1
|
Wongthong S, Taron W, Chanawong A, Tippayawat P, Pongdontri P, Srisrattakarn A, Panpru P, Lulitanond A. Effect of Vancomycin on Cellular Fatty Acid Profiles of Vancomycin-Susceptible and Nonsusceptible Staphylococcus aureus. Microb Drug Resist 2021; 28:267-273. [PMID: 34748415 DOI: 10.1089/mdr.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vancomycin is widely used for treatment of infection caused by methicillin-resistant Staphylococcus aureus (MRSA) leading to an increasing appearance of low-level vancomycin-resistant isolates called heterogeneous vancomycin-intermediate S. aureus (hVISA). The mechanism of vancomycin tolerance in hVISA is still unclear. This study aimed to investigate the fatty acid compositions of S. aureus isolates under the stress environment with vancomycin. The different responses of hVISA and vancomycin-susceptible S. aureus (VSSA) may lead to more understanding the mechanism. The bacterial lipid profiles were tested three times from three extractions of each isolate cultured on tryptic soy agar (TSA) and TSA with vancomycin. Of the 30 MRSA isolates studied, 13, 12, and 5 isolates were VSSA, hVISA, and VISA, respectively. The analysis of bacterial lipid profiles showed that under vancomycin stress, there was a reduction of straight chain fatty acids (SCFAs) in VSSA isolates but an increase in branched chain fatty acids (BCFAs). In contrast, the hVISA group exhibited an increase only in the BCFAs but not in SCFAs. Of interest, vancomycin had no effect on either BCFAs or SCFAs of the VISA cells. This study provided information of bacterial adaptation during stress with vancomycin that may be helpful to overcome the resistant bacteria.
Collapse
Affiliation(s)
- Sujintana Wongthong
- Department of Clinical Microbiology and Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Faculty of Medical Technology, Nakhon Ratchasima College, Nakhon Ratchasima, Thailand
| | - Wichit Taron
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Aroonwadee Chanawong
- Department of Clinical Microbiology and Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharaporn Tippayawat
- Department of Clinical Microbiology and Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Paweena Pongdontri
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Arpasiri Srisrattakarn
- Department of Clinical Microbiology and Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Pimchanok Panpru
- Department of Clinical Microbiology and Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Aroonlug Lulitanond
- Department of Clinical Microbiology and Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Su M, Davis MH, Peterson J, Solis-Lemus C, Satola SW, Read TD. Effect of genetic background on the evolution of Vancomycin-Intermediate Staphylococcus aureus (VISA). PeerJ 2021; 9:e11764. [PMID: 34306830 PMCID: PMC8284308 DOI: 10.7717/peerj.11764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
Vancomycin-intermediate Staphylococcus aureus (VISA) typically arises through accumulation of chromosomal mutations that alter cell-wall thickness and global regulatory pathways. Genome-based prediction of VISA requires understanding whether strain background influences patterns of mutation that lead to resistance. We used an iterative method to experimentally evolve three important methicillin-resistant S. aureus (MRSA) strain backgrounds-(CC1, CC5 and CC8 (USA300)) to generate a library of 120 laboratory selected VISA isolates. At the endpoint, isolates had vancomycin MICs ranging from 4 to 10 μg/mL. We detected mutations in more than 150 genes, but only six genes (already known to be associated with VISA from prior studies) were mutated in all three background strains (walK, prs, rpoB, rpoC, vraS, yvqF). We found evidence of interactions between loci (e.g., vraS and yvqF mutants were significantly negatively correlated) and rpoB, rpoC, vraS and yvqF were more frequently mutated in one of the backgrounds. Increasing vancomycin resistance was correlated with lower maximal growth rates (a proxy for fitness) regardless of background. However, CC5 VISA isolates had higher MICs with fewer rounds of selection and had lower fitness costs than the CC8 VISA isolates. Using multivariable regression, we found that genes differed in their contribution to overall MIC depending on the background. Overall, these results demonstrated that VISA evolved through mutations in a similar set of loci in all backgrounds, but the effect of mutation in common genes differed with regard to fitness and contribution to resistance in different strains.
Collapse
Affiliation(s)
- Michelle Su
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michelle H Davis
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jessica Peterson
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Claudia Solis-Lemus
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah W Satola
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA.,Department of Dermatology, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Bryant AE, Gomi S, Katahira E, Huang DB, Stevens DL. The effects of iclaprim on exotoxin production in methicillin-resistant and vancomycin-intermediate Staphylococcus aureus. J Med Microbiol 2019; 68:456-466. [PMID: 30676310 DOI: 10.1099/jmm.0.000929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Extracellular protein toxins contribute to the pathogenesis of Staphylococcus aureus infections. The present study compared the effects of iclaprim and trimethoprim - two folic acid synthesis inhibitors - with nafcillin and vancomycin on production of Panton-Valentine leukocidin (PVL), alpha haemolysin (AH) and toxic-shock syndrome toxin I (TSST-1) in methicillin-resistant and vancomycin-intermediate S. aureus (MRSA and VISA, respectively). METHODOLOGY Northern blotting and RT-PCR were used to assess gene transcription; toxin-specific bioassays were used to measure protein toxin production. RESULTS As shown previously, sub-inhibitory concentrations (sub-MIC) of nafcillin increased and prolonged MRSA toxin gene transcription and enhanced PVL, TSST-1 and AH production. Sub-inhibitory doses of iclaprim and trimethoprim delayed maximal AH gene (hla) transcription and suppressed AH production; both drugs delayed, but neither reduced, maximal TSST-1 production. Trimethoprim significantly increased lukF-PV expression and PVL production compared to both untreated and iclaprim-treated cultures. Higher concentrations of iclaprim and trimethoprim markedly suppressed MRSA growth, mRNA synthesis and toxin production. In VISA, iclaprim, vancomycin and nafcillin variably increased tst and hla expression, but only nafcillin increased toxin production. Despite its ability to increase hla expression, iclaprim was the most potent inhibitor of AH production. CONCLUSIONS We conclude that, due to its ability to suppress toxin production, iclaprim should be effective against severe staphylococcal infections caused by toxin-producing MRSA and VISA strains, especially given its ability to concentrate at sites of infection such as skin and skin structures and the lung.
Collapse
Affiliation(s)
- Amy E Bryant
- 1 University of Washington School of Medicine, Seattle, WA, USA
| | - Sumiko Gomi
- 2 Veterans Affairs Medical Center, Boise, ID, USA
| | - Eva Katahira
- 2 Veterans Affairs Medical Center, Boise, ID, USA
| | | | - Dennis L Stevens
- 1 University of Washington School of Medicine, Seattle, WA, USA
- 2 Veterans Affairs Medical Center, Boise, ID, USA
| |
Collapse
|
4
|
Szymanek-Majchrzak K, Mlynarczyk A, Mlynarczyk G. Characteristics of glycopeptide-resistant Staphylococcus aureus strains isolated from inpatients of three teaching hospitals in Warsaw, Poland. Antimicrob Resist Infect Control 2018; 7:105. [PMID: 30181870 PMCID: PMC6114487 DOI: 10.1186/s13756-018-0397-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/21/2018] [Indexed: 01/27/2023] Open
Abstract
Background Vancomycin is still one of the most commonly used drug for treatment of severe methicillin-resistant Staphylococcus aureus (MRSA) infections. Vancomycin-resistant S. aureus (VRSA) strains are a serious danger for public health. This study aimed to characterize healthcare-associated MRSA (HA-MRSA) strains, resistant to at least one of glycopeptide antibiotics: vancomycin (VRSA) and/or teicoplanin (TRSA), isolated at three Warsaw hospitals over a period of 17-years (1991–2007). Methods Among 600 HA-MRSA strains, isolated from patients with symptomatic infections, 47 were subjected to detailed analysis. In the study, mechanisms behind VRSA phenotypes were determined (E-tests, GRD-test, agar-dilution method and vanA/B detection). Characteristics of selected isolates on molecular level: i) by detection of resistance genes ermA/ermB/ermC, msrA/msrB, linA/linA’, aacA-aphD, aadD, aph(3”)-IIIa; ii) SCCmec-typing and iii) MLST-typing was done. Results In general population of studied strains, 11/47 (23.4%) were VRSA and 36/47 (76.6%) were resistant only to teicoplanin. All isolates exhibited van-independent mechanisms of resistance. Over 80% of isolates belonged to clonal complex CC8, with the following predominant sequence types (STs)/clones: ST247-IA/Iberian, ST241-III/Finland-UK, and ST239-III/Brazilian. Most of the isolated strains harboured ermA and aacA-aphD genes, encoding additional resistance to macrolides, lincosamides, streptogramin B, and majority of aminoglycosides. They occurred also in Polish VRSA/TRSA population over the period, which was subjected for analysis: an increase in MIC values for glycopeptides, evolution in terms of the level and extent of resistance, and genetic re-assortment in epidemic clones. Conclusions VRSA strains isolated from patients hospitalized at three Warsaw teaching hospitals in Poland, over a period of 17-years do not pose a threat as potential donors of van genes in horizontal-gene transfer processes, but are constantly evolving and represent international epidemic clones.
Collapse
Affiliation(s)
- Ksenia Szymanek-Majchrzak
- 1Department of Medical Microbiology, Medical University of Warsaw, T. Chalubinskiego 5 Str, 02-004 Warsaw, Poland
| | - Andrzej Mlynarczyk
- Department of Medical Microbiology, The Infant Jesus Teaching Hospital, Lindleya 4 Str, 02-005 Warsaw, Poland
| | - Grazyna Mlynarczyk
- 1Department of Medical Microbiology, Medical University of Warsaw, T. Chalubinskiego 5 Str, 02-004 Warsaw, Poland
| |
Collapse
|
5
|
Prasad UV, Vasu D, Gowtham RR, Pradeep CK, Swarupa V, Yeswanth S, Choudhary A, Sarma PVGK. Cloning, Expression and Characterization of NAD Kinase from Staphylococcus aureus Involved in the Formation of NADP (H): A Key Molecule in the Maintaining of Redox Status and Biofilm Formation. Adv Biomed Res 2017; 6:97. [PMID: 28828348 PMCID: PMC5549544 DOI: 10.4103/2277-9175.211833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Staphylococcus aureus has the ability to form biofilms on any niches, a key pathogenic factor of this organism and this phenomenon is directly related to the concentration of NADPH. The formation of NADP is catalyzed by NAD kinase (NADK) and this gene of S. aureus ATCC 12600 was cloned, sequenced, expressed and characterized. MATERIALS AND METHODS The NADK gene was polymerase chain reaction amplified from the chromosomal DNA of S. aureus ATCC 12600 and cloned in pQE 30 vector, sequenced and expressed in Escherichia coli DH5α. The pure protein was obtained by passing through nickel metal chelate agarose column. The enzyme kinetics of the enzyme and biofilm assay of the S. aureus was carried out in both aerobic and anaerobic conditions. The kinetics was further confirmed by the ability of the substrates to dock to the NADK structure. RESULTS The recombinant NADK exhibited single band with a molecular weight of 31kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the gene sequence (GenBank: JN645814) revealed presence of only one kind of NADK in all S. aureus strains. The enzyme exhibited very high affinity for NAD compared to adenosine triphosphate concurring with the docking results. A root-mean-square deviation value 14.039Å observed when NADK structure was superimposed with its human counterpart suggesting very low homology. In anaerobic conditions, higher biofilm units were found with decreased NADK activity. CONCLUSION The results of this study suggest increased NADPH concentration in S. aureus plays a vital role in the biofilm formation and survival of this pathogen in any environmental conditions.
Collapse
Affiliation(s)
- U Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - D Vasu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - R Rishi Gowtham
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Ch Krishna Pradeep
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - V Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - S Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Abhijit Choudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| |
Collapse
|
6
|
Swarupa V, Chaudhury A, Krishna Sarma PVG. Effect of 4-methoxy 1-methyl 2-oxopyridine 3-carbamide on Staphylococcus aureus by inhibiting UDP-MurNAc-pentapeptide, peptidyl deformylase and uridine monophosphate kinase. J Appl Microbiol 2017; 122:663-675. [PMID: 27987382 DOI: 10.1111/jam.13378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 02/01/2023]
Abstract
AIMS The present study aimed to investigate the anti-Staphylococcus aureus and anti-biofilm properties of 4-methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC) on S. aureus UDP-MurNAc-pentapeptide (MurF), peptidyl deformylase (PDF) and uridine monophosphate kinase (UMPK). METHODS AND RESULTS The in vitro efficacy of MMOXC was evaluated using quantitative polymerase chain reaction, in vitro assays and broth microdilution methods. Further, the minimum inhibitory concentration (MIC), IC50 and zone of inhibition were recorded in addition to the anti-biofilm property. MMOXC inhibited pure recombinant UMPK and PDF enzymes with a Ki of 0·37 and 0·49 μmol l-1 . However Ki was altered for MurF with varying substrates. The MurF Ki for UMT, d-Ala-d-Ala and ATP as substrates was 0·3, 0·25 and 1·4 μmol l-1 , respectively. Real-time PCR analysis showed a significant reduction in PDF and MurF expression which correlated with the MIC90 at 100 μmol l-1 and IC50 in the range 42 ± 1·5 to 50 ± 1 μmol l-1 against all strains tested. At 5 μmol l-1 MMOXC was able completely to remove preformed biofilms of S. aureus and other drug resistant strains. CONCLUSIONS MMOXC was able to kill S. aureus and drug resistant strains tested by inhibiting MurF, UMPK and PDF enzymes and completely obliterated preformed biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY Growth reduction and biofilm removal are prerequisites for controlling S. aureus infections. In this study MMOXC exhibited prominent anti-S. aureus and anti-biofilm properties by blocking cell wall formation, RNA biosynthesis and protein maturation.
Collapse
Affiliation(s)
- V Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - A Chaudhury
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - P V G Krishna Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| |
Collapse
|
7
|
Complete Reconstitution of the Vancomycin-Intermediate Staphylococcus aureus Phenotype of Strain Mu50 in Vancomycin-Susceptible S. aureus. Antimicrob Agents Chemother 2016; 60:3730-42. [PMID: 27067329 PMCID: PMC4879404 DOI: 10.1128/aac.00420-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/01/2016] [Indexed: 12/23/2022] Open
Abstract
Complete reconstitution of the vancomycin-intermediate Staphylococcus aureus (VISA) phenotype of strain Mu50 was achieved by sequentially introducing mutations into six genes of vancomycin-susceptible S. aureus (VSSA) strain N315ΔIP. The six mutated genes were detected in VISA strain Mu50 but not in N315ΔIP. Introduction of the mutation Ser329Leu into vraS, encoding the sensor histidine kinase of the vraSR two-component regulatory (TCR) system, and another mutation, Glu146Lys, into msrR, belonging to the LytR-CpsA-Psr (LCP) family, increased the level of vancomycin resistance to that detected in heterogeneous vancomycin-intermediate S. aureus (hVISA) strain Mu3. Introduction of two more mutations, Asn197Ser into graR of the graSR TCR system and His481Tyr into rpoB, encoding the β subunit of RNA polymerase, converted the hVISA strain into a VISA strain with the same level of vancomycin resistance as Mu50. Surprisingly, however, the constructed quadruple mutant strain ΔIP4 did not have a thickened cell wall, a cardinal feature of the VISA phenotype. Subsequent study showed that cell wall thickening was an inducible phenotype in the mutant strain, whereas it was a constitutive one in Mu50. Finally, introduction of the Ala297Val mutation into fdh2, which encodes a putative formate dehydrogenase, or a 67-amino-acid sequence deletion into sle1 [sle1(Δ67aa)], encoding the hydrolase of N-acetylmuramyl-l-alanine amidase in the peptidoglycan, converted inducible cell wall thickening into constitutive cell wall thickening. sle1(Δ67aa) was found to cause a drastic decrease in autolysis activity. Thus, all six mutated genes required for acquisition of the VISA phenotype were directly or indirectly involved in the regulation of cell physiology. The VISA phenotype seemed to be achieved through multiple genetic events accompanying drastic changes in cell physiology.
Collapse
|
8
|
Vasu D, Sunitha MM, Srikanth L, Swarupa V, Prasad UV, Sireesha K, Yeswanth S, Kumar PS, Venkatesh K, Chaudhary A, Sarma PVGK. In Staphylococcus aureus the regulation of pyruvate kinase activity by serine/threonine protein kinase favors biofilm formation. 3 Biotech 2015; 5:505-512. [PMID: 28324552 PMCID: PMC4522715 DOI: 10.1007/s13205-014-0248-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus, a natural
inhabitant of nasopharyngeal tract, survives mainly as biofilms. Previously we have observed that S. aureus ATCC 12600 grown under anaerobic conditions exhibited high rate of biofilm formation and l-lactate dehydrogenase activity. Thus, the concentration of pyruvate plays a critical role in S. aureus, which is primarily catalyzed by pyruvate kinase (PK). Analyses of the PK gene sequence (JN645815) revealed presence of PknB site in PK gene indicating that phosphorylation may be influencing the functioning of PK. To establish this hypothesis the pure enzymes of S. aureus ATCC 12600 were obtained by expressing these genes in PK 1 and PV 1 (JN695616) clones and passing the cytosolic fractions through nickel metal chelate column. The molecular weights of pure recombinant PK and PknB are 63 and 73 kDa, respectively. The enzyme kinetics of pure PK showed KM of 0.69 ± 0.02 µM, while the KM of PknB for stpks (stpks = NLCNIPCSALLSSDITASVNCAK) substrate was 0.720 ± 0.08 mM and 0.380 ± 0.07 mM for autophosphorylation. The phosphorylated PK exhibited 40 % reduced activity (PK = 0.2 ± 0.015 μM NADH/min/ml to P-PK = 0.12 ± 0.01 μM NADH/min/ml). Elevated synthesis of pyruvate kinase was observed in S. aureus ATCC 12600 grown in anaerobic conditions suggesting that the formed pyruvate is more utilized in the synthesis phase, supporting increased rate of biofilm formation.
Collapse
Affiliation(s)
- D Vasu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - M M Sunitha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - L Srikanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - V Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - U Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - K Sireesha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - S Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - P Santhosh Kumar
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - K Venkatesh
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - Abhijit Chaudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India.
| |
Collapse
|
9
|
Kumar A, Ting YP. Presence ofPseudomonas aeruginosainfluences biofilm formation and surface protein expression ofStaphylococcus aureus. Environ Microbiol 2015; 17:4459-68. [DOI: 10.1111/1462-2920.12890] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 04/23/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Singapore
| | - Yen Peng Ting
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Singapore
| |
Collapse
|
10
|
Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island. Sci Rep 2015; 5:9784. [PMID: 25891795 PMCID: PMC4402969 DOI: 10.1038/srep09784] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/19/2015] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a major pathogen of humans and animals. The capacity of S. aureus to adapt to different host species and tissue types is strongly influenced by the acquisition of mobile genetic elements encoding determinants involved in niche adaptation. The genomic islands νSaα and νSaβ are found in almost all S. aureus strains and are characterized by extensive variation in virulence gene content. However the basis for the diversity and the mechanism underlying mobilization of the genomic islands between strains are unexplained. Here, we demonstrated that the genomic island, νSaβ, encoding an array of virulence factors including staphylococcal superantigens, proteases, and leukotoxins, in addition to bacteriocins, was transferrable in vitro to human and animal strains of multiple S. aureus clones via a resident prophage. The transfer of the νSaβ appears to have been accomplished by multiple conversions of transducing phage particles carrying overlapping segments of the νSaβ. Our findings solve a long-standing mystery regarding the diversification and spread of the genomic island νSaβ, highlighting the central role of bacteriophages in the pathogenic evolution of S. aureus.
Collapse
|
11
|
Venkateswara Prasad U, Vasu D, Yeswanth S, Swarupa V, Sunitha MM, Choudhary A, Sarma PVGK. Phosphorylation controls the functioning ofStaphylococcus aureusisocitrate dehydrogenase – favours biofilm formation. J Enzyme Inhib Med Chem 2015; 30:655-61. [DOI: 10.3109/14756366.2014.959945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Sim M, Kim J. Metagenome assembly through clustering of next-generation sequencing data using protein sequences. J Microbiol Methods 2015; 109:180-7. [PMID: 25572018 DOI: 10.1016/j.mimet.2015.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/03/2015] [Accepted: 01/03/2015] [Indexed: 11/16/2022]
Abstract
The study of environmental microbial communities, called metagenomics, has gained a lot of attention because of the recent advances in next-generation sequencing (NGS) technologies. Microbes play a critical role in changing their environments, and the mode of their effect can be solved by investigating metagenomes. However, the difficulty of metagenomes, such as the combination of multiple microbes and different species abundance, makes metagenome assembly tasks more challenging. In this paper, we developed a new metagenome assembly method by utilizing protein sequences, in addition to the NGS read sequences. Our method (i) builds read clusters by using mapping information against available protein sequences, and (ii) creates contig sequences by finding consensus sequences through probabilistic choices from the read clusters. By using simulated NGS read sequences from real microbial genome sequences, we evaluated our method in comparison with four existing assembly programs. We found that our method could generate relatively long and accurate metagenome assemblies, indicating that the idea of using protein sequences, as a guide for the assembly, is promising.
Collapse
Affiliation(s)
- Mikang Sim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jaebum Kim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
13
|
Berscheid A, François P, Strittmatter A, Gottschalk G, Schrenzel J, Sass P, Bierbaum G. Generation of a vancomycin-intermediate Staphylococcus aureus (VISA) strain by two amino acid exchanges in VraS. J Antimicrob Chemother 2014; 69:3190-8. [PMID: 25103491 DOI: 10.1093/jac/dku297] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Staphylococcus aureus is a notorious bacterial pathogen and antibiotic-resistant isolates complicate current treatment strategies. We characterized S. aureus VC40, a laboratory mutant that shows full resistance to glycopeptides (vancomycin and teicoplanin MICs ≥32 mg/L) and daptomycin (MIC = 4 mg/L), to gain deeper insights into the underlying resistance mechanisms. METHODS Genomics and transcriptomics were performed to characterize changes that might contribute to development of resistance. The mutations in vraS were reconstituted into a closely related parental background. In addition, antimicrobial susceptibility testing, growth analyses, transmission electron microscopy, lysostaphin-induced lysis and autolysis assays were performed to characterize the phenotype of resistant strains. RESULTS Genome sequencing of strain VC40 revealed 79 mutations in 75 gene loci including genes encoding the histidine kinases VraS and WalK that control cell envelope-related processes. Transcriptomics indicated the increased expression of their respective regulons. Although not reaching the measured MIC for VC40, reconstitution of the L114S and D242G exchanges in VraS(VC40) into the susceptible parental background (S. aureus NCTC 8325) resulted in increased resistance to glycopeptides and daptomycin. The expression of VraS(VC40) led to increased transcription of the cell wall stress stimulon, a thickened cell wall, a decreased growth rate, reduced autolytic activity and increased resistance to lysostaphin-induced lysis in the generated mutant. CONCLUSIONS We show that a double mutation of a single gene locus, namely vraS, is sufficient to convert the vancomycin-susceptible strain S. aureus NCTC 8325 into a vancomycin-intermediate S. aureus.
Collapse
Affiliation(s)
- Anne Berscheid
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University of Bonn, Bonn, Germany
| | - Patrice François
- Genomic Research Laboratory, Infectious Diseases Service, Geneva University Hospitals and the University of Geneva, Geneva, Switzerland
| | - Axel Strittmatter
- Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Gerhard Gottschalk
- Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jacques Schrenzel
- Genomic Research Laboratory, Infectious Diseases Service, Geneva University Hospitals and the University of Geneva, Geneva, Switzerland
| | - Peter Sass
- Institute for Pharmaceutical Biology, University of Düsseldorf, Düsseldorf, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
|
15
|
Osmundson J, Dewell S, Darst SA. RNA-Seq reveals differential gene expression in Staphylococcus aureus with single-nucleotide resolution. PLoS One 2013; 8:e76572. [PMID: 24116120 PMCID: PMC3792026 DOI: 10.1371/journal.pone.0076572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/27/2013] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a gram-positive cocci and an important human commensal bacteria and pathogen. S. aureus infections are increasingly difficult to treat because of the emergence of highly resistant MRSA (methicillin-resistant S. aureus) strains. Here we present a method to study differential gene expression in S. aureus using high-throughput RNA-sequencing (RNA-seq). We used RNA-seq to examine gene expression in S. aureus RN4220 cells containing an exogenously expressed transcription factor and between two S. aureus strains (RN4220 and NCTC8325-4). We investigated the sequence and gene expression differences between RN4220 and NCTC8325-4 and used the RNA-seq data to identify S. aureus promoters suitable for in vitro analysis. We used RNA-seq to describe, on a genome wide scale, genes positively and negatively regulated by the phage encoded transcription factor gp67. RNA-seq offers the ability to study differential gene expression with single-nucleotide resolution, and is a considerable improvement over the predominant genome-wide transcriptome technologies used in S. aureus.
Collapse
Affiliation(s)
- Joseph Osmundson
- Laboratory of Molecular Biophysics, the Rockefeller University, New York, New York, United States of America
- * E-mail:
| | - Scott Dewell
- Genomics Resource Center, the Rockefeller University, New York, New York, United States of America
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, the Rockefeller University, New York, New York, United States of America
| |
Collapse
|
16
|
Decreased vancomycin susceptibility in Staphylococcus aureus caused by IS256 tempering of WalKR expression. Antimicrob Agents Chemother 2013; 57:3240-9. [PMID: 23629723 DOI: 10.1128/aac.00279-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vancomycin-intermediate Staphylococcus aureus (VISA) strains often arise by mutations in the essential two-component regulator walKR; however their impact on walKR function has not been definitively established. Here, we investigated 10 MRSA strains recovered serially after exposure of vancomycin-susceptible S. aureus (VSSA) JKD6009 to simulated human vancomycin dosing regimens (500 mg to 4,000 mg every 12 h) using a 10-day hollow fiber infection model. After continued exposure to the vancomycin regimens, two isolates displayed reduced susceptibility to both vancomycin and daptomycin, developing independent IS256 insertions in the walKR 5' untranslated region (5' UTR). Quantitative reverse transcription-PCR (RT-PCR) revealed a 50% reduction in walKR gene expression in the IS256 mutants compared to the VSSA parent. Green fluorescent protein (GFP) reporter analysis, promoter mapping, and site-directed mutagenesis confirmed these findings and showed that the IS256 insertions had replaced two SigA-like walKR promoters with weaker, hybrid promoters. Removal of IS256 reverted the phenotype to VSSA, showing that reduced expression of WalKR did induce the VISA phenotype. Analysis of selected WalKR-regulated autolysins revealed upregulation of ssaA but no change in expression of sak and sceD in both IS256 mutants. Whole-genome sequencing of the two mutants revealed an additional IS256 insertion within agrC for one mutant, and we confirmed that this mutation abolished agr function. These data provide the first substantial analysis of walKR promoter function and show that prolonged vancomycin exposure can result in VISA through an IS256-mediated reduction in walKR expression; however, the mechanisms by which this occurs remain to be determined.
Collapse
|
17
|
Lakshmi HP, Prasad UV, Yeswanth S, Swarupa V, Prasad OH, Narasu ML, Sarma PVGK. Molecular characterization of α-amylase from Staphylococcus aureus. Bioinformation 2013; 9:281-5. [PMID: 23559746 PMCID: PMC3607186 DOI: 10.6026/97320630009281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is one of the prominent Gram positive human pathogen secretes many surface and secretary proteins including various enzymes and pathogenic factors that favour the successful colonization and infection of host tissue. α-amylase is one of the enzymes secreted by S. aureus which catalyses the breakdown of complex sugars to monosaccharides, which are required for colonization and survival of this pathogen in any anatomical locales. In the present study we have cloned, sequenced, expressed and characterized α-amylase gene from S. aureus ATCC12600. The recombinant enzyme has a molecular weight of 58kDa and the kinetics showed Vmax 0.0208±0.033 (mg/ml)/mg/min and Km 10.633±0.737mg/ml. The multiple sequence analysis showed α- amylase of S. aureus exhibited large differences with Bacillus subtilis and Streptococcus bovis. As the crystal structure of S. aureus α- amylase was unavailable, we used homology modelling method to build the structure. The built structure was validated by Ramachandran plot which showed 90% of the residues in the allowed region while no residue was found in the disallowed region and the built structure was close to the crystal structure with Z-Score: -6.85. The structural superimposition studies with α- amylases of Bacillus subtilis and Streptococcus bovis showed distinct differences with RMSD values of 18.158Åand 7.091Å respectively which correlated with enzyme kinetics, indicating α-amylase is different among these bacteria.
Collapse
Affiliation(s)
| | - Uppu Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati-517 507, AP, India
| | - Sthanikam Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati-517 507, AP, India
| | - Vimjam Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati-517 507, AP, India
| | - Osuru Hari Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati-517 507, AP, India
| | | | | |
Collapse
|
18
|
Lakshmi HP, Yeswanth S, Prasad UV, Vasu D, Swarupa V, Kumar PS, Narasu ML, Krishna Sarma PVG. Cloning, expression and characterization of glucokinase gene involved in the glucose-6- phosphate formation in Staphylococcus aureus. Bioinformation 2013; 9:169-73. [PMID: 23519063 PMCID: PMC3602885 DOI: 10.6026/97320630009169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 11/23/2022] Open
Abstract
Glucose-6-phosphate (G-6-P) formation in Staphylococcus aureus is catalysed by glucokinase (glkA) gene under high glucose
concentration leading to upregulation of various pathogenic factors; therefore the present study is aimed in the cloning and
characterization of glk A gene from S. aureus ATCC12600. The glk A gene was cloned in the Sma I site of pQE 30, sequenced
(Accession number: JN645812) and expressed in E. coli DH5α. The recombinant glk A expressed from the resultant glk A 1 clone
was purified using nickel metal chelate chromatography, the pure enzyme gave single band in SDS-PAGE with molecular weight
of 33kDa. The rglk A showed very high affinity to glucose Km 5.1±0.06mM with Hill coefficient of 1.66±0.032mM. Analysis of
glucokinase sequence of S. aureus showed presence of typical ATP binding site and ROK motif CNCGRSGCIE. Sequentially and
phylogenetically S. aureus glk A exhibited low identity with other bacterial glk A and 21% homology with human glucokinase
(GCK). Functionally, S. aureus glk A showed higher rate of G-6-P formation compared to human GCK which may have profound
role in the pathogenesis.
Collapse
|
19
|
Prasad UV, Vasu D, Kumar YN, Kumar PS, Yeswanth S, Swarupa V, Phaneendra BV, Chaudhary A, Sarma PVGK. Cloning, expression and characterization of NADP-dependent isocitrate dehydrogenase from Staphylococcus aureus. Appl Biochem Biotechnol 2013; 169:862-9. [PMID: 23288593 DOI: 10.1007/s12010-012-0027-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/10/2012] [Indexed: 12/01/2022]
Abstract
The Krebs cycle dictates oxidative and reductive conditions in Staphylococcus aureus and is mainly regulated by isocitrate dehydrogenase (IDH) which plays pivotal role in the growth and pathogenesis of the bacteria. In the present study, IDH gene from S. aureus ATCC12600 was cloned in the Sma I site of pQE 30 vector; the resultant clone was named as UVIDH1. The insert in the clone was sequenced (accession number HM067707), and the sequence showed complete homology with IDH sequence of other S. aureus strains reported in the database indicating presence of single enzyme in S. aureus, and considerable sequence homology with other bacteria was observed; however, only 24% homology was found with NADP-dependent human IDH. Phylogenetically, the S. aureus IDH showed close identity with Bacillus subtilis and high degree of variability with other bacteria and human IDH. The expression of IDH in the clone UVIDH1 was induced with 1 mM IPTG, and the recombinant IDH was purified by passing through nickel metal chelate column; the purified recombinant IDH showed a single band in SDS-PAGE with a molecular weight of 40 kDa; K(m) and V(max) for isocitrate are 8.2 ± 0.28 and 525 ± 25 μM NADPH/mg/min, respectively, and for cofactor NADP 67.5 ± 2.82 μM and V(max) 50.5 ± 2.12 μM NADPH/mg/min.
Collapse
Affiliation(s)
- U Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, India
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
A mutation in the PP2C phosphatase gene in a Staphylococcus aureus USA300 clinical isolate with reduced susceptibility to vancomycin and daptomycin. Antimicrob Agents Chemother 2012; 56:5212-23. [PMID: 22850507 DOI: 10.1128/aac.05770-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains with reduced susceptibility to vancomycin (MIC of 4 to 8 μg/ml) are referred to as vancomycin-intermediate S. aureus (VISA). In this study, we characterized two isogenic USA300 S. aureus isolates collected sequentially from a single patient with endocarditis where the S. aureus isolate changed from being susceptible to vancomycin (VSSA) (1 μg/ml) to VISA (8 μg/ml). In addition, the VISA isolate lost beta-lactamase activity and showed increased resistance to daptomycin and linezolid. The two strains did not differ in growth rate, but the VISA isolate had a thickened cell wall and was less autolytic. Transcriptome sequencing (RNA-seq) analysis comparing the two isolates grown to late exponential phase showed significant differences in transcription of cell surface protein genes (spa, SBI [second immunoglobulin-binding protein of S. aureus], and fibrinogen-binding proteins), regulatory genes (agrBCA, RNAIII, sarT, and saeRS), and others. Using whole-genome shotgun resequencing, we identified 6 insertion/deletion mutations between the VSSA and VISA isolates. A protein phosphatase 2C (PP2C) family phosphatase had a 6-bp (nonframeshift) insertion mutation in a highly conserved metal binding domain. Complementation of the clinical VISA isolate with a wild-type copy of the PP2C gene reduced the vancomycin and daptomycin MICs and increased autolytic activity, suggesting that this gene contributed to the reduced vancomycin susceptibility phenotype acquired in vivo. Creation of de novo mutants from the VSSA strain resulted in different mutations, demonstrating that reduced susceptibility to vancomycin in USA300 strains can occur via multiple routes, highlighting the complex nature of the VISA phenotype.
Collapse
|
21
|
Mirani ZA, Jamil N. Effect of vancomycin on the cytoplasmic membrane fatty acid profile of vancomycin-resistant and -susceptible isolates of Staphylococcus aureus. J Infect Chemother 2012; 19:24-33. [PMID: 22821354 DOI: 10.1007/s10156-012-0447-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/13/2012] [Indexed: 11/26/2022]
Abstract
This study was designed to analyze the effect of vancomycin on the cytoplasmic membrane fatty acid (FA) composition of vancomycin-resistant Staphylococcus aureus (VRSA), vancomycin-intermediate resistant S. aureus (VISA), and vancomycin-susceptible S. aureus. One low-level vancomycin-resistant isolate (LLR-VRSA) termed CP2, along with two vancomycin intermediate-resistant S. aureus isolates (VISA-CP1) and Mu50 (ATCC #700699), were studied. The LLR-VRSA isolate CP2, recovered from the blood sample of a postoperative cardiac patient, exhibited vanA type vancomycin resistance [minimum inhibitory concentration (MIC) 16 μg/ml], and the vanA cassette was located on a plasmid. CP1, isolated from the pus sample of the same patient, exhibited vancomycin intermediate resistance (MIC 8 μg/ml) in the absence of the vanA, vanB, or vanC gene. As susceptible controls, we used PSA (vancomycin MIC 2 μg/ml), which was isolated from the pus sample of a neonate, and S. aureus (ATCC# 29213). Membrane FA analysis was carried out using gas chromatography coupled with mass spectrometry. For this purpose, CP1, CP2, Mu50, and the susceptible control isolates were grown in the presence and absence of vancomycin. Comparative analysis showed an increase in the relative proportion of unsaturated FAs during growth under vancomycin stress. The isolate CP2 (LLR-VRSA) exhibited a higher MIC to vancomycin than the other isolates used in present study (16 μg/ml) and under vancomycin stress conditions, quantitatively, it showed a high rate of conversion of saturated to unsaturated membrane FAs than CP1, Mu50 (VISA isolate) and the susceptible control PSA. The rate of saturated-to-unsaturated FA conversion increased as the concentration of vancomycin in the growth media was increased. Therefore, it is concluded that S. aureus tend to modify their membrane lipid chemistry from saturated to unsaturated in order to survive in a vancomycin stress environment.
Collapse
Affiliation(s)
- Zulfiqar Ali Mirani
- Microbiological Analytical Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex Karachi, Karachi, 75280, Pakistan.
| | | |
Collapse
|
22
|
Hari Prasad O, Nanda Kumar Y, Reddy OVS, Chaudhary A, Sarma PVGK. Cloning, Expression, Purification and Characterization of UMP Kinase from Staphylococcus aureus. Protein J 2012; 31:345-52. [DOI: 10.1007/s10930-012-9410-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Gardete S, Kim C, Hartmann BM, Mwangi M, Roux CM, Dunman PM, Chambers HF, Tomasz A. Genetic pathway in acquisition and loss of vancomycin resistance in a methicillin resistant Staphylococcus aureus (MRSA) strain of clonal type USA300. PLoS Pathog 2012; 8:e1002505. [PMID: 22319446 PMCID: PMC3271070 DOI: 10.1371/journal.ppat.1002505] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 12/12/2011] [Indexed: 12/01/2022] Open
Abstract
An isolate of the methicillin-resistant Staphylococcus aureus (MRSA) clone USA300 with reduced susceptibility to vancomycin (SG-R) (i.e, vancomycin-intermediate S. aureus, VISA) and its susceptible “parental” strain (SG-S) were recovered from a patient at the end and at the beginning of an unsuccessful vancomycin therapy. The VISA phenotype was unstable in vitro generating a susceptible revertant strain (SG-rev). The availability of these 3 isogenic strains allowed us to explore genetic correlates of antibiotic resistance as it emerged in vivo. Compared to the susceptible isolate, both the VISA and revertant strains carried the same point mutations in yycH, vraG, yvqF and lspA genes and a substantial deletion within an intergenic region. The revertant strain carried a single additional frameshift mutation in vraS which is part of two component regulatory system VraSR. VISA isolate SG-R showed complex alterations in phenotype: decreased susceptibility to other antibiotics, slow autolysis, abnormal cell division and increased thickness of cell wall. There was also altered expression of 239 genes including down-regulation of major virulence determinants. All phenotypic properties and gene expression profile returned to parental levels in the revertant strain. Introduction of wild type yvqF on a multicopy plasmid into the VISA strain caused loss of resistance along with loss of all the associated phenotypic changes. Introduction of the wild type vraSR into the revertant strain caused recovery of VISA type resistance. The yvqF/vraSR operon seems to function as an on/off switch: mutation in yvqF in strain SG-R turns on the vraSR system, which leads to increase in vancomycin resistance and down-regulation of virulence determinants. Mutation in vraS in the revertant strain turns off this regulatory system accompanied by loss of resistance and normal expression of virulence genes. Down-regulation of virulence genes may provide VISA strains with a “stealth” strategy to evade detection by the host immune system. The extensive use of antibiotics has led to the selection of methicillin-resistant S. aureus (MRSA) strains that are resistant to most antimicrobial agents and a treatment of choice against such strains is vancomycin. However, during the last decade reports of treatment failure with vancomycin non-susceptible MRSA (e.g., vancomycin intermediate S. aureus, VISA) began to appear in the clinical setting. In this paper we analyze the mechanism of resistance in a VISA strain that belongs to the epidemic and highly virulent MRSA clone USA300. We had 3 isogenic isolates available for analysis: the vancomycin susceptible parental strain recovered from the patient before the onset of therapy; the VISA strain recovered at the time of clinical treatment failure and a susceptible revertant of the VISA strain acquired during in vitro passage. We identified genetic differences among the three strains through whole genome sequencing. In this strain, the key genetic change responsible for vancomycin resistance was in the functionally connected yvqF/vraSR - two component sensory regulatory system involved with the control of cell wall metabolism of the bacteria. The same genetic change also caused repression of virulence related properties which may help the resistant bacteria to evade the host immune system.
Collapse
Affiliation(s)
- Susana Gardete
- Laboratory of Microbiology, The Rockefeller University, New York, New York, United States of America
- Molecular Genetics Laboratory, Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, Oeiras, Portugal
| | - Choonkeun Kim
- Laboratory of Microbiology, The Rockefeller University, New York, New York, United States of America
| | - Boris M. Hartmann
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Michael Mwangi
- Laboratory of Microbiology, The Rockefeller University, New York, New York, United States of America
| | - Christelle M. Roux
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Paul M. Dunman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Henry F. Chambers
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Alexander Tomasz
- Laboratory of Microbiology, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Staphylococcus aureus fibronectin-binding protein specifically binds IgE from patients with atopic dermatitis and requires antigen presentation for cellular immune responses. J Allergy Clin Immunol 2011; 128:82-91.e8. [DOI: 10.1016/j.jaci.2011.02.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 02/15/2011] [Accepted: 02/23/2011] [Indexed: 11/19/2022]
|
25
|
walK and clpP mutations confer reduced vancomycin susceptibility in Staphylococcus aureus. Antimicrob Agents Chemother 2011; 55:3870-81. [PMID: 21628539 DOI: 10.1128/aac.01563-10] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vancomycin-intermediate Staphylococcus aureus (VISA) is generated from vancomycin-susceptible Staphylococcus aureus by multiple spontaneous mutations. We previously reported that sequential acquisition of mutations in the two-component regulatory systems vraSR and graRS was responsible for the VISA phenotype of strain Mu50. Here we report on the identification of a novel set of regulator mutations, a deletion mutation in two-component regulatory system walRK (synonyms, vicRK and yycFG), and a truncating mutation in a proteolytic regulatory gene, clpP, responsible for the raised vancomycin resistance in a laboratory-derived VISA strain, LR5P1-V3. The contributory effect of the two mutations to vancomycin resistance was confirmed by introducing the walK and clpP mutations into the vancomycin-susceptible parent strain N315LR5P1 by a gene replacement procedure. The vancomycin MIC of N315LR5P1 was raised from 1 to 2 mg/liter by the introduction of the walK or clpP mutation, but it was raised to 4 mg/liter by the introduction of both the walK and clpP mutations. The vancomycin MIC value of the double mutant was equivalent to that of strain LR5P1-V3. Like VISA clinical strains, LR5P1-V3 and the double mutant strain LR5P1walK*clpP* exhibited a thickened cell wall, slow growth, and decreased autolytic activity. Transcriptional profiles of the mutants with gene replacements demonstrated that introduction of both the walK and clpP mutations could alter expression of dozens or hundreds of genes, including those involved in cell envelope and cellular processes, intermediary metabolism, and information pathway. A mutation prevalence study performed on 39 worldwide clinical VISA strains showed that 61.5, 7.7, 10.3, and 20.5% of VISA strains harbored mutations in walRK, clpP, graRS, and vraSR, respectively. The mutation of walRK was most frequently carried by VISA strains. Together, these results suggested that the mutations of walK and clpP identified in LR5P1-V3 constitute a new combination of genetic events causing vancomycin resistance in Staphylococcus aureus.
Collapse
|
26
|
Fischer A, Yang SJ, Bayer AS, Vaezzadeh AR, Herzig S, Stenz L, Girard M, Sakoulas G, Scherl A, Yeaman MR, Proctor RA, Schrenzel J, François P. Daptomycin resistance mechanisms in clinically derived Staphylococcus aureus strains assessed by a combined transcriptomics and proteomics approach. J Antimicrob Chemother 2011; 66:1696-711. [PMID: 21622973 DOI: 10.1093/jac/dkr195] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES The development of daptomycin resistance in Staphylococcus aureus is associated with clinical treatment failures. The mechanism(s) of such resistance have not been clearly defined. METHODS We studied an isogenic daptomycin-susceptible (DAP(S)) and daptomycin-resistant (DAP(R)) S. aureus strain pair (616; 701) from a patient with relapsing endocarditis during daptomycin treatment, using comparative transcriptomic and proteomic techniques. RESULTS Minor differences in the genome content were found between strains by DNA hybridization. Transcriptomic analyses identified a number of genes differentially expressed in important functional categories: cell division; metabolism of bacterial envelopes; and global regulation. Of note, the DAP(R) isolate exhibited reduced expression of the major cell wall autolysis gene coincident with the up-regulation of genes involved in cell wall teichoic acid production. Using quantitative (q)RT-PCR on the gene cadre putatively involved in cationic peptide resistance, we formulated a putative regulatory network compatible with microarray data sets, mainly implicating bacterial envelopes. Of interest, qRT-PCR of this same gene cadre from two distinct isogenic DAP(S)/DAP(R) clinical strain pairs revealed evidence of other strain-dependent networks operative in the DAP(R) phenotype. Comparative proteomics of 616 versus 701 revealed a differential abundance of proteins in various functional categories, including cell wall-associated targets and biofilm formation proteins. Phenotypically, strains 616 and 701 showed major differences in their ability to develop bacterial biofilms in the presence of the antibacterial lipid, oleic acid. CONCLUSIONS Compatible with previous in vitro observations, in vivo-acquired DAP(R) in S. aureus is a complex, multistep phenomenon involving: (i) strain-dependent phenotypes; (ii) transcriptome adaptation; and (iii) modification of the lipid and protein contents of cellular envelopes.
Collapse
Affiliation(s)
- Adrien Fischer
- Genomic Research Laboratory, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yu G. Gnom(Cmp): a quantitative approach for comparative analysis of closely related genomes of bacterial pathogens. Genome 2011; 54:402-18. [PMID: 21539441 DOI: 10.1139/g11-005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative genome analysis is a powerful approach to understanding the biology of infectious bacterial pathogens. In this study, a quantitative approach, referred to as Gnom(Cmp), was developed to study the microevolution of bacterial pathogens. Although much more time-consuming than existing tools, this procedure provides a much higher resolution. Gnom(Cmp) accomplishes this by establishing genome-wide heterogeneity genotypes, which are then quantified and comparatively analyzed. The heterogeneity genotypes are defined as chromosomal base positions that have multiple variants within particular genomes, resulted from DNA duplications and subsequent mutations. To prove the concept, the procedure was applied on the genomes of 15 Staphylococcus aureus strains, focusing extensively on two pairs of hVISA/VISA strains. hVISA refers to heteroresistant vancomycin-intermediate S. aureus strains and VISA is their VISA mutants. hVISA/VISA displays some remarkable properties. hVISA is susceptible to vancomycin, but VISA mutants emerge soon after a short period of vancomycin therapy, therefore making the pathogen a great model organism for fast-evolving bacterial pathogens. The analysis indicated that Gnom(Cmp) could reveal variants within the genomes, which can be analyzed within the global genome context. Gnom(Cmp) discovered evolutionary hotspots and their dynamics among many closely related, even isogenic genomes. The analysis thus allows the exploration of the molecular mechanisms behind hVISA/VISA evolution, providing a working hypotheses for experimental testing and validation.
Collapse
Affiliation(s)
- GongXin Yu
- Department of Biological Science, Department of Computer Science, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
28
|
Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 2010; 23:99-139. [PMID: 20065327 DOI: 10.1128/cmr.00042-09] [Citation(s) in RCA: 664] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The emergence of vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) over the past decade has provided a challenge to diagnostic microbiologists to detect these strains, clinicians treating patients with infections due to these strains, and researchers attempting to understand the resistance mechanisms. Recent data show that these strains have been detected globally and in many cases are associated with glycopeptide treatment failure; however, more rigorous clinical studies are required to clearly define the contribution of hVISA to glycopeptide treatment outcomes. It is now becoming clear that sequential point mutations in key global regulatory genes contribute to the hVISA and VISA phenotypes, which are associated predominately with cell wall thickening and restricted vancomycin access to its site of activity in the division septum; however, the phenotypic features of these strains can vary because the mutations leading to resistance can vary. Interestingly, changes in the staphylococcal surface and expression of agr are likely to impact host-pathogen interactions in hVISA and VISA infections. Given the subtleties of vancomycin susceptibility testing against S. aureus, it is imperative that diagnostic laboratories use well-standardized methods and have a framework for detecting reduced vancomycin susceptibility in S. aureus.
Collapse
|
29
|
White EJ, Fridrikh SV, Chennagiri N, Cameron DB, Gauvin GP, Gilmanshin R. Staphylococcus aureus Strain Typing by Single-Molecule DNA Mapping in Fluidic Microchips with Fluorescent Tags. Clin Chem 2009; 55:2121-9. [DOI: 10.1373/clinchem.2009.128967] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Epidemiologic studies require identification or typing of microbial strains. Macrorestriction DNA mapping analyzed by pulsed-field gel electrophoresis (PFGE) is considered the current gold standard of genomic typing. This technique, however, is difficult to implement because it is labor-intensive and difficult to automate, it requires a long time to obtain results, and results often vary between laboratories.
Methods: We used direct linear analysis (DLA), which uses a single reagent set and long fragments of microbial genomic DNA to identify various microbes. In this technique, an automated system extracts fragments exceeding 100 kb from restriction enzyme digests of genomic DNA from microbial isolates and hybridizes them with a sequence-dependent fluorescent tag. These fragments are then stretched in a microfluidics chip, and the patterns of the distribution of the tags are discerned with fluorescence confocal microscopy. The tag pattern on each DNA fragment is compared with a database of known microbial DNA sequences or with measured patterns of other microbial DNAs.
Results: We used DLA to type 71 Staphylococcus aureus strains. Of these, 9 had been sequenced, 10 were representative of the major pulsed-field types present in the US, and 52 were isolated recently in a hospital in Cambridge, MA. Matching DNA fragments were identified in different samples by a clustering algorithm and were used to quantify the similarities of the strains.
Conclusions: DLA-based strain typing is a powerful technique with a resolution comparable to macrorestriction mapping with PFGE, but DLA is faster, more automated, and more reproducible.
Collapse
Affiliation(s)
| | | | | | | | - Gregory P Gauvin
- Department of Pathology, Mount Auburn Hospital, Cambridge, MA
- Department of Pathology, Tufts University School of Medicine, Boston, MA
| | | |
Collapse
|
30
|
Parvez MAK, Shibata H, Nakano T, Niimi S, Fujii N, Arakaki N, Higuti T. No relationship exists between PBP 2a amounts expressed in different MRSA strains obtained clinically and their beta-lactam MIC values. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 55:246-53. [PMID: 18797139 DOI: 10.2152/jmi.55.246] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
After establishing a linear relationship between the amount of penicillin-binding protein (PBP) 2a and membrane proteins of methicillin-resistant Staphylococcus aureus (MRSA) COL by dot-blot analysis using an antibody against PBP 2a, we determined the PBP 2a quantities in membrane fractions prepared from 14 different MRSA cells. Methicillin-sensitive S. aureus ATCC 6538P was used as a quality control strain. The amounts of PBP 2a diverged among the strains, and no relationship to beta-lactam MIC values were observed in the corresponding strains.
Collapse
Affiliation(s)
- Md Anowar Khasru Parvez
- Department of Molecular Cell Biology and Medicine, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Ben Zakour NL, Guinane CM, Fitzgerald JR. Pathogenomics of the staphylococci: insights into niche adaptation and the emergence of new virulent strains. FEMS Microbiol Lett 2009; 289:1-12. [PMID: 19054087 DOI: 10.1111/j.1574-6968.2008.01384.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Because of its importance as a major human and animal pathogen, Staphylococcus aureus has been the focus of intensive research efforts. At the time of writing, the genomes of 14 isolates of S. aureus have been published and released into the public domain with many more genome sequencing projects underway, representing an excellent resource for studies of bacterial evolution and pathogenesis. Recently, whole genome sequences of several other species of the Staphylococcus genus have been completed allowing a comparative genomic analysis of the adaptation of different species to their natural habitats. Here, we summarize selected comparative genomic studies that have contributed to our understanding of how staphylococci adapt to different environments, combat antibiotics and acquire increased virulence.
Collapse
Affiliation(s)
- Nouri L Ben Zakour
- Laboratory for Bacterial Evolution and Pathogenesis, The Roslin Institute and Centre for Infectious Diseases, New Royal Infirmary, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
32
|
Tsuru T, Kobayashi I. Multiple genome comparison within a bacterial species reveals a unit of evolution spanning two adjacent genes in a tandem paralog cluster. Mol Biol Evol 2008; 25:2457-73. [PMID: 18765438 PMCID: PMC2568036 DOI: 10.1093/molbev/msn192] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been assumed that an open reading frame (ORF) represents a unit of gene evolution as well as a unit of gene expression and function. In the present work, we report a case in which a unit comprising the 3' region of an ORF linked to a downstream intergenic region that is in turn linked to the 5' region of a downstream ORF has been conserved, and has served as the unit of gene evolution. The genes are tandem paralogous genes from the bacterium Staphylococcus aureus, for which more than ten entire genomes have been sequenced. We compared these multiple genome sequences at a locus for the lpl (lipoprotein-like) cluster (encoding lipoprotein homologs presumably related to their host interaction) in the genomic island termed nuSaalpha. A highly conserved nucleotide sequence found within every lpl ORF is likely to provide a site for homologous recombination. Comparison of phylogenies of the 5'-variable region and the 3'-variable region within the same ORF revealed significant incongruence. In contrast, pairs of the 3'-variable region of an ORF and the 5'-variable region of the next downstream ORF gave more congruent phylogenies, with distinct groups of conserved pairs. The intergenic region seemed to have coevolved with the flanking variable regions. Multiple recombination events at the central conserved region appear to have caused various types of rearrangements among strains, shuffling the two variable regions in one ORF, but maintaining a conserved unit comprising the 3'-variable region, the intergenic region, and the 5'-variable region spanning adjacent ORFs. This result has strong impact on our understanding of gene evolution because most gene lineages underwent tandem duplication and then diversified. This work also illustrates the use of multiple genome sequences for high-resolution evolutionary analysis within the same species.
Collapse
Affiliation(s)
- Takeshi Tsuru
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
33
|
Ko KS, Lee JY, Baek JY, Peck KR, Rhee JY, Kwon KT, Heo ST, Ahn KM, Song JH. Characterization of Staphylococcus aureus nasal carriage from children attending an outpatient clinic in Seoul, Korea. Microb Drug Resist 2008; 14:37-44. [PMID: 18346010 DOI: 10.1089/mdr.2008.0776] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nasal swabs were collected to isolate S. aureus in 296 children, who visited the pediatrics department with a variety of symptoms. Staphylococcus aureus was isolated from 95 children (32.1%). Of the isolates, 18 were methicillin-resistant S. aureus (MRSA) (18.9%). Antimicrobial susceptibility testing was performed for all S. aureus cultured and the molecular characteristics were investigated. Forty-nine spa types were identified among the S. aureus isolates, and were classified into 13 spa groups (A-L). The most prevalent clone (34 isolates, 35.8%) belonged to the spa group B (spa repeat motif, WG/FKAOMQ), which corresponded to sequence type 30 (ST30) and its variants. Sixteen different spa types, within the spa group B, suggested that this group has evolved over a long period of time. In addition, all S. aureus isolates belonging to the spa group B were methicillin-susceptible, indicating that this group might represent successful adaptation of this clone in the community setting with low antibiotic pressure. The most frequently found clone in the MRSA group was spa group C (spa repeat motif, DMGGM) and SCCmec type IVA, which represented half of the MRSA isolates and corresponded to ST72. ST5-MRSA-II, the most prevalent MRSA clone in Korean hospitals, was found in only two isolates. These findings suggest that strains of S. aureus nasal carriage in Korean children visiting an outpatient pediatric department were different from the strains identified in hospital infections.
Collapse
Affiliation(s)
- Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kato Y, Suzuki T, Ida T, Maebashi K, Sakurai M, Shiotani J, Hayashi I. Microbiological and clinical study of methicillin-resistant Staphylococcus aureus (MRSA) carrying VraS mutation: changes in susceptibility to glycopeptides and clinical significance. Int J Antimicrob Agents 2008; 31:64-70. [DOI: 10.1016/j.ijantimicag.2007.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 08/15/2007] [Accepted: 08/15/2007] [Indexed: 11/27/2022]
|
35
|
Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, Bruce D, Rubin E, Myers E, Siggia ED, Tomasz A. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A 2007; 104:9451-6. [PMID: 17517606 PMCID: PMC1890515 DOI: 10.1073/pnas.0609839104] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Indexed: 02/07/2023] Open
Abstract
The spread of multidrug-resistant Staphylococcus aureus (MRSA) strains in the clinical environment has begun to pose serious limits to treatment options. Yet virtually nothing is known about how resistance traits are acquired in vivo. Here, we apply the power of whole-genome sequencing to identify steps in the evolution of multidrug resistance in isogenic S. aureus isolates recovered periodically from the bloodstream of a patient undergoing chemotherapy with vancomycin and other antibiotics. After extensive therapy, the bacterium developed resistance, and treatment failed. Sequencing the first vancomycin susceptible isolate and the last vancomycin nonsusceptible isolate identified genome wide only 35 point mutations in 31 loci. These mutations appeared in a sequential order in isolates that were recovered at intermittent times during chemotherapy in parallel with increasing levels of resistance. The vancomycin nonsusceptible isolates also showed a 100-fold decrease in susceptibility to daptomycin, although this antibiotic was not used in the therapy. One of the mutated loci associated with decreasing vancomycin susceptibility (the vraR operon) was found to also carry mutations in six additional vancomycin nonsusceptible S. aureus isolates belonging to different genetic backgrounds and recovered from different geographic sites. As costs drop, whole-genome sequencing will become a useful tool in elucidating complex pathways of in vivo evolution in bacterial pathogens.
Collapse
Affiliation(s)
- Michael M. Mwangi
- *Physics Department, Cornell University, Ithaca, NY 14850
- Center for Studies in Physics and Biology and
| | - Shang Wei Wu
- Laboratory of Microbiology, The Rockefeller University, New York, NY 10021
- Department of Microbiology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yanjiao Zhou
- Laboratory of Microbiology, The Rockefeller University, New York, NY 10021
- Department of Microbiology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | | | - Herminia de Lencastre
- Laboratory of Microbiology, The Rockefeller University, New York, NY 10021
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paul Richardson
- United States Department of Energy Joint Genomic Institute, Walnut Creek, CA 94598; and
| | - David Bruce
- United States Department of Energy Joint Genomic Institute, Walnut Creek, CA 94598; and
| | - Edward Rubin
- United States Department of Energy Joint Genomic Institute, Walnut Creek, CA 94598; and
| | - Eugene Myers
- **Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20146
| | - Eric D. Siggia
- *Physics Department, Cornell University, Ithaca, NY 14850
- Center for Studies in Physics and Biology and
| | - Alexander Tomasz
- Laboratory of Microbiology, The Rockefeller University, New York, NY 10021
| |
Collapse
|
36
|
Francois P, Hernandez D, Schrenzel J. Genome content determination in methicillin-resistant Staphylococcus aureus. Future Microbiol 2007; 2:187-98. [PMID: 17661655 DOI: 10.2217/17460913.2.2.187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus aureus is a major pathogen responsible for both nosocomial and community-acquired infections. While the first S. aureus isolates displaying resistance to methicillin were reported in the early 1960s, endemic strains of methicillin-resistant S. aureus (MRSA) carrying multiple resistance determinants only became a worldwide nosocomial problem in the early 1980s, carrying a threefold attributable cost and a threefold excess length of hospital stay when compared with methicillin-susceptible S. aureus bacteremia. Recent efforts in the field of high-throughput sequencing resulted in the release of several MRSA genome sequences enabling the development of massively parallel tools to study clinical isolates of MRSA at the organism scale. Microarrays covering whole genomes and high-throughput sequencing devices are the two main techniques currently utilizable for whole-genome characterization. These tools not only provide information for the development of genotyping assays but also allow evaluation of potential virulence of the strains, by enumerating genetic-encoded resistance markers and toxin content. This appears particularly attractive for understanding the epidemiology of MRSA and the relationship between genome content on one side and virulence potential or epidemicity on the other side. In addition, sequence information is mandatory for the development of molecular tests allowing the rapid identification, genotyping and characterization of clinical isolates.
Collapse
Affiliation(s)
- Patrice Francois
- Service of Infectious Diseases, Genomic Research Laboratory, Department of Internal Medicine, Geneva 14, Switzerland.
| | | | | |
Collapse
|
37
|
Inose Y, Takeshita SL, Hidaka T, Higashide M, Maruyama A, Hayashi H, Morikawa K, Ohta T. Genetic characterization of the natural SigB variants found in clinical isolates of Staphylococcus aureus. J GEN APPL MICROBIOL 2007; 52:259-71. [PMID: 17310069 DOI: 10.2323/jgam.52.259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The SigB concentrations in clinical isolates of Staphylococcus aureus were measured to examine their correlation with the antibiotic resistance. The SigB concentrations in methicillin-resistant S. aureus (MRSA) were higher than in the control strain, N315, and many of methicillin-susceptible S. aureus (MSSA). Sequencing analyses of the sigB genes revealed that the strains exhibiting the high SigB concentrations have three amino acid substitutions in SigB: I11V, D141N, and Q256K. Further analysis using isogenic mutants demonstrated that D141N (or both D141N and Q256K) is essential to maintain the high SigB concentration. These substitutions affected the UV tolerance, but had no effect on the antibiotic resistance. The SigB activity was affected by these substitutions toward the stationary phase, but not during the transient heat shock response.
Collapse
Affiliation(s)
- Yumiko Inose
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Takeuchi F, Baba T, Hiramatsu K. Comparative analysis of MRSA. Methods Mol Biol 2007; 391:153-168. [PMID: 18025676 DOI: 10.1007/978-1-59745-468-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This chapter explains computer techniques for comparing genes, proteins, or genomes of methicillin-resistant Staphylococcus aureus (MRSA). In the principle methodology for comparative genomics, first researchers obtain the data of DNA sequences and phenotypes for various strains of interest, and from those they infer what difference/similarity in sequences results in what difference/similarity in phenotypes. Usually, the obtained hypothesis provides guidance for the succeeding biological experiments, such as producing knockout strains or conducting transcriptome or proteome analysis, which examine the hypothesis. Even for physicians and experimental researchers, these computer-aided researches would be needed in order to understand the physiological characteristics and pathogenic abilities of the MRSA that they deal with in this "genome era." This chapter involves no experiments and is confined to computer analysis. We explain methods for extracting the difference/similarity between sequences of nucleotide, amino acid, or even the whole genomes of bacteria. We also introduce how to compare the pathways between strains that possess different sets of genes.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Infection Control Science, Juntendo University, Tokyo, Japan
| | | | | |
Collapse
|
39
|
Exploring glycopeptide-resistance in Staphylococcus aureus: a combined proteomics and transcriptomics approach for the identification of resistance-related markers. BMC Genomics 2006; 7:296. [PMID: 17121677 PMCID: PMC1687195 DOI: 10.1186/1471-2164-7-296] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 11/22/2006] [Indexed: 11/26/2022] Open
Abstract
Background To unravel molecular targets involved in glycopeptide resistance, three isogenic strains of Staphylococcus aureus with different susceptibility levels to vancomycin or teicoplanin were subjected to whole-genome microarray-based transcription and quantitative proteomic profiling. Quantitative proteomics performed on membrane extracts showed exquisite inter-experimental reproducibility permitting the identification and relative quantification of >30% of the predicted S. aureus proteome. Results In the absence of antibiotic selection pressure, comparison of stable resistant and susceptible strains revealed 94 differentially expressed genes and 178 proteins. As expected, only partial correlation was obtained between transcriptomic and proteomic results during stationary-phase. Application of massively parallel methods identified one third of the complete proteome, a majority of which was only predicted based on genome sequencing, but never identified to date. Several over-expressed genes represent previously reported targets, while series of genes and proteins possibly involved in the glycopeptide resistance mechanism were discovered here, including regulators, global regulator attenuator, hyper-mutability factor or hypothetical proteins. Gene expression of these markers was confirmed in a collection of genetically unrelated strains showing altered susceptibility to glycopeptides. Conclusion Our proteome and transcriptome analyses have been performed during stationary-phase of growth on isogenic strains showing susceptibility or intermediate level of resistance against glycopeptides. Altered susceptibility had emerged spontaneously after infection with a sensitive parental strain, thus not selected in vitro. This combined analysis allows the identification of hundreds of proteins considered, so far as hypothetical protein. In addition, this study provides not only a global picture of transcription and expression adaptations during a complex antibiotic resistance mechanism but also unravels potential drug targets or markers that are constitutively expressed by resistant strains regardless of their genetic background, amenable to be used as diagnostic targets.
Collapse
|
40
|
Cui L, Lian JQ, Neoh HM, Reyes E, Hiramatsu K. DNA microarray-based identification of genes associated with glycopeptide resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2005; 49:3404-13. [PMID: 16048954 PMCID: PMC1196288 DOI: 10.1128/aac.49.8.3404-3413.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six pairs of transcription profiles between glycopeptide-intermediate S. aureus (GISA [or vancomycin-intermediate S. aureus; VISA]) and glycopeptide-susceptible S. aureus (vancomycin-susceptible S. aureus [VSSA], including glycopeptide-susceptible isogenic mutants from VISA) strains were compared using a microarray. Ninety-two open reading frames which were or tended to be increased in transcription in VISA in at least five out of six array combination pairs were evaluated for their effects on glycopeptide susceptibility by introducing these genes one by one into VSSA strain N315 to construct an overexpression library. By screening the library, 17 genes including 8 novel genes were identified as associated with glycopeptide resistance since their experimental overexpression reduced vancomycin and/or teicoplanin susceptibility of N315. The raised MICs of vancomycin and teicoplanin were 1.25 to 3.0 and 1.5 to 6.0 mg/liter, respectively, as compared to 1.0 mg/liter of N315. Three of these genes, namely graF, msrA2, and mgrA, also raised the oxacillin MIC from 8.0 mg/liter for N315 to 64 to approximately 128 mg/liter when they were overexpressed in N315. Their contribution to vancomycin and beta-lactam resistance was further supported by gene knockout and trans-complementation assay. By using a plasmid-based promoter-green fluorescent protein gene (gfp) transcriptional fusion system, graF promoter-activated cells were purified, and subsequent susceptibility tests and Northern blot analysis demonstrated that the cells with up-regulated activity of graF promoter showed reduced susceptibility to vancomycin, teicoplanin, and oxacillin. In addition, cell morphology studies showed that graF and msrA2 overexpression increased cell wall thickness of N315 by factors of 23.91 and 22.27%, respectively, accompanied by glycopeptide MIC increments of 3- to 6-fold, when they were overexpressed in N315. Moreover, extended experiments and analyses indicate that many of the genes identified above are related to the cell wall biosynthetic pathway, including active nutrient transport systems. We propose that the genes which raise glycopeptide resistance in S. aureus function toward altering the cell wall metabolic pathway.
Collapse
Affiliation(s)
- Longzhu Cui
- Department of Bacteriology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan.
| | | | | | | | | |
Collapse
|