prokaryotic diversity in stream sediments affected by acid mine drainage. Extremophiles 2020; 24:809-819. [PMID: 32888054 DOI: 10.1007/s00792-020-01196-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
The microbial communities in mining impacted areas rely on a variety of mechanisms to survive in such extreme environments. In this work, a meta-taxonomic approach using 16S rRNA gene sequences was used to investigate the prokaryotic diversity of sediment samples from water bodies affected by acid mine drainage at the São Domingos mining area in the south of Portugal. Samples were collected in summer and winter from the most contaminated sites from where the water flows downstream to the freshwater of Chança's river reservoir. The prokaryotic diversity on water bodies' sediments allowed us to distinguish the highly contaminated sites (pH ≈ 2) from sites with intermediate levels of contamination (pH ≈ 3-6.5), and from sites without contamination (pH ≈ 7.5). The abundances of acidophiles of genera Acidiphilium, Acidibacter, Acidobacterium and Acidocella in the sediments were correlated with the level of acid mine drainage contamination. The two first genera were among the 30 most abundant prokaryotes in all contaminated samples, including one (SS2w), where the contamination was very diluted, thereby emphasizing the impact that such type of pollution can have in the microbial communities of sediments. In addition, the high abundances of archaeal taxa from class Thermoplasmata and of bacteria from family RCP1-48 in the sediments from the most contaminated site corroborate their importance in such ecosystems and a putative role in the generation of acid mine drainage.
Collapse
|