1
|
Merchant SS. The Elements of Life, Photosynthesis and Genomics. J Mol Biol 2025; 437:169054. [PMID: 40024437 DOI: 10.1016/j.jmb.2025.169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
I am a Professor of Biochemistry, Biophysics and Structural Biology and Plant and Microbial Biology at the University of California in Berkeley. I was born and raised in India, emigrated to the United States to attend university, earning a B.S. in Molecular Biology and a Ph.D. in Biochemistry at the University of Wisconsin in Madison. Following post-doctoral studies with Lawrence Bogorad at Harvard University where I became interested in genetic control of trace element quotas, I joined the department of Chemistry and Biochemistry at UCLA. One of the first to appreciate essential trace metals as potential regulators of gene expression, I articulated the details of the nutritional Cu regulon in Chlamydomonas. In parallel, I used genetic approaches to discover the genes governing missing steps in tetrapyrrole metabolism, including the attachment of heme to apocytochromes in the thylakoid lumen and the factors catalyzing the formation of ring V in chlorophyll. After biochemistry and classical genetics, I embraced genomics, taking a leadership role on the Joint Genome Institute's efforts on the Chlamydomonas genome and more recently, contributing to high quality assemblies of several genomes in the green algal radiation, and large transcriptomic and proteomic datasets - focusing on the diel metabolic cycle in synchronized cultures and acclimation to key environmental and nutritional stressors - that are well-used and appreciated by the community. A new venture in Berkeley is the promotion of Auxenochlorella protothecoides as the true "green yeast" and as a platform for engineering algae to produce useful bioproducts.
Collapse
Affiliation(s)
- Sabeeha S Merchant
- Department of Molecular and Cell Biology, University of California - Berkeley, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California - Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Müller GA. The Transformation Experiment of Frederick Griffith II: Inclusion of Cellular Heredity for the Creation of Novel Microorganisms. Bioengineering (Basel) 2025; 12:532. [PMID: 40428151 PMCID: PMC12109375 DOI: 10.3390/bioengineering12050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
So far, synthetic biology approaches for the construction of artificial microorganisms have fostered the transformation of acceptor cells with genomes from donor cells. However, this strategy seems to be limited to closely related bacterial species only, due to the need for a "fit" between donor and acceptor proteomes and structures. "Fitting" of cellular regulation of metabolite fluxes and turnover between donor and acceptor cells, i.e. cybernetic heredity, may be even more difficult to achieve. The bacterial transformation experiment design 1.0, as introduced by Frederick Griffith almost one century ago, may support integration of DNA, macromolecular, topological, cybernetic and cellular heredity: (i) attenuation of donor Pneumococci of (S) serotype fosters release of DNA, and hypothetically of non-DNA structures compatible with subsequent transfer to and transformation of acceptor Pneumococci from (R) to (S) serotype; (ii) use of intact donor cells rather than of subcellular or purified fractions may guarantee maximal diversity of the structural and cybernetic matter and information transferred; (iii) "Blending" or mixing and fusion of donor and acceptor Pneumococci may occur under accompanying transfer of metabolites and regulatory circuits. A Griffith transformation experiment design 2.0 is suggested, which may enable efficient exchange of DNA as well as non-DNA structural and cybernetic matter and information, leading to unicellular hybrid microorganisms with large morphological/metabolic phenotypic differences and major features compared to predeceding cells. The prerequisites of horizontal gene and somatic cell nuclear transfer, the molecular mechanism of transformation, the machineries for the biogenesis of bacterial cytoskeleton, micelle-like complexes and membrane landscapes are briefly reviewed on the basis of underlying conceptions, ranging from Darwin's "gemmules" to "stirps", cytoplasmic and "plasmon" inheritance, "rhizene agency", "communicology", "transdisciplinary membranology" to up to Kirschner's "facilitated variation".
Collapse
Affiliation(s)
- Günter A. Müller
- Biology and Technology Studies Institute Munich (BITSIM), 80939 Munich, Germany; ; Tel.: +49-151-25216987
- Institute of Media Sociology, Department of Cultural Sciences, University of Paderborn, 33104 Paderborn, Germany
| |
Collapse
|
3
|
Ballal A, Apte SK. Cyanobacterial KdpD modulates in vivo and in vitro activities of a membrane-anchored histidine kinase. Biochim Biophys Acta Gen Subj 2025; 1869:130817. [PMID: 40360126 DOI: 10.1016/j.bbagen.2025.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/23/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
The prokaryotic KdpATPAse complex, encoded by the kdpABC operon, is an inducible, high-affinity K+ transporter. In E. coli, the operon is transcriptionally regulated by a two-component sensor-kinase response-regulator system, constituted by the KdpD and KdpE proteins. In contrast, cyanobacteria exhibit a truncated kdpD gene that encodes a KdpD homolog that is similar to the N-terminal domain (NTD) of E. coli KdpD, but lacks the transmitter, histidine kinase-containing, C-terminal domain (CTD). Here we show that the cyanobacterium Anabaena sp. strain L-31 constitutively transcribes the short kdpD gene, but synthesizes KdpATPase only during potassium starvation. However, unlike E. coli., expression of the kdpD gene remains unaffected by K+ limitation in Anabaena. To gain insight into the possible role of Anabaena KdpD, the chimeric Anacoli KdpD protein, wherein the NTD of E. coli KdpD was replaced with Anabaena KdpD, was functionally analyzed. Detailed investigation has revealed that the Anacoli KdpD (a) responds to a much lower threshold of external K+ than the E. coli KdpD (b) exhibits much reduced ability to induce kdp in response to ionic osmolytes than E. coli KdpD, and is therefore unable to sustain optimal growth in the presence of these osmolytes and (c) displays higher in vitro phosphatase activity than the wild type E. coli KdpD. Thus, Anabaena KdpD modulates properties of E. coli KdpD-CTD in a manner that is quite distinct from the E. coli KdpD-NTD. Based on these evidences, a model for kdp regulation by the short KdpD is proposed.
Collapse
Affiliation(s)
- Anand Ballal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, 400094 Mumbai, India.
| | - Shree Kumar Apte
- School of Biosciences, UM-DAE-Centre for Excellence in Basic Sciences, Vidyanagari, Kalina, Mumbai 400098, India
| |
Collapse
|
4
|
Hameed MS, Cao H, Guo L, Ren Y. Functional characterization of GAPDH2 through overexpression and dsRNA-mediated RNA interference in Synechocystis. Int J Biol Macromol 2025; 298:139967. [PMID: 39826747 DOI: 10.1016/j.ijbiomac.2025.139967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase 2 (GAPDH2) plays a vital role in cell growth, stress responses, and various cellular processes in organisms. However, its functional characterization in cyanobacteria, particularly in Synechocystis sp. PCC 6803, remains largely unexplored, especially concerning its overexpression and RNA interference (RNAi) via double-stranded RNA (dsRNA). This study aimed to investigate the biological role of GAPDH2 in Synechocystis sp. PCC 6803 by cloning its complete coding sequence (SyGAPDH2). The SyGAPDH2 protein comprises 350 amino acids with a molecular weight of 86.480 kDa and an isoelectric point of 5.03. The sequence alignment analysis revealed two conserved domains: NADH (Nicotinamide Adenine Dinucleotide)-quinone oxidoreductase subunit NuoI and NADH-ubiquinone/plastoquinone oxidoreductase chain 6. Similarly, Phylogenetic analysis demonstrated high sequence similarity of 96 % and 94 % with Coliform (Gammaproteobacteria bacterium), respectively. We further explored the functional significance of SyGAPDH2 through overexpression using the PpsbAII+SyGAPDH2 vector and double stranded RNA (dsRNA)-mediated silencing with dsGAPDH2. Overexpression significantly enhanced cell growth, while dsRNA-mediated suppression resulted in reduced cell proliferation, with effects observed 12 h post-treatment and persisting up to 36 h. These findings emphasize the essential regulatory role of SyGAPDH2 in cellular development and stress response. This study contributes to our understanding of GAPDH2 functional importance in cyanobacteria, providing a foundation for future investigations into its subcellular localization, additional functional roles, and broader regulatory mechanisms within cyanobacterial cellular processes.
Collapse
Affiliation(s)
- Muhammad Salman Hameed
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| | - Hongxuan Cao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Li Guo
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, PR China
| | - Yanliang Ren
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
5
|
Karimi-Fard A, Saidi A, Tohidfar M, Emami SN. Integrative bioinformatics approaches reveal key hub genes in cyanobacteria: insights from Synechocystis sp. PCC 6803 and Geminocystis sp. NIES-3708 under abiotic stress conditions. Genes Genomics 2025; 47:383-397. [PMID: 39849193 DOI: 10.1007/s13258-025-01615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Cyanobacteria, particularly Synechocystis sp. PCC 6803, serve as model organisms for studying acclimation strategies that enable adaptation to various environmental stresses. Understanding the molecular mechanisms underlying these adaptations provides insight into how cells adjust gene expression in response to challenging conditions. OBJECTIVE To analyze the transcriptome data of Synechocystis sp. PCC 6803 under light, salinity, and iron stress conditions and to identify hub genes potentially involved in stress response, specifically comparing the findings with Geminocystis sp. NIES-3708. METHODS A comprehensive bioinformatics approach was applied, integrating meta-analysis, weighted gene co-expression network analysis (WGCNA), and a Random Forest (RF) machine learning algorithm. These approaches underscore the robustness of our findings, allowing for a more nuanced understanding of gene interactions and their functional relevance in stress responses. This methodology was used to identify key hub genes in Synechocystis sp. PCC 6803 that may have conserved roles in Geminocystis sp. NIES-3708. A total of four potential hub genes, including slr1392, slr1484, sll1549, and sll1863, were identified. Among these, only sll1549 had a homolog (GM3708_2556) with 71% sequence similarity and 70% query coverage in Geminocystis sp. NIES-3708. The expression of GM3708_2556 was further evaluated under nitrate, salt, and combined salinity-nitrate stress conditions using RT-qPCR. RESULTS Transcript levels of GM3708_2556 increased significantly under salt stress (3.35-fold, p-value < 0.05) and combined salinity-nitrate stress (2.24-fold, p-value < 0.05) compared to control conditions, while no significant change was observed under nitrate stress alone. These results suggest that GM3708_2556 may play a crucial role in the organism's response to salt stress, with potential interactions in nitrate metabolism. CONCLUSION This study highlights the gene GM3708_2556 as a significant factor in salt stress response, with implications for conserved functional roles across cyanobacterial species. Furthermore, the findings have potential relevance to biotechnology, particularly in engineering stress-resistant cyanobacterial strains for applications in sustainable agriculture and bioenergy production.
Collapse
Affiliation(s)
- Abbas Karimi-Fard
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Masoud Tohidfar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Seyede N Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
6
|
Kroupová Z, Slaninová E, Mrázová K, Krzyžánek V, Hrubanová K, Fritz I, Obruča S. Evaluating stress resilience of cyanobacteria through flow cytometry and fluorescent viability assessment. Folia Microbiol (Praha) 2025; 70:205-223. [PMID: 39503830 PMCID: PMC11861008 DOI: 10.1007/s12223-024-01212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/17/2024] [Indexed: 02/27/2025]
Abstract
Cyanobacteria are prokaryotic organisms characterised by their complex structures and a wide range of pigments. With their ability to fix CO2, cyanobacteria are interesting for white biotechnology as cell factories to produce various high-value metabolites such as polyhydroxyalkanoates, pigments, or proteins. White biotechnology is the industrial production and processing of chemicals, materials, and energy using microorganisms. It is known that exposing cyanobacteria to low levels of stressors can induce the production of secondary metabolites. Understanding of this phenomenon, known as hormesis, can involve the strategic application of controlled stressors to enhance the production of specific metabolites. Consequently, precise measurement of cyanobacterial viability becomes crucial for process control. However, there is no established reliable and quick viability assay protocol for cyanobacteria since the task is challenging due to strong interferences of autofluorescence signals of intercellular pigments and fluorescent viability probes when flow cytometry is used. We performed the screening of selected fluorescent viability probes used frequently in bacteria viability assays. The results of our investigation demonstrated the efficacy and reliability of three widely utilised types of viability probes for the assessment of the viability of Synechocystis strains. The developed technique can be possibly utilised for the evaluation of the importance of polyhydroxyalkanoates for cyanobacterial cultures with respect to selected stressor-repeated freezing and thawing. The results indicated that the presence of polyhydroxyalkanoate granules in cyanobacterial cells could hypothetically contribute to the survival of repeated freezing and thawing.
Collapse
Affiliation(s)
- Zuzana Kroupová
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic.
| | - Eva Slaninová
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Kateřina Mrázová
- Institute of Scientific Instruments of the Czech Academy of SciencesV.V.I., Kralovopolska 147, 612 64, Brno, Czech Republic
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments of the Czech Academy of SciencesV.V.I., Kralovopolska 147, 612 64, Brno, Czech Republic
| | - Kamila Hrubanová
- Institute of Scientific Instruments of the Czech Academy of SciencesV.V.I., Kralovopolska 147, 612 64, Brno, Czech Republic
| | - Ines Fritz
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 20, 3430, Tulln an Der Donau, Austria
| | - Stanislav Obruča
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
7
|
Biswas S, Niedzwiedzki DM, Pakrasi HB. Elucidating light-induced changes in excitation energy transfer of photosystem I and II in whole cells of two model cyanobacteria. PHOTOSYNTHESIS RESEARCH 2025; 163:1. [PMID: 39680274 DOI: 10.1007/s11120-024-01124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/14/2024] [Indexed: 12/17/2024]
Abstract
Excitation energy transfer between the photochemically active protein complexes is key for photosynthetic processes. Phototrophic organisms like cyanobacteria experience subtle changes in irradiance under natural conditions. Such changes need adjustments to the excitation energy transfer between the photosystems for sustainable growth. Spectroscopic assessments on purified photosystems usually fail to capture these subtle changes. In this study, we examined whole cells from two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechococcus elongatus UTEX 2973, grown under high and low light conditions to decode the high light tolerance of the latter. This allowed us to study photosynthetic machinery in the native state and in this work we particularly focused on the excitation energy transfer within PSII and PSI manifold. Understanding the high-light tolerance mechanism is imperative as it can help design strategies for increasing the light tolerance of cyanobacteria used for carbon neutral bioproduction. Our observations suggest that Synechococcus 2973 employs an uncommon photoprotection strategy, and the absence of hydroxy-echinenone pigment in this strain opens the possibility of an orange carotenoid protein homolog utilizing zeaxanthin as a scavenger of reactive oxygen species to provide photoprotection. Furthermore, the adjustments to the high-light adaptation mechanism involve downregulating the phycobilisome antenna in Synechococcus 2973, but not in Synechocystis 6803. Additionally, the stoichiometric changes to PSII/PSI are more tightly regulated in Synechococcus 2973.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO, 63130, USA
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
8
|
Carrasquer-Alvarez E, Hoffmann UA, Geissler AS, Knave A, Gorodkin J, Seemann SE, Hudson EP, Frigaard NU. Photosynthesis in Synechocystis sp. PCC 6803 is not optimally regulated under very high CO 2. Appl Microbiol Biotechnol 2025; 109:33. [PMID: 39883173 PMCID: PMC11782454 DOI: 10.1007/s00253-025-13416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
One strategy for CO2 mitigation is using photosynthetic microorganisms to sequester CO2 under high concentrations, such as in flue gases. While elevated CO2 levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp. PCC 6803 under very high CO2 concentrations and yet stable pH around 7.5. The growth rate of the wild type (WT) at 200 µmol photons m-2 s-1 and a gas phase containing 30% CO2 was 2.7-fold lower compared to 4% CO2. Using a CRISPR interference mutant library, we identified genes that, when repressed, either enhanced or impaired growth under 30% or 4% CO2. Repression of genes involved in light harvesting (cpc and apc), photochemical electron transfer (cytM, psbJ, and petE), and several genes with little or unknown functions promoted growth under 30% CO2, while repression of key regulators of photosynthesis (pmgA) and CO2 capture and fixation (ccmR, cp12, and yfr1) increased growth inhibition under 30% CO2. Experiments confirmed that WT cells were more susceptible to light inhibition under 30% than under 4% CO2 and that a light-harvesting-impaired ΔcpcG mutant showed improved growth under 30% CO2 compared to the WT. These findings suggest that enhanced fitness under very high CO2 involves modifications in light harvesting, electron transfer, and carbon metabolism, and that the native regulatory machinery is insufficient, and in some cases obstructive, for optimal growth under 30% CO2. This genetic profiling provides potential targets for engineering cyanobacteria with improved photosynthetic efficiency and stress resilience for biotechnological applications. KEY POINTS: • Synechocystis growth was inhibited under very high CO2. • Inhibition of growth under very high CO2 was light dependent. • Repression of photosynthesis genes improved growth under very high CO2.
Collapse
Affiliation(s)
| | - Ute Angelika Hoffmann
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Adrian Sven Geissler
- Center for Non-Coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Axel Knave
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jan Gorodkin
- Center for Non-Coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stefan Ernst Seemann
- Center for Non-Coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Niels-Ulrik Frigaard
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
| |
Collapse
|
9
|
Matsukami Y, Oyama K, Azai C, Onoue Y, Fujita Y, Terauchi K. KaiC family ATPases in the nonheterocystous nitrogen-fixing cyanobacterium Leptolyngbya boryana. Sci Rep 2024; 14:30949. [PMID: 39730647 DOI: 10.1038/s41598-024-81991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
A circadian clock is reconstituted in vitro by incubating three proteins, KaiA, KaiB, and KaiC from the non-nitrogen-fixing cyanobacterium Synechococcus elongatus PCC 7942 in the presence of ATP. Leptolyngbya boryana is a filamentous cyanobacterium that grows diazotrophically under microoxic conditions. Among the aforementioned proteins, KaiC is the main clock oscillator belonging to the RecA ATPase superfamily. Genomic studies have revealed the presence of many genes encoding KaiC family ATPases in archaea and bacteria; however, very few have been analyzed in detail. For example, the L. boryana genome encodes two kaiC homologs designated as LbkaiC1 (LBWT_14830) and LbkaiC2 (LBWT_17950). LbKaiC1 is highly similar to KaiC from S. elongatus PCC 7942 compared with LbKaiC2. LbKaiC1 and LbKaiC2 were purified as Strep-tag fusion proteins. LbKaiC1 formed a hexamer and exhibited autophosphorylation, autodephosphorylation, and ATPase activities. Furthermore, it exhibited circadian phosphorylation rhythm in the presence of KaiA and KaiB from S. elongatus PCC 7942, indicating that LbKaiC1 is the central oscillator of the circadian clock in L. boryana. The temporal separation of nitrogen fixation from photosynthesis may be supported by the circadian rhythm generated by LbKaiC1 in L. boryana. LbKaiC2 had low ATPase activity, which depended on temperature, and its autophosphorylation activity was not detected like a circadian oscillator KaiC. Although the function of LbKaiC2 remains unknown, this work will provide comprehensive understanding of KaiC family ATPases.
Collapse
Affiliation(s)
- Yusuke Matsukami
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Katsuaki Oyama
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Chihiro Azai
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551, Japan
| | - Yasuhiro Onoue
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
- Research Center of Integrative Molecular Systems, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kazuki Terauchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
10
|
Yu C, Xu HF, Liu YR, Yan WW, Kong XL, Zhang ZC, Dai GZ, Qiu BS. The transcription factor RppA regulates chlorophyll and carotenoid biosynthesis to improve photoprotection in cyanobacteria. PLANT PHYSIOLOGY 2024; 197:kiae502. [PMID: 39321190 DOI: 10.1093/plphys/kiae502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/27/2024]
Abstract
Chlorophyll is an essential photosynthetic pigment but also a strong photosensitizer. Excessive free chlorophyll and its precursors can cause oxidative damage to photosynthetic organisms. Cyanobacteria are the oldest oxygenic photosynthetic organisms and the ancestors of the chloroplast. Owing to their complex habitats, cyanobacteria require precise regulation of chlorophyll synthesis to respond to environmental factors, especially changes in light. Chlorophyll synthase, encoded by chlG, is the enzyme catalyzing the final step of chlorophyll biosynthesis, which is closely related to photosynthesis biogenesis. However, the transcriptional regulation on chlG remains unclear. Here, the transcription factor, regulator of photosynthesis and photopigment-related gene expression A (RppA), was identified to bind to the chlG promoter by screening a yeast 1-hybrid library in the cyanobacterium Synechocystis sp. PCC 6803. The rppA knockout mutant showed a phenotype of slow growth and severe oxidative damage under dark-light transition conditions. The upregulated transcriptional expression of chlG was significantly higher and more chlorophyll and its precursors accumulated in the rppA knockout mutant than those in the wild-type strain during the transition from darkness to light, indicating that RppA represses the expression of chlG in Synechocystis. Meanwhile, RppA could synchronously promote the transcription of carotenoids biosynthesis-related genes to enhance carotenoids synthesis during the dark-light transition. These results reveal synergistic regulation of chlorophyll and carotenoids biosynthesis in cyanobacteria in response to frequent dark-light transitions, which slows down chlorophyll biosynthesis while promoting carotenoids biosynthesis to avoid oxidative damage caused by excessive reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Chen Yu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yan-Ru Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Wei-Wei Yan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Xin-Ling Kong
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Zhong-Chun Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| |
Collapse
|
11
|
Fink P, Kwon JH, Forchhammer K. Shipment of Cyanobacteria by Agarose Gel Embedding (SCAGE)-A Novel Method for Simple and Robust Delivery of Cyanobacteria. Bio Protoc 2024; 14:e5125. [PMID: 39677020 PMCID: PMC11635438 DOI: 10.21769/bioprotoc.5125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 12/17/2024] Open
Abstract
In modern science, the exchange of scientific material between different institutions and collaborating working groups constitutes an indispensable endeavor. For this purpose, bacterial strains are frequently shipped to collaborators to advance joint research projects. Bacterial strains are usually safely shipped as cultures on solid medium, whereas the shipment of liquid cultures requires specific safety measures due to the risk of leakage. Cyanobacterial cultures are frequently maintained as liquid stock cultures, and this problem typically arises. This protocol describes a new method for the shipment of liquid cyanobacterial stock cultures by agarose gel embedding (SCAGE). More specifically, a cyanobacterial culture is mixed with low-melting agarose and cast into sterile plastic bags, resulting in a thin, solid cyanobacterial agarose gel (cyanogel) that can be easily shipped. After delivery, subsequent regeneration of the cyanogel material in liquid media results in full recovery of the examined bacterial strains. Thus, the packaging method devised in the present study comprises an innovative technique to facilitate the shipment of bacterial strains, whilst eliminating previously encountered issues like cell culture leakage. Key features • New packaging procedure to reduce culture leakage. • Novel technique facilitating improved shipment conditions. • Validated method leading to recovery of tested bacterial strains after 14 days. Graphical overview Schematic representation of steps for gel embedding and recovery of cyanobacteria.
Collapse
Affiliation(s)
- Phillipp Fink
- Organismic Interactions Department, Tübingen University, Auf der Morgenstelle 28, Tübingen, Germany
| | - Jong-Hee Kwon
- Applied Life Sciences (BK21), Gyeongsang National University, Jinju, Korea
- Department of Food Science & Technology and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Korea
| | - Karl Forchhammer
- Organismic Interactions Department, Tübingen University, Auf der Morgenstelle 28, Tübingen, Germany
| |
Collapse
|
12
|
Schmidt N, Stappert N, Nimura-Matsune K, Watanabe S, Sobotka R, Hagemann M, Hess WR. Epigenetic control of tetrapyrrole biosynthesis by m4C DNA methylation in a cyanobacterium. DNA Res 2024; 31:dsae035. [PMID: 39657587 DOI: 10.1093/dnares/dsae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
Epigenetic DNA modifications are pivotal in eukaryotic gene expression, but their regulatory significance in bacteria is less understood. In Synechocystis 6803, the DNA methyltransferase M.Ssp6803II modifies the first cytosine in the GGCC motif, forming N4-methylcytosine (GGm4CC). Deletion of the sll0729 gene encoding M.Ssp6803II (∆sll0729) caused a bluish phenotype due to reduced chlorophyll levels, which was reversed by suppressor mutations. Re-sequencing of 7 suppressor clones revealed a common GGCC to GGTC mutation in the slr1790 promoter's discriminator sequence, encoding protoporphyrinogen IX oxidase, HemJ, crucial for tetrapyrrole biosynthesis. Transcriptomic and qPCR analyses indicated aberrant slr1790 expression in ∆sll0729 mutants. This aberration led to the accumulation of coproporphyrin III and protoporphyrin IX, indicative of impaired HemJ activity. To confirm the importance of DNA methylation in hemJ expression, hemJ promoter variants with varying discriminator sequences were introduced into the wild type, followed by sll0729 deletion. The sll0729 deletion segregated in strains with the GGTC discriminator motif, resulting in wild-type-like pigmentation, whereas freshly prepared ∆sll0729 mutants with the native hemJ promoter exhibited the bluish phenotype. These findings demonstrate that hemJ is tightly regulated in Synechocystis and that N4-methylcytosine is essential for proper hemJ expression. Thus, cytosine N4-methylation is a relevant epigenetic marker in Synechocystis and likely other cyanobacteria.
Collapse
Affiliation(s)
- Nils Schmidt
- Institute of Biosciences, Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany
| | - Nils Stappert
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Kaori Nimura-Matsune
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Martin Hagemann
- Institute of Biosciences, Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
13
|
Hasebe F, Adachi K, Maruyama C, Hamano Y. Discovery of a novel methionine biosynthetic route via O-phospho-l-homoserine. Appl Environ Microbiol 2024; 90:e0124724. [PMID: 39311576 PMCID: PMC11497804 DOI: 10.1128/aem.01247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/01/2024] [Indexed: 10/25/2024] Open
Abstract
Methionine (Met), a sulfur-containing amino acid, is essential for the underlying biological processes in living organisms. In addition to its importance as a starting building block for peptide chain elongation in protein biosynthesis, Met is a direct precursor of S-adenosyl-l-methionine, an indispensable methyl donor molecule in primary and secondary metabolism. Streptomyces bacteria are well known to produce diverse secondary metabolites, but many strains lack canonical Met pathway genes for l-homocysteine, a direct precursor of Met in bacteria, plants, and archaea. Here, we report the identification of a novel gene (metM) responsible for the Met biosynthesis in Streptomyces strains and demonstrate the catalytic function of the gene product, MetM. We further identified the metO gene, a downstream gene of metM, and showed that it encodes a sulfur-carrier protein (SCP). In in vitro analysis, MetO was found to play an important role in a sulfur donor by forming a thiocarboxylated SCP. Together with MetO (thiocarboxylate), MetM directly converted O-phospho-l-homoserine to l-homocysteine. O-Phospho-l-homoserine is also known as an intermediate for threonine biosynthesis in bacteria and plants, and MetM shares sequence homology with threonine synthase. Our findings thus revealed that MetM seizes O-phospho-l-homoserine from the threonine biosynthetic pathway and uses it as an intermediate of the Met biosynthesis to generate the sulfur-containing amino acid. Importantly, this MetM/MetO pathway is highly conserved in Streptomyces bacteria and distributed in other bacteria and archaea.IMPORTANCEMethionine (Met) is a sulfur-containing proteinogenic amino acid. Moreover, Met is a direct precursor of S-adenosyl-l-methionine, an indispensable molecule for expanding the structural diversity of natural products. Because Met and its derivatives benefit humans, the knowledge of Met biosynthesis is important as a basis for improving their fermentation. Streptomyces bacteria are well known to produce diverse and valuable natural products, but many strains lack canonical Met pathway genes. Here, we identified a novel l-homocysteine synthase (MetM) in Streptomyces and demonstrated that it converts O-phospho-L-homoserine to l-homocysteine using a thiocarboxylated sulfur-carrier protein as a sulfur donor. Since the metM is distributed in other bacteria and archaea, our pioneering study contributes to understanding Met biosynthesis in these organisms.
Collapse
Affiliation(s)
- Fumihito Hasebe
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
- Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, Eiheiji-cho, Fukui, Japan
| | - Kazuya Adachi
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
| | - Chitose Maruyama
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
- Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, Eiheiji-cho, Fukui, Japan
| | - Yoshimitsu Hamano
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
- Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, Eiheiji-cho, Fukui, Japan
| |
Collapse
|
14
|
Chávez-Luzanía RA, Ortega-Urquieta ME, Aguilera-Ibarra J, Morales-Sandoval PH, Hernández-Coss JA, González-Vázquez LA, Jara-Morales VB, Arredondo-Márquez SH, Olea-Félix MJ, de los Santos-Villalobos S. Transdisciplinary approaches for the study of cyanobacteria and cyanotoxins. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100289. [PMID: 39469049 PMCID: PMC11513502 DOI: 10.1016/j.crmicr.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Cyanobacteria, ancient aerobic and photoautotrophic prokaryotes, thrive in diverse ecosystems due to their extensive morphological and physiological adaptations. They play crucial roles in aquatic ecosystems as primary producers and resource providers but also pose significant ecological and health risks through blooms that produce harmful toxins, called cyanotoxins. The taxonomic affiliation of cyanobacteria has evolved from morphology-based methods to genomic analysis, which offers detailed structural and physiological insights that are essential for accurate taxonomic affiliation and monitoring. However, challenges posed by uncultured species have been extrapolated to the detection and quantification of cyanotoxins. Current advances in molecular biology and informatics improve the precision of monitoring and allow the analysis of groups of genes related to toxin production, providing crucial information for environmental biosafety and public health. Unfortunately, public genomic databases heavily underrepresent cyanobacteria, which limits the understanding of their diversity and metabolic capabilities. Despite the increasing availability of cyanobacterial genome sequences, research is still largely focused on a few model strains, narrowing the scope of genetic and metabolic studies. The challenges posed by cyanobacterial blooms and cyanotoxins necessitate improved molecular, cultivation, and polyphasic techniques for comprehensive classification and quantification, highlighting the need for advanced genomic approaches to better understand and manage cyanobacteria and toxins. This review explores the application of transdisciplinary approaches for the study of cyanobacteria and cyanotoxins focused on diversity analysis, population quantification, and cyanotoxin monitoring, emphasizing their genomic resources and their potential in the genomic mining of toxin-related genes.
Collapse
Affiliation(s)
- Roel Alejandro Chávez-Luzanía
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - María Edith Ortega-Urquieta
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Jaquelyn Aguilera-Ibarra
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Pamela Helué Morales-Sandoval
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - José Antonio Hernández-Coss
- Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera internacional, México 15, C.P.81223, Los Mochis, Sinaloa, Mexico
| | - Luis Alberto González-Vázquez
- Universidad Autónoma de Sinaloa, Blvd. Miguel Tamayo Espinosa de los Monteros, C.P. 80050, Col. Desarrollo Urbano Tres Ríos, Culiacán, Sinaloa, Mexico
| | - Vielka Berenice Jara-Morales
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Sergio Hiram Arredondo-Márquez
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Marie Jennifer Olea-Félix
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Sergio de los Santos-Villalobos
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| |
Collapse
|
15
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
16
|
Liu Y, Ge H, Lu D. Functional proteomics reveals that Slr0237 is a SigE-regulated glycogen debranching enzyme pivotal for glycogen breakdown. Proteomics 2024; 24:e2300222. [PMID: 38581091 DOI: 10.1002/pmic.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The group 2 σ factor for RNA polymerase SigE plays important role in regulating central carbon metabolism in cyanobacteria. However, the regulation of SigE for these pathways at a proteome level remains unknown. Using a sigE-deficient strain (ΔsigE) of Synechocystis sp. PCC 6803 and quantitative proteomics, we found that SigE depletion induces differential protein expression for sugar catabolic pathways including glycolysis, oxidative pentose phosphate (OPP) pathway, and glycogen catabolism. Two glycogen debranching enzyme homologues Slr1857 and Slr0237 are found differentially expressed in ΔsigE. Glycogen determination indicated that Δslr0237 accumulated glycogen under photomixotrophic condition but was unable to utilize these reserves in the dark, whereas Δslr1857 accumulates and utilizes glycogen in a similar way as the WT strain does in the same condition. These results suggest that Slr0237 plays the major role as the glycogen debranching enzyme in Synechocystis.
Collapse
Affiliation(s)
- Ye Liu
- Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
17
|
Hubáček M, Wey LT, Kourist R, Malihan-Yap L, Nikkanen L, Allahverdiyeva Y. Strong heterologous electron sink outcompetes alternative electron transport pathways in photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2500-2513. [PMID: 39008444 DOI: 10.1111/tpj.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Improvement of photosynthesis requires a thorough understanding of electron partitioning under both natural and strong electron sink conditions. We applied a wide array of state-of-the-art biophysical and biochemical techniques to thoroughly investigate the fate of photosynthetic electrons in the engineered cyanobacterium Synechocystis sp. PCC 6803, a blueprint for photosynthetic biotechnology, expressing the heterologous gene for ene-reductase, YqjM. This recombinant enzyme catalyses the reduction of an exogenously added substrate into the desired product by utilising photosynthetically produced NAD(P)H, enabling whole-cell biotransformation. Through coupling the biotransformation reaction with biophysical measurements, we demonstrated that the strong artificial electron sink, outcompetes the natural electron valves, the flavodiiron protein-driven Mehler-like reaction and cyclic electron transport. These results show that ferredoxin-NAD(P)H-oxidoreductase is the preferred route for delivering photosynthetic electrons from reduced ferredoxin and the cellular NADPH/NADP+ ratio as a key factor in orchestrating photosynthetic electron flux. These insights are crucial for understanding molecular mechanisms of photosynthetic electron transport and harnessing photosynthesis for sustainable bioproduction by engineering the cellular source/sink balance. Furthermore, we conclude that identifying the bioenergetic bottleneck of a heterologous electron sink is a crucial prerequisite for targeted engineering of photosynthetic biotransformation platforms.
Collapse
Affiliation(s)
- Michal Hubáček
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Laura T Wey
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Robert Kourist
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed, Graz University of Technology, Graz, 8010, Austria
| | - Lenny Malihan-Yap
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed, Graz University of Technology, Graz, 8010, Austria
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| |
Collapse
|
18
|
Höper R, Komkova D, Zavřel T, Steuer R. A quantitative description of light-limited cyanobacterial growth using flux balance analysis. PLoS Comput Biol 2024; 20:e1012280. [PMID: 39102434 PMCID: PMC11326710 DOI: 10.1371/journal.pcbi.1012280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/15/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
The metabolism of phototrophic cyanobacteria is an integral part of global biogeochemical cycles, and the capability of cyanobacteria to assimilate atmospheric CO2 into organic carbon has manifold potential applications for a sustainable biotechnology. To elucidate the properties of cyanobacterial metabolism and growth, computational reconstructions of genome-scale metabolic networks play an increasingly important role. Here, we present an updated reconstruction of the metabolic network of the cyanobacterium Synechocystis sp. PCC 6803 and its quantitative evaluation using flux balance analysis (FBA). To overcome limitations of conventional FBA, and to allow for the integration of experimental analyses, we develop a novel approach to describe light absorption and light utilization within the framework of FBA. Our approach incorporates photoinhibition and a variable quantum yield into the constraint-based description of light-limited phototrophic growth. We show that the resulting model is capable of predicting quantitative properties of cyanobacterial growth, including photosynthetic oxygen evolution and the ATP/NADPH ratio required for growth and cellular maintenance. Our approach retains the computational and conceptual simplicity of FBA and is readily applicable to other phototrophic microorganisms.
Collapse
Affiliation(s)
- Rune Höper
- Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany
| | - Daria Komkova
- Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Ralf Steuer
- Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
Muth-Pawlak D, Kakko L, Kallio P, Aro EM. Interplay between photosynthetic electron flux and organic carbon sinks in sucrose-excreting Synechocystis sp. PCC 6803 revealed by omics approaches. Microb Cell Fact 2024; 23:188. [PMID: 38951789 PMCID: PMC11218172 DOI: 10.1186/s12934-024-02462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Advancing the engineering of photosynthesis-based prokaryotic cell factories is important for sustainable chemical production and requires a deep understanding of the interplay between bioenergetic and metabolic pathways. Rearrangements in photosynthetic electron flow to increase the efficient use of the light energy for carbon fixation must be balanced with a strong carbon sink to avoid photoinhibition. In the cyanobacterium Synechocystis sp. PCC 6803, the flavodiiron protein Flv3 functions as an alternative electron acceptor of photosystem I and represents an interesting engineering target for reorganizing electron flow in attempts to enhance photosynthetic CO2 fixation and increase production yield. RESULTS We have shown that inactivation of Flv3 in engineered sucrose-excreting Synechocystis (S02:Δflv3) induces a transition from photoautotrophic sucrose production to mixotrophic growth sustained by sucrose re-uptake and the formation of intracellular carbon sinks such as glycogen and polyhydroxybutyrate. The growth of S02:Δflv3 exceeds that of the sucrose-producing strain (S02) and demonstrates unforeseen proteomic and metabolomic changes over the course of the nine-day cultivation. In the absence of Flv3, a down-regulation of proteins related to photosynthetic light reactions and CO2 assimilation occurred concomitantly with up-regulation of those related to glycolytic pathways, before any differences in sucrose production between S02 and S02:Δflv3 strains were observed. Over time, increased sucrose degradation in S02:Δflv3 led to the upregulation of respiratory pathway components, such as the plastoquinone reductase complexes NDH-11 and NDH-2 and the terminal respiratory oxidases Cyd and Cox, which transfer electrons to O2. While glycolytic metabolism is significantly up-regulated in S02:Δflv3 to provide energy for the cell, the accumulation of intracellular storage compounds and the increase in respiration serve as indirect sinks for photosynthetic electrons. CONCLUSIONS Our results show that the presence of strong carbon sink in the engineered sucrose-producing Synechocystis S02 strain, operating under high light, high CO2 and salt stress, cannot compensate for the lack of Flv3 by directly balancing the light transducing source and carbon fixing sink reactions. Instead, the cells immediately sense the imbalance, leading to extensive reprogramming of cellular bioenergetic, metabolic and ion transport pathways that favor mixotrophic growth rather than enhancing photoautotrophic sucrose production.
Collapse
Affiliation(s)
- Dorota Muth-Pawlak
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FIN-20014, Finland.
| | - Lauri Kakko
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FIN-20014, Finland
| | - Pauli Kallio
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FIN-20014, Finland
| | - Eva-Mari Aro
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FIN-20014, Finland
| |
Collapse
|
20
|
Bolay P, Dodge N, Janssen K, Jensen PE, Lindberg P. Tailoring regulatory components for metabolic engineering in cyanobacteria. PHYSIOLOGIA PLANTARUM 2024; 176:e14316. [PMID: 38686633 DOI: 10.1111/ppl.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
The looming climate crisis has prompted an ever-growing interest in cyanobacteria due to their potential as sustainable production platforms for the synthesis of energy carriers and value-added chemicals from CO2 and sunlight. Nonetheless, cyanobacteria are yet to compete with heterotrophic systems in terms of space-time yields and consequently production costs. One major drawback leading to the low production performance observed in cyanobacteria is the limited ability to utilize the full capacity of the photosynthetic apparatus and its associated systems, i.e. CO2 fixation and the directly connected metabolism. In this review, novel insights into various levels of metabolic regulation of cyanobacteria are discussed, including the potential of targeting these regulatory mechanisms to create a chassis with a phenotype favorable for photoautotrophic production. Compared to conventional metabolic engineering approaches, minor perturbations of regulatory mechanisms can have wide-ranging effects.
Collapse
Affiliation(s)
- Paul Bolay
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Nadia Dodge
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Kim Janssen
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Poul Erik Jensen
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| |
Collapse
|
21
|
Vedalankar P, Tripathy BC. Light dependent protochlorophyllide oxidoreductase: a succinct look. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:719-731. [PMID: 38846463 PMCID: PMC11150229 DOI: 10.1007/s12298-024-01454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Reducing protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is a major regulatory step in the chlorophyll biosynthesis pathway. This reaction is catalyzed by light-dependent protochlorophyllide oxidoreductase (LPOR) in oxygenic phototrophs, particularly angiosperms. LPOR-NADPH and Pchlide form a ternary complex to be efficiently photo-transformed to synthesize Chlide and, subsequently, chlorophyll during the transition from skotomorphogenesis to photomorphogenesis. Besides lipids, carotenoids and poly-cis xanthophylls influence the formation of the photoactive LPOR complexes and the PLBs. The crystal structure of LPOR reveals evolutionarily conserved cysteine residues implicated in the Pchlide binding and catalysis around the active site. Different isoforms of LPOR viz PORA, PORB, and PORC expressed at different stages of chloroplast development play a photoprotective role by quickly transforming the photosensitive Pchlide to Chlide. Non-photo-transformed Pchlide acts as a photosensitizer to generate singlet oxygen that causes oxidative stress and cell death. Therefore, different isoforms of LPOR have evolved and differentially expressed during plant development to protect plants from photodamage and thus play a pivotal role during photomorphogenesis. This review brings out the salient features of LPOR structure, structure-function relationships, and ultra-fast photo transformation of Pchlide to Chlide by oligomeric and polymeric forms of LPOR.
Collapse
Affiliation(s)
| | - Baishnab C. Tripathy
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| |
Collapse
|
22
|
Katayama N, Osanai T. Arginine inhibits the arginine biosynthesis rate-limiting enzyme and leads to the accumulation of intracellular aspartate in Synechocystis sp. PCC 6803. PLANT MOLECULAR BIOLOGY 2024; 114:27. [PMID: 38478146 PMCID: PMC10937788 DOI: 10.1007/s11103-024-01416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/02/2024] [Indexed: 03/17/2024]
Abstract
Cyanobacteria are oxygen-evolving photosynthetic prokaryotes that affect the global carbon and nitrogen turnover. Synechocystis sp. PCC 6803 (Synechocystis 6803) is a model cyanobacterium that has been widely studied and can utilize and uptake various nitrogen sources and amino acids from the outer environment and media. l-arginine is a nitrogen-rich amino acid used as a nitrogen reservoir in Synechocystis 6803, and its biosynthesis is strictly regulated by feedback inhibition. Argininosuccinate synthetase (ArgG; EC 6.3.4.5) is the rate-limiting enzyme in arginine biosynthesis and catalyzes the condensation of citrulline and aspartate using ATP to produce argininosuccinate, which is converted to l-arginine and fumarate through argininosuccinate lyase (ArgH). We performed a biochemical analysis of Synechocystis 6803 ArgG (SyArgG) and obtained a Synechocystis 6803 mutant overexpressing SyArgG and ArgH of Synechocystis 6803 (SyArgH). The specific activity of SyArgG was lower than that of other arginine biosynthesis enzymes and SyArgG was inhibited by arginine, especially among amino acids and organic acids. Both arginine biosynthesis enzyme-overexpressing strains grew faster than the wild-type Synechocystis 6803. Based on previous reports and our results, we suggest that SyArgG is the rate-limiting enzyme in the arginine biosynthesis pathway in cyanobacteria and that arginine biosynthesis enzymes are similarly regulated by arginine in this cyanobacterium. Our results contribute to elucidating the regulation of arginine biosynthesis during nitrogen metabolism.
Collapse
Affiliation(s)
- Noriaki Katayama
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, 214-8571, Kawasaki, Kanagawa, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, 214-8571, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
23
|
Ito S, Watanabe A, Osanai T. Regulation of L-aspartate oxidase contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2024; 194:945-957. [PMID: 37936332 DOI: 10.1093/plphys/kiad580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Cyanobacteria have been promoted as a biomass resource that can contribute to carbon neutrality. Synechocystis sp. PCC 6803 is a model cyanobacterium that is widely used in various studies. NADP+ and NAD+ are electron receptors involved in energy metabolism. The NADP+/NAD+ ratio in Synechocystis sp. PCC 6803 is markedly higher than that in the heterotrophic bacterium Escherichia coli. In Synechocystis sp. PCC 6803, NADP+ primarily functions as an electron receptor during the light reaction of photosynthesis, and NADP+ biosynthesis is essential for photoautotrophic growth. Generally, the regulatory enzyme of NADP+ biosynthesis is NAD kinase, which catalyzes the phosphorylation of NAD+. However, a previous study suggested that the regulation of another enzyme contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803 under photoautotrophic conditions. L-Aspartate oxidase is the first enzyme in NAD(P)+ biosynthesis. In this study, we biochemically characterized Synechocystis sp. PCC 6803 L-aspartate oxidase and determined the phenotype of a Synechocystis sp. PCC 6803 mutant overexpressing L-aspartate oxidase. The catalytic efficiency of L-aspartate oxidase from Synechocystis sp. PCC 6803 was lower than that of L-aspartate oxidases and NAD kinases from other organisms. L-Aspartate oxidase activity was affected by different metabolites such as NADP+ and ATP. The L-aspartate oxidase-overexpressing strain grew faster than the wild-type strain under photoautotrophic conditions. The L-aspartate oxidase-overexpressing strain accumulated NADP+ under photoautotrophic conditions. These results indicate that the regulation of L-aspartate oxidase contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803 under photoautotrophic conditions. These findings provide insight into the regulatory mechanism of cyanobacterial NADP+ biosynthesis.
Collapse
Affiliation(s)
- Shoki Ito
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Atsuko Watanabe
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
24
|
Moore LR, Caspi R, Campbell DA, Casey JR, Crevecoeur S, Lea-Smith DJ, Long B, Omar NM, Paley SM, Schmelling NM, Torrado A, Zehr JP, Karp PD. CyanoCyc cyanobacterial web portal. Front Microbiol 2024; 15:1340413. [PMID: 38357349 PMCID: PMC10864581 DOI: 10.3389/fmicb.2024.1340413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
CyanoCyc is a web portal that integrates an exceptionally rich database collection of information about cyanobacterial genomes with an extensive suite of bioinformatics tools. It was developed to address the needs of the cyanobacterial research and biotechnology communities. The 277 annotated cyanobacterial genomes currently in CyanoCyc are supplemented with computational inferences including predicted metabolic pathways, operons, protein complexes, and orthologs; and with data imported from external databases, such as protein features and Gene Ontology (GO) terms imported from UniProt. Five of the genome databases have undergone manual curation with input from more than a dozen cyanobacteria experts to correct errors and integrate information from more than 1,765 published articles. CyanoCyc has bioinformatics tools that encompass genome, metabolic pathway and regulatory informatics; omics data analysis; and comparative analyses, including visualizations of multiple genomes aligned at orthologous genes, and comparisons of metabolic networks for multiple organisms. CyanoCyc is a high-quality, reliable knowledgebase that accelerates scientists' work by enabling users to quickly find accurate information using its powerful set of search tools, to understand gene function through expert mini-reviews with citations, to acquire information quickly using its interactive visualization tools, and to inform better decision-making for fundamental and applied research.
Collapse
Affiliation(s)
| | - Ron Caspi
- SRI International, Menlo Park, CA, United States
| | | | - John R. Casey
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, United States
| | - Sophie Crevecoeur
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - David J. Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Bin Long
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | | | | | | | - Alejandro Torrado
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and Spanish National Research Council, Sevilla, Spain
| | - Jonathan P. Zehr
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | | |
Collapse
|
25
|
Wang M, Ye X, Bi H, Shen Z. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:10. [PMID: 38254224 PMCID: PMC10804497 DOI: 10.1186/s13068-024-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The development of microalgal biofuels is of significant importance in advancing the energy transition, alleviating food pressure, preserving the natural environment, and addressing climate change. Numerous countries and regions across the globe have conducted extensive research and strategic planning on microalgal bioenergy, investing significant funds and manpower into this field. However, the microalgae biofuel industry has faced a downturn due to the constraints of high costs. In the past decade, with the development of new strains, technologies, and equipment, the feasibility of large-scale production of microalgae biofuel should be re-evaluated. Here, we have gathered research results from the past decade regarding microalgae biofuel production, providing insights into the opportunities and challenges faced by this industry from the perspectives of microalgae selection, modification, and cultivation. In this review, we suggest that highly adaptable microalgae are the preferred choice for large-scale biofuel production, especially strains that can utilize high concentrations of inorganic carbon sources and possess stress resistance. The use of omics technologies and genetic editing has greatly enhanced lipid accumulation in microalgae. However, the associated risks have constrained the feasibility of large-scale outdoor cultivation. Therefore, the relatively controllable cultivation method of photobioreactors (PBRs) has made it the mainstream approach for microalgae biofuel production. Moreover, adjusting the performance and parameters of PBRs can also enhance lipid accumulation in microalgae. In the future, given the relentless escalation in demand for sustainable energy sources, microalgae biofuels should be deemed a pivotal constituent of national energy planning, particularly in the case of China. The advancement of synthetic biology helps reduce the risks associated with genetically modified (GM) microalgae and enhances the economic viability of their biofuel production.
Collapse
Affiliation(s)
- Min Wang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Hongwen Bi
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
26
|
Kaneko S, Hirotaka S, Tsujii M, Maruyama H, Uozumi N, Arai F. Instantaneous extracellular solution exchange for concurrent evaluation of membrane permeability of single cells. LAB ON A CHIP 2024; 24:281-291. [PMID: 38086698 DOI: 10.1039/d3lc00633f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The osmotic stress imposed on microorganisms by hypotonic conditions is perceived to regulate water and solute flux via cell membranes, which are crucial for survival. Some cells that fail to perceive osmotic stress die because this results in the rupture of the cell membrane. The flux through the membrane is characterized by the membrane permeability, which is measured using a stopped-flow apparatus in response to a millisecond-order osmolarity change. However, the obtained data are an ensemble average of each cell response. Additionally, the measurement of permeability, considering cellular viability, contributes to a more accurate evaluation of osmoadaptation. Here, we present a novel on-chip instantaneous extracellular solution exchange method using an air-liquid interface. The presented method provides a concurrent evaluation at the single-cell level in response to a millisecond-order osmotic shock, considering cellular viability by solution exchange. This method utilizes a liquid bridge with a locally formed droplet on the surface of a micropillar fabricated inside a microchannel. We evaluated a solution exchange time of 3.6 ms and applied this method to Synechocystis PCC 6803 under two different osmolarity conditions. The live/dead ratio of 1 M to 0.5 M osmotic down shock condition was 78.8/21.2% while that of 1 M to 0.25 M osmotic down shock condition was 40.0/60.0%. We evaluated the water permeability of two groups: cells that were still live before and after osmotic shock (hereafter named cell type 1), and cells that were live before but were dead 10 minutes after osmotic shock (hereafter named cell type 2). The results indicated that the water permeability of cell type 2 was higher than that of cell type 1. The results obtained using the presented methods confirmed that the effect of osmotic stress can be accurately evaluated using single-cell analysis.
Collapse
Affiliation(s)
- Shingo Kaneko
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Sugiura Hirotaka
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Hisataka Maruyama
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Fumihito Arai
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
27
|
Akiyama M, Osanai T. Regulation of organic acid and hydrogen production by NADH/NAD + ratio in Synechocystis sp. PCC 6803. Front Microbiol 2024; 14:1332449. [PMID: 38249449 PMCID: PMC10797119 DOI: 10.3389/fmicb.2023.1332449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Cyanobacteria serve as useful hosts in the production of substances to support a low-carbon society. Specifically, the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) can produce organic acids, such as acetate, lactate, and succinate, as well as hydrogen, under dark, anaerobic conditions. The efficient production of these compounds appears to be closely linked to the regulation of intracellular redox balance. Notably, alterations in intracellular redox balance have been believed to influence the production of organic acids and hydrogen. To achieve these alterations, genetic manipulations involved overexpressing malate dehydrogenase (MDH), knocking out d-lactate dehydrogenase (DDH), or knocking out acetate kinase (AK), which subsequently modified the quantities and ratios of organic acids and hydrogen under dark, anaerobic conditions. Furthermore, the mutants generated displayed changes in the oxidation of reducing powers and the nicotinamide adenine dinucleotide hydrogen (NADH)/NAD+ ratio when compared to the parental wild-type strain. These findings strongly suggest that intracellular redox balance, especially the NADH/NAD+ ratio, plays a pivotal role in the production of organic acids and hydrogen in Synechocystis 6803.
Collapse
Affiliation(s)
| | - Takashi Osanai
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
28
|
Hoffmann UA, Lichtenberg E, Rogh SN, Bilger R, Reimann V, Heyl F, Backofen R, Steglich C, Hess WR, Wilde A. The role of the 5' sensing function of ribonuclease E in cyanobacteria. RNA Biol 2024; 21:1-18. [PMID: 38469716 PMCID: PMC10939160 DOI: 10.1080/15476286.2024.2328438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
RNA degradation is critical for synchronising gene expression with changing conditions in prokaryotic and eukaryotic organisms. In bacteria, the preference of the central ribonucleases RNase E, RNase J and RNase Y for 5'-monophosphorylated RNAs is considered important for RNA degradation. For RNase E, the underlying mechanism is termed 5' sensing, contrasting to the alternative 'direct entry' mode, which is independent of monophosphorylated 5' ends. Cyanobacteria, such as Synechocystis sp. PCC 6803 (Synechocystis), encode RNase E and RNase J homologues. Here, we constructed a Synechocystis strain lacking the 5' sensing function of RNase E and mapped on a transcriptome-wide level 283 5'-sensing-dependent cleavage sites. These included so far unknown targets such as mRNAs encoding proteins related to energy metabolism and carbon fixation. The 5' sensing function of cyanobacterial RNase E is important for the maturation of rRNA and several tRNAs, including tRNAGluUUC. This tRNA activates glutamate for tetrapyrrole biosynthesis in plant chloroplasts and in most prokaryotes. Furthermore, we found that increased RNase activities lead to a higher copy number of the major Synechocystis plasmids pSYSA and pSYSM. These results provide a first step towards understanding the importance of the different target mechanisms of RNase E outside Escherichia coli.
Collapse
Affiliation(s)
- Ute A. Hoffmann
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Elisabeth Lichtenberg
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Said N. Rogh
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Raphael Bilger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Viktoria Reimann
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Florian Heyl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
29
|
Hemm L, Miucci A, Kraus A, Riediger M, Tholen S, Abdelaziz N, Georg J, Schilling O, Hess WR. Interactors and effects of overexpressing YlxR/RnpM, a conserved RNA binding protein in cyanobacteria. RNA Biol 2024; 21:1-19. [PMID: 39625117 PMCID: PMC11622646 DOI: 10.1080/15476286.2024.2429230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 12/08/2024] Open
Abstract
Throughout the tree of life RNA-binding proteins play important roles, but they are poorly characterized in cyanobacteria. Overexpression of the predicted RNA-binding protein Ssr1238 in the cyanobacterium Synechocystis 6803 for 24 h led to higher levels of RNase P RNA, tRNAs, and stress-related mRNAs. Co-immunoprecipitation of proteins followed by MS analysis and sequencing of UV crosslinked, co-immunoprecipitated RNA samples identified potential interaction partners of Ssr1238. The most enriched transcript was RNase P RNA, and RnpA, the protein component of RNase P, was among the most highly enriched proteins. A second highly enriched transcript is derived from gene ssl3177, which encodes a central enzyme in cell wall remodelling during cell division. The data also showed a strong connection to the RNA maturation and modification system indicated by co-precipitation of RNA modifying enzymes, riboendonuclease E and enolase. Surprisingly, cyanophycin synthetase and urease were highly enriched as well. In conclusion, Ssr1238 specifically binds to two different transcripts and could be involved in the coordination of RNA maturation, translation, cell division, and aspects of nitrogen metabolism. Our results are consistent with recent findings that the B. subtilis YlxR protein functions as an RNase P modulator (RnpM), extending its proposed role to the phylum cyanobacteria, and suggesting additional functionalities.
Collapse
Affiliation(s)
- Luisa Hemm
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Anna Miucci
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Alexander Kraus
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Riediger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stefan Tholen
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nouha Abdelaziz
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Wulf D, Bräutigam A, Eisenhut M. Using Publicly Available RNA-seq Data for Expression Analysis of Genes of Interest. Methods Mol Biol 2024; 2792:241-250. [PMID: 38861092 DOI: 10.1007/978-1-0716-3802-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
RNA-seq data in publicly available repositories enable the efficient reanalysis of transcript abundances in existing experiments. Graphical user interfaces usually only allow the visual inspection of a single gene and of predefined experiments. Here, we describe how experiments are selected from the Sequence Read Archive or the European Nucleotide Archive, how data is efficiently mapped onto a reference transcriptome, and how global transcript abundances and patterns are inspected. We exemplarily apply this analysis pipeline to study the expression of photorespiration-related genes in photosynthetic organisms, such as cyanobacteria, and to identify conditions under which photorespiratory transcript abundances are enhanced.
Collapse
Affiliation(s)
- Donat Wulf
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Andrea Bräutigam
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Marion Eisenhut
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
31
|
Balaga RR, Itoh F, Chauhan S, Mandal M, Krishna PS, Suzuki I, Prakash JSS. Sll1252 Coordinates Electron Transport between Plastoquinone and Cytochrome b6/f Complex in Synechocystis PCC 6803. Genes (Basel) 2023; 14:2151. [PMID: 38136973 PMCID: PMC10743179 DOI: 10.3390/genes14122151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m-2 s-1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.
Collapse
Affiliation(s)
- Radha Rani Balaga
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Fumihiro Itoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan;
| | - Suraj Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Mukulika Mandal
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Pilla Sankara Krishna
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan;
| | - Jogadhenu S. S. Prakash
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| |
Collapse
|
32
|
Cao K, Cui Y, Sun F, Zhang H, Fan J, Ge B, Cao Y, Wang X, Zhu X, Wei Z, Yao Q, Ma J, Wang Y, Meng C, Gao Z. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv 2023; 68:108236. [PMID: 37586543 DOI: 10.1016/j.biotechadv.2023.108236] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Microalgae are microorganisms capable of producing bioactive compounds using photosynthesis. Microalgae contain a variety of high value-added natural pigments such as carotenoids, phycobilins, and chlorophylls. These pigments play an important role in many areas such as food, pharmaceuticals, and cosmetics. Natural pigments have a health value that is unmatched by synthetic pigments. However, the current commercial production of natural pigments from microalgae is not able to meet the growing market demand. The use of metabolic engineering and synthetic biological strategies to improve the production performance of microalgal cell factories is essential to promote the large-scale production of high-value pigments from microalgae. This paper reviews the health and economic values, the applications, and the synthesis pathways of microalgal pigments. Overall, this review aims to highlight the latest research progress in metabolic engineering and synthetic biology in constructing engineered strains of microalgae with high-value pigments and the application of CRISPR technology and multi-omics in this context. Finally, we conclude with a discussion on the bottlenecks and challenges of microalgal pigment production and their future development prospects.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Xiaodong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Zuoxi Wei
- School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
33
|
Zedler JAZ, Michel M, Pohnert G, Russo DA. Cell surface composition, released polysaccharides, and ionic strength mediate fast sedimentation in the cyanobacterium Synechococcus elongatus PCC 7942. Environ Microbiol 2023; 25:1955-1966. [PMID: 37259888 DOI: 10.1111/1462-2920.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Cyanobacteria are photosynthetic prokaryotes of high ecological and biotechnological relevance that have been cultivated in laboratories around the world for more than 70 years. Prolonged laboratory culturing has led to multiple microevolutionary events and the appearance of a large number of 'domesticated' substrains among model cyanobacteria. Despite its widespread occurrence, strain domestication is still largely ignored. In this work we describe Synechococcus elongatus PCC 7942-KU, a novel domesticated substrain of the model cyanobacterium S. elongatus PCC 7942, which presents a fast-sedimenting phenotype. Under higher ionic strengths the sedimentation rate increased leading to complete sedimentation in just 12 h. Through whole genome sequencing and gene deletion, we demonstrated that the Group 3 alternative sigma factor F plays a key role in cell sedimentation. Further analysis showed that significant changes in cell surface structures and a three-fold increase in released polysaccharides lead to the appearance of a fast-sedimenting phenotype. This work sheds light on the determinants of the planktonic to benthic transitions and provides genetic targets to generate fast-sedimenting strains that could unlock cost-effective cyanobacterial harvesting at scale.
Collapse
Affiliation(s)
- Julie A Z Zedler
- Friedrich Schiller University Jena, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Synthetic Biology of Photosynthetic Organisms, Jena, Germany
| | - Marlene Michel
- Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Jena, Germany
| | - Georg Pohnert
- Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Jena, Germany
| | - David A Russo
- Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Jena, Germany
| |
Collapse
|
34
|
Xie H, Kjellström J, Lindblad P. Sustainable production of photosynthetic isobutanol and 3-methyl-1-butanol in the cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:134. [PMID: 37684613 PMCID: PMC10492371 DOI: 10.1186/s13068-023-02385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Cyanobacteria are emerging as green cell factories for sustainable biofuel and chemical production, due to their photosynthetic ability to use solar energy, carbon dioxide and water in a direct process. The model cyanobacterial strain Synechocystis sp. PCC 6803 has been engineered for the isobutanol and 3-methyl-1-butanol production by introducing a synthetic 2-keto acid pathway. However, the achieved productions still remained low. In the present study, diverse metabolic engineering strategies were implemented in Synechocystis sp. PCC 6803 for further enhanced photosynthetic isobutanol and 3-methyl-1-butanol production. RESULTS Long-term cultivation was performed on two selected strains resulting in maximum cumulative isobutanol and 3-methyl-1-butanol titers of 1247 mg L-1 and 389 mg L-1, on day 58 and day 48, respectively. Novel Synechocystis strain integrated with a native 2-keto acid pathway was generated and showed a production of 98 mg isobutanol L-1 in short-term screening experiments. Enhanced isobutanol and 3-methyl-1-butanol production was observed when increasing the kivdS286T copy number from three to four. Isobutanol and 3-methyl-1-butanol production was effectively improved when overexpressing selected genes of the central carbon metabolism. Identified genes are potential metabolic engineering targets to further enhance productivity of pyruvate-derived bioproducts in cyanobacteria. CONCLUSIONS Enhanced isobutanol and 3-methyl-1-butanol production was successfully achieved in Synechocystis sp. PCC 6803 strains through diverse metabolic engineering strategies. The maximum cumulative isobutanol and 3-methyl-1-butanol titers, 1247 mg L-1 and 389 mg L-1, respectively, represent the current highest value reported. The significantly enhanced isobutanol and 3-methyl-1-butanol production in this study further pave the way for an industrial application of photosynthetic cyanobacteria-based biofuel and chemical synthesis from CO2.
Collapse
Affiliation(s)
- Hao Xie
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jarl Kjellström
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
35
|
Kukil K, Englund E, Crang N, Hudson EP, Lindberg P. Laboratory evolution of Synechocystis sp. PCC 6803 for phenylpropanoid production. Metab Eng 2023; 79:27-37. [PMID: 37392984 DOI: 10.1016/j.ymben.2023.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Cyanobacteria are promising as a biotechnological platform for production of various industrially relevant compounds, including aromatic amino acids and their derivatives, phenylpropanoids. In this study, we have generated phenylalanine resistant mutant strains (PRMs) of the unicellular cyanobacterium Synechocystis sp. PCC 6803, by laboratory evolution under the selective pressure of phenylalanine, which inhibits the growth of wild type Synechocystis. The new strains of Synechocystis were tested for their ability to secrete phenylalanine in the growth medium during cultivation in shake flasks as well as in a high-density cultivation (HDC) system. All PRM strains secreted phenylalanine into the culture medium, with one of the mutants, PRM8, demonstrating the highest specific production of 24.9 ± 7 mg L-1·OD750-1 or 610 ± 196 mg L-1 phenylalanine after four days of growth in HDC. We further overexpressed phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) in the mutant strains in order to determine the potential of PRMs for production of trans-cinnamic acid (tCA) and para-coumaric acid (pCou), the first intermediates of the plant phenylpropanoid pathway. Productivities of these compounds were found to be lower in the PRMs compared to respective control strains, except for PRM8 under HDC conditions. The PRM8 background strain in combination with PAL or TAL expression demonstrated a specific production of 52.7 ± 15 mg L-1·OD750-1tCA and 47.1 ± 7 mg L-1·OD750-1pCou, respectively, with a volumetric titer reaching above 1 g L-1 for both products after four days of HDC cultivation. The genomes of PRMs were sequenced in order to identify which mutations caused the phenotype. Interestingly, all of the PRMs contained at least one mutation in their ccmA gene, which encodes DAHP synthase, the first enzyme of the pathway for aromatic amino acids biosynthesis. Altogether, we demonstrate that the combination of laboratory-evolved mutants and targeted metabolic engineering can be a powerful tool in cyanobacterial strain development.
Collapse
Affiliation(s)
- Kateryna Kukil
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden
| | - Elias Englund
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Nick Crang
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden.
| |
Collapse
|
36
|
Nguyen KU, Zhang Y, Liu Q, Zhang R, Jin X, Taniguchi M, Miller ES, Lindsey JS. Tolyporphins-Exotic Tetrapyrrole Pigments in a Cyanobacterium-A Review. Molecules 2023; 28:6132. [PMID: 37630384 PMCID: PMC10459692 DOI: 10.3390/molecules28166132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Tolyporphins were discovered some 30 years ago as part of a global search for antineoplastic compounds from cyanobacteria. To date, the culture HT-58-2, comprised of a cyanobacterium-microbial consortium, is the sole known producer of tolyporphins. Eighteen tolyporphins are now known-each is a free base tetrapyrrole macrocycle with a dioxobacteriochlorin (14), oxochlorin (3), or porphyrin (1) chromophore. Each compound displays two, three, or four open β-pyrrole positions and two, one, or zero appended C-glycoside (or -OH or -OAc) groups, respectively; the appended groups form part of a geminal disubstitution motif flanking the oxo moiety in the pyrroline ring. The distinct structures and repertoire of tolyporphins stand alone in the large pigments-of-life family. Efforts to understand the cyanobacterial origin, biosynthetic pathways, structural diversity, physiological roles, and potential pharmacological properties of tolyporphins have attracted a broad spectrum of researchers from diverse scientific areas. The identification of putative biosynthetic gene clusters in the HT-58-2 cyanobacterial genome and accompanying studies suggest a new biosynthetic paradigm in the tetrapyrrole arena. The present review provides a comprehensive treatment of the rich science concerning tolyporphins.
Collapse
Affiliation(s)
- Kathy-Uyen Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Yunlong Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Qihui Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Ran Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Xiaohe Jin
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Eric S. Miller
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA;
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| |
Collapse
|
37
|
Hay Mele B, Monticelli M, Leone S, Bastoni D, Barosa B, Cascone M, Migliaccio F, Montemagno F, Ricciardelli A, Tonietti L, Rotundi A, Cordone A, Giovannelli D. Oxidoreductases and metal cofactors in the functioning of the earth. Essays Biochem 2023; 67:653-670. [PMID: 37503682 PMCID: PMC10423856 DOI: 10.1042/ebc20230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Life sustains itself using energy generated by thermodynamic disequilibria, commonly existing as redox disequilibria. Metals are significant players in controlling redox reactions, as they are essential components of the engine that life uses to tap into the thermodynamic disequilibria necessary for metabolism. The number of proteins that evolved to catalyze redox reactions is extraordinary, as is the diversification level of metal cofactors and catalytic domain structures involved. Notwithstanding the importance of the topic, the relationship between metals and the redox reactions they are involved in has been poorly explored. This work reviews the structure and function of different prokaryotic organometallic-protein complexes, highlighting their pivotal role in controlling biogeochemistry. We focus on a specific subset of metal-containing oxidoreductases (EC1 or EC7.1), which are directly involved in biogeochemical cycles, i.e., at least one substrate or product is a small inorganic molecule that is or can be exchanged with the environment. Based on these inclusion criteria, we select and report 59 metalloenzymes, describing the organometallic structure of their active sites, the redox reactions in which they are involved, and their biogeochemical roles.
Collapse
Affiliation(s)
- Bruno Hay Mele
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Maria Monticelli
- Department of Biology, University of Naples Federico II, Naples, Italy
- National Research Council - Institute of Biomolecular Chemistry - CNR-ICB, Pozzuoli, Italy
| | - Serena Leone
- Dipartimento di Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton. Dohrn, Napoli, Italy
| | - Deborah Bastoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Bernardo Barosa
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Martina Cascone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Flavia Migliaccio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | - Luca Tonietti
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Alessandra Rotundi
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Angelina Cordone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR-IRBIM, Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, U.S.A
- Marine Chemistry and Geochemistry Department - Woods Hole Oceanographic Institution, MA, U.S.A
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
38
|
Huang C, Duan X, Ge H, Xiao Z, Zheng L, Wang G, Dong J, Wang Y, Zhang Y, Huang X, An H, Xu W, Wang Y. Parallel Proteomic Comparison of Mutants With Altered Carbon Metabolism Reveals Hik8 Regulation of P II Phosphorylation and Glycogen Accumulation in a Cyanobacterium. Mol Cell Proteomics 2023; 22:100582. [PMID: 37225018 PMCID: PMC10315926 DOI: 10.1016/j.mcpro.2023.100582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
Carbon metabolism is central to photosynthetic organisms and involves the coordinated operation and regulation of numerous proteins. In cyanobacteria, proteins involved in carbon metabolism are regulated by multiple regulators including the RNA polymerase sigma factor SigE, the histidine kinases Hik8, Hik31 and its plasmid-borne paralog Slr6041, and the response regulator Rre37. To understand the specificity and the cross-talk of such regulations, we simultaneously and quantitatively compared the proteomes of the gene knockout mutants for the regulators. A number of proteins showing differential expression in one or more mutants were identified, including four proteins that are unanimously upregulated or downregulated in all five mutants. These represent the important nodes of the intricate and elegant regulatory network for carbon metabolism. Moreover, serine phosphorylation of PII, a key signaling protein sensing and regulating in vivo carbon/nitrogen (C/N) homeostasis through reversible phosphorylation, is massively increased with a concomitant significant decrease in glycogen content only in the hik8-knockout mutant, which also displays impaired dark viability. An unphosphorylatable PII S49A substitution restored the glycogen content and rescued the dark viability of the mutant. Together, our study not only establishes the quantitative relationship between the targets and the corresponding regulators and elucidated their specificity and cross-talk but also unveils that Hik8 regulates glycogen accumulation through negative regulation of PII phosphorylation, providing the first line of evidence that links the two-component system with PII-mediated signal transduction and implicates them in the regulation of carbon metabolism.
Collapse
Affiliation(s)
- Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Gaojie Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu An
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Gupta RK, Tikariha H, Purohit HJ, Khardenavis AA. Pangenome-driven insights into nitrogen metabolic characteristics of Citrobacter portucalensis strain AAK_AS5 associated with wastewater nitrogen removal. Arch Microbiol 2023; 205:270. [PMID: 37356030 DOI: 10.1007/s00203-023-03597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/27/2023]
Abstract
Nitrogen metabolism in the genus Citrobacter is very poorly studied despite its several implications in wastewater treatment. In the current study, Citrobacter portucalensis strain AAK_AS5 was assessed for remediation of simulated wastewater supplemented with different inorganic nitrogen sources. Combination of (NH4)2SO4 with KNO3 was the most preferred for achieving high growth density followed by (NH4)2SO4 and KNO3 alone. This was in agreement with highest ammonical nitrogen removal of 92.9% in the presence of combined nitrogen sources and the corresponding nitrate nitrogen removal of 93% in the presence of KNO3. Furthermore, these removal capacities were validated by investigating the uniqueness and the spread of metabolic features through pan-genomic approach that revealed the largest number of unique genes (2097) and accessory genes (705) in strain AAK_AS5. Of the total 44 different types of nitrogen metabolism-related genes, 39 genes were associated with the core genome, while 5 genes such as gltI, nasA, nasR, nrtA, and ntrC uniquely belonged to the accessory genome. Strain AAK_AS5 possessed three major nitrate removal pathways viz., assimilatory and dissimilatory nitrate reduction to ammonia (ANRA & DNRA), and denitrification; however, the absence of nitrification was compensated by ammonia assimilation catalyzed by gene products of the GDH and GS-GOGAT pathways. narGHIJ encoding the respiratory nitrate reductase was commonly identified in all the studied genomes, while genes such as nirK, norB, and nosZ were uniquely present in the strain AAK_AS5 only. A markedly different genetic content and metabolic diversity between the strains reflected their adaptive evolution in the environment thus highlighting the significance of C. portucalensis AAK_AS5 for potential application in nitrogen removal from wastewater.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hitesh Tikariha
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
40
|
Spät P, Krauspe V, Hess WR, Maček B, Nalpas N. Deep Proteogenomics of a Photosynthetic Cyanobacterium. J Proteome Res 2023; 22:1969-1983. [PMID: 37146978 PMCID: PMC10243305 DOI: 10.1021/acs.jproteome.3c00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 05/07/2023]
Abstract
Cyanobacteria, the evolutionary ancestors of plant chloroplasts, contribute substantially to the Earth's biogeochemical cycles and are of great interest for a sustainable economy. Knowledge of protein expression is the key to understanding cyanobacterial metabolism; however, proteome studies in cyanobacteria are limited and cover only a fraction of the theoretical proteome. Here, we performed a comprehensive proteogenomic analysis of the model cyanobacterium Synechocystis sp. PCC 6803 to characterize the expressed (phospho)proteome, re-annotate known and discover novel open reading frames (ORFs). By mapping extensive shotgun mass spectrometry proteomics data onto a six-frame translation of the Synechocystis genome, we refined the genomic annotation of 64 ORFs, including eight completely novel ORFs. Our study presents the largest reported (phospho)proteome dataset for a unicellular cyanobacterium, covering the expression of about 80% of the theoretical proteome under various cultivation conditions, such as nitrogen or carbon limitation. We report 568 phosphorylated S/T/Y sites that are present on numerous regulatory proteins, including the transcriptional regulators cyAbrB1 and cyAbrB2. We also catalogue the proteins that have never been detected under laboratory conditions and found that a large portion of them is plasmid-encoded. This dataset will serve as a resource, providing dedicated information on growth condition-dependent protein expression and phosphorylation.
Collapse
Affiliation(s)
- Philipp Spät
- Quantitative
Proteomics, Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Vanessa Krauspe
- Genetics
& Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestraße 1, 79104 Freiburg im Breisgau, Germany
| | - Wolfgang R. Hess
- Genetics
& Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestraße 1, 79104 Freiburg im Breisgau, Germany
| | - Boris Maček
- Quantitative
Proteomics, Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Nicolas Nalpas
- Quantitative
Proteomics, Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
41
|
Germann AT, Nakielski A, Dietsch M, Petzel T, Moser D, Triesch S, Westhoff P, Axmann IM. A systematic overexpression approach reveals native targets to increase squalene production in Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2023; 14:1024981. [PMID: 37324717 PMCID: PMC10266222 DOI: 10.3389/fpls.2023.1024981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Cyanobacteria are a promising platform for the production of the triterpene squalene (C30), a precursor for all plant and animal sterols, and a highly attractive intermediate towards triterpenoids, a large group of secondary plant metabolites. Synechocystis sp. PCC 6803 natively produces squalene from CO2 through the MEP pathway. Based on the predictions of a constraint-based metabolic model, we took a systematic overexpression approach to quantify native Synechocystis gene's impact on squalene production in a squalene-hopene cyclase gene knock-out strain (Δshc). Our in silico analysis revealed an increased flux through the Calvin-Benson-Bassham cycle in the Δshc mutant compared to the wildtype, including the pentose phosphate pathway, as well as lower glycolysis, while the tricarboxylic acid cycle predicted to be downregulated. Further, all enzymes of the MEP pathway and terpenoid synthesis, as well as enzymes from the central carbon metabolism, Gap2, Tpi and PyrK, were predicted to positively contribute to squalene production upon their overexpression. Each identified target gene was integrated into the genome of Synechocystis Δshc under the control of the rhamnose-inducible promoter Prha. Squalene production was increased in an inducer concentration dependent manner through the overexpression of most predicted genes, which are genes of the MEP pathway, ispH, ispE, and idi, leading to the greatest improvements. Moreover, we were able to overexpress the native squalene synthase gene (sqs) in Synechocystis Δshc, which reached the highest production titer of 13.72 mg l-1 reported for squalene in Synechocystis sp. PCC 6803 so far, thereby providing a promising and sustainable platform for triterpene production.
Collapse
Affiliation(s)
- Anna T. Germann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Nakielski
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maximilian Dietsch
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tim Petzel
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Moser
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Westhoff
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
42
|
Rockwell NC, Lagarias JC. GUN4 appeared early in cyanobacterial evolution. PNAS NEXUS 2023; 2:pgad131. [PMID: 37152672 PMCID: PMC10156173 DOI: 10.1093/pnasnexus/pgad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Photosynthesis relies on chlorophylls, which are synthesized via a common tetrapyrrole trunk pathway also leading to heme, vitamin B12, and other pigmented cofactors. The first committed step for chlorophyll biosynthesis is insertion of magnesium into protoporphyrin IX by magnesium chelatase. Magnesium chelatase is composed of H-, I-, and D-subunits, with the tetrapyrrole substrate binding to the H-subunit. This subunit is rapidly inactivated in the presence of substrate, light, and oxygen, so oxygenic photosynthetic organisms require mechanisms to protect magnesium chelatase from similar loss of function. An additional protein, GUN4, binds to the H-subunit and to tetrapyrroles. GUN4 has been proposed to serve this protective role via its ability to bind linear tetrapyrroles (bilins). In the current work, we probe the origins of bilin binding by GUN4 via comparative phylogenetic analysis and biochemical validation of a conserved bilin-binding motif. Based on our results, we propose that bilin-binding GUN4 proteins arose early in cyanobacterial evolution and that this early acquisition represents an ancient adaptation for maintaining chlorophyll biosynthesis in the presence of light and oxygen.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cell Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cell Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
43
|
Enomoto G, Wallner T, Wilde A. Control of light-dependent behaviour in cyanobacteria by the second messenger cyclic di-GMP. MICROLIFE 2023; 4:uqad019. [PMID: 37223735 PMCID: PMC10124867 DOI: 10.1093/femsml/uqad019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
Nucleotide-derived signalling molecules control a wide range of cellular processes in all organisms. The bacteria-specific cyclic dinucleotide c-di-GMP plays a crucial role in regulating motility-to-sessility transitions, cell cycle progression, and virulence. Cyanobacteria are phototrophic prokaryotes that perform oxygenic photosynthesis and are widespread microorganisms that colonize almost all habitats on Earth. In contrast to photosynthetic processes that are well understood, the behavioural responses of cyanobacteria have rarely been studied in detail. Analyses of cyanobacterial genomes have revealed that they encode a large number of proteins that are potentially involved in the synthesis and degradation of c-di-GMP. Recent studies have demonstrated that c-di-GMP coordinates many different aspects of the cyanobacterial lifestyle, mostly in a light-dependent manner. In this review, we focus on the current knowledge of light-regulated c-di-GMP signalling systems in cyanobacteria. Specifically, we highlight the progress made in understanding the most prominent behavioural responses of the model cyanobacterial strains Thermosynechococcus vulcanus and Synechocystis sp. PCC 6803. We discuss why and how cyanobacteria extract crucial information from their light environment to regulate ecophysiologically important cellular responses. Finally, we emphasize the questions that remain to be addressed.
Collapse
Affiliation(s)
- Gen Enomoto
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Wallner
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
44
|
Christian R, Labbancz J, Usadel B, Dhingra A. Understanding protein import in diverse non-green plastids. Front Genet 2023; 14:969931. [PMID: 37007964 PMCID: PMC10063809 DOI: 10.3389/fgene.2023.969931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The spectacular diversity of plastids in non-green organs such as flowers, fruits, roots, tubers, and senescing leaves represents a Universe of metabolic processes in higher plants that remain to be completely characterized. The endosymbiosis of the plastid and the subsequent export of the ancestral cyanobacterial genome to the nuclear genome, and adaptation of the plants to all types of environments has resulted in the emergence of diverse and a highly orchestrated metabolism across the plant kingdom that is entirely reliant on a complex protein import and translocation system. The TOC and TIC translocons, critical for importing nuclear-encoded proteins into the plastid stroma, remain poorly resolved, especially in the case of TIC. From the stroma, three core pathways (cpTat, cpSec, and cpSRP) may localize imported proteins to the thylakoid. Non-canonical routes only utilizing TOC also exist for the insertion of many inner and outer membrane proteins, or in the case of some modified proteins, a vesicular import route. Understanding this complex protein import system is further compounded by the highly heterogeneous nature of transit peptides, and the varying transit peptide specificity of plastids depending on species and the developmental and trophic stage of the plant organs. Computational tools provide an increasingly sophisticated means of predicting protein import into highly diverse non-green plastids across higher plants, which need to be validated using proteomics and metabolic approaches. The myriad plastid functions enable higher plants to interact and respond to all kinds of environments. Unraveling the diversity of non-green plastid functions across the higher plants has the potential to provide knowledge that will help in developing climate resilient crops.
Collapse
Affiliation(s)
- Ryan Christian
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - June Labbancz
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Amit Dhingra,
| |
Collapse
|
45
|
Patel VK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
46
|
Jackson PJ, Hitchcock A, Brindley AA, Dickman MJ, Hunter CN. Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2023; 155:219-245. [PMID: 36542271 PMCID: PMC9958174 DOI: 10.1007/s11120-022-00990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Quantifying cellular components is a basic and important step for understanding how a cell works, how it responds to environmental changes, and for re-engineering cells to produce valuable metabolites and increased biomass. We quantified proteins in the model cyanobacterium Synechocystis sp. PCC 6803 given the general importance of cyanobacteria for global photosynthesis, for synthetic biology and biotechnology research, and their ancestral relationship to the chloroplasts of plants. Four mass spectrometry methods were used to quantify cellular components involved in the biosynthesis of chlorophyll, carotenoid and bilin pigments, membrane assembly, the light reactions of photosynthesis, fixation of carbon dioxide and nitrogen, and hydrogen and sulfur metabolism. Components of biosynthetic pathways, such as those for chlorophyll or for photosystem II assembly, range between 1000 and 10,000 copies per cell, but can be tenfold higher for CO2 fixation enzymes. The most abundant subunits are those for photosystem I, with around 100,000 copies per cell, approximately 2 to fivefold higher than for photosystem II and ATP synthase, and 5-20 fold more than for the cytochrome b6f complex. Disparities between numbers of pathway enzymes, between components of electron transfer chains, and between subunits within complexes indicate possible control points for biosynthetic processes, bioenergetic reactions and for the assembly of multisubunit complexes.
Collapse
Affiliation(s)
- Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Amanda A Brindley
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - C Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
47
|
cKMT1 is a new lysine methyltransferase that methylates the ferredoxin-NADP(+) oxidoreductase (FNR) and regulates energy transfer in cyanobacteria. Mol Cell Proteomics 2023; 22:100521. [PMID: 36858286 PMCID: PMC10090440 DOI: 10.1016/j.mcpro.2023.100521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Lysine methylation is a conserved and dynamic regulatory post-translational modification performed by lysine methyltransferases (KMTs). KMTs catalyze the transfer of mono-, di-, or tri-methyl groups to substrate proteins and play a critical regulatory role in all domains of life. To date, only one KMT has been identified in cyanobacteria. Here, we tested all of the predicted KMTs in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and we biochemically characterized sll1526 that we termed cKMT1 (cyanobacterial lysine methyltransferase 1), and determined that it can catalyze lysine methylation both in vivo and in vitro. Loss of cKMT1 alters photosynthetic electron transfer in Synechocystis. We analyzed cKMT1-regulated methylation sites in Synechocystis using a timsTOF Pro instrument. We identified 305 class I lysine methylation sites within 232 proteins, and of these, 80 methylation sites in 58 proteins were hypomethylated in ΔcKMT1 cells. We further demonstrated that cKMT1 could methylate ferredoxin-NADP(+) oxidoreductase (FNR) and its potential sites of action on FNR were identified. Amino acid residues H118 and Y219 were identified as key residues in the putative active site of cKMT1 as indicated by structure simulation, site-directed mutagenesis, and KMT activity measurement. Using mutations that mimic the unmethylated forms of FNR, we demonstrated that the inability to methylate K139 residues results in a decrease in the redox activity of FNR and affects energy transfer in Synechocystis. Together, our study identified a new KMT in Synechocystis and elucidated a methylation-mediated molecular mechanism catalyzed by cKMT1 for the regulation of energy transfer in cyanobacteria.
Collapse
|
48
|
Kaltenbrunner A, Reimann V, Hoffmann UA, Aoyagi T, Sakata M, Nimura-Matsune K, Watanabe S, Steglich C, Wilde A, Hess WR. Regulation of pSYSA defense plasmid copy number in Synechocystis through RNase E and a highly transcribed asRNA. Front Microbiol 2023; 14:1112307. [PMID: 36876071 PMCID: PMC9978351 DOI: 10.3389/fmicb.2023.1112307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Synthetic biology approaches toward the development of cyanobacterial producer strains require the availability of appropriate sets of plasmid vectors. A factor for the industrial usefulness of such strains is their robustness against pathogens, such as bacteriophages infecting cyanobacteria. Therefore, it is of great interest to understand the native plasmid replication systems and the CRISPR-Cas based defense mechanisms already present in cyanobacteria. In the model cyanobacterium Synechocystis sp. PCC 6803, four large and three smaller plasmids exist. The ~100 kb plasmid pSYSA is specialized in defense functions by encoding all three CRISPR-Cas systems and several toxin-antitoxin systems. The expression of genes located on pSYSA depends on the plasmid copy number in the cell. The pSYSA copy number is positively correlated with the expression level of the endoribonuclease E. As molecular basis for this correlation we identified the RNase E-mediated cleavage within the pSYSA-encoded ssr7036 transcript. Together with a cis-encoded abundant antisense RNA (asRNA1), this mechanism resembles the control of ColE1-type plasmid replication by two overlapping RNAs, RNA I and II. In the ColE1 mechanism, two non-coding RNAs interact, supported by the small protein Rop, which is encoded separately. In contrast, in pSYSA the similar-sized protein Ssr7036 is encoded within one of the interacting RNAs and it is this mRNA that likely primes pSYSA replication. Essential for plasmid replication is furthermore the downstream encoded protein Slr7037 featuring primase and helicase domains. Deletion of slr7037 led to the integration of pSYSA into the chromosome or the other large plasmid pSYSX. Moreover, the presence of slr7037 was required for successful replication of a pSYSA-derived vector in another model cyanobacterium, Synechococcus elongatus PCC 7942. Therefore, we annotated the protein encoded by slr7037 as Cyanobacterial Rep protein A1 (CyRepA1). Our findings open new perspectives on the development of shuttle vectors for genetic engineering of cyanobacteria and of modulating the activity of the entire CRISPR-Cas apparatus in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Alena Kaltenbrunner
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Viktoria Reimann
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ute A. Hoffmann
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Tomohiro Aoyagi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Minori Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Koskinen S, Kurkela J, Linhartová M, Tyystjärvi T. The genome sequence of Synechocystis sp. PCC 6803 substrain GT-T and its implications for the evolution of PCC 6803 substrains. FEBS Open Bio 2023; 13:701-712. [PMID: 36792971 PMCID: PMC10068330 DOI: 10.1002/2211-5463.13576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Synechocystis sp. PCC 6803 is a model cyanobacterium, glucose-tolerant substrains of which are commonly used as laboratory strains. In recent years, it has become evident that 'wild-type' strains used in different laboratories show some differences in their phenotypes. We report here the chromosome sequence of our Synechocystis sp. PCC 6803 substrain, named substrain GT-T. The chromosome sequence of GT-T was compared to those of two other commonly used laboratory substrains, GT-S and PCC-M. We identified 11 specific mutations in the GT-T substrain, whose physiological consequences are discussed. We also provide an update on evolutionary relationships between different Synechocystis sp. PCC 6803 substrains.
Collapse
Affiliation(s)
- Satu Koskinen
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| | - Juha Kurkela
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| | - Markéta Linhartová
- Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Taina Tyystjärvi
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| |
Collapse
|
50
|
Satta A, Esquirol L, Ebert BE. Current Metabolic Engineering Strategies for Photosynthetic Bioproduction in Cyanobacteria. Microorganisms 2023; 11:455. [PMID: 36838420 PMCID: PMC9964548 DOI: 10.3390/microorganisms11020455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cyanobacteria are photosynthetic microorganisms capable of using solar energy to convert CO2 and H2O into O2 and energy-rich organic compounds, thus enabling sustainable production of a wide range of bio-products. More and more strains of cyanobacteria are identified that show great promise as cell platforms for the generation of bioproducts. However, strain development is still required to optimize their biosynthesis and increase titers for industrial applications. This review describes the most well-known, newest and most promising strains available to the community and gives an overview of current cyanobacterial biotechnology and the latest innovative strategies used for engineering cyanobacteria. We summarize advanced synthetic biology tools for modulating gene expression and their use in metabolic pathway engineering to increase the production of value-added compounds, such as terpenoids, fatty acids and sugars, to provide a go-to source for scientists starting research in cyanobacterial metabolic engineering.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biology, University of Padua, 35100 Padua, Italy
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Natha, QLD 4111, Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|