1
|
Kelsang GA, Ni L, Zhao Z. Insights from the first chromosome-level genome assembly of the alpine gentian Gentiana straminea Maxim. DNA Res 2024; 31:dsae022. [PMID: 39017645 PMCID: PMC11375616 DOI: 10.1093/dnares/dsae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
Gentiana straminea Maxim. is a perennial herb and mainly distributed in the Qinghai-Tibetan Plateau. To adapt to the extreme environment, it has developed particular morphological, physiological, and genetic structures. Also, rich in iridoids, it is one of the original plants of traditional Chinese herb 'Qinjiao'. Herein, we present its first chromosome-level genome sequence assembly and compare it with the genomes of other Gentiana species to facilitate the analysis of genomic characteristics. The assembled genome size of G. straminea was 1.25 Gb, with a contig N50 of 7.5 Mb. A total of 96.08% of the genome sequences was anchored on 13 pseudochromosomes, with a scaffold N50 of 92.70 Mb. A total of 54,310 protein-coding genes were predicted, 80.25% of which were functionally annotated. Comparative genomic analyses indicated that G. straminea experienced two whole-genome duplication events after the γ whole-genome triplication with other eudicots, and it diverged from other Gentiana species at ~3.2 Mya. A total of 142 enzyme-coding genes related to iridoid biosynthesis were identified in its genome. Additionally, we identified differences in the number and expression patterns of iridoid biosynthetic pathway genes in G. straminea compared with two other Gentiana species by integrating whole-genome sequence and transcriptomic analyses.
Collapse
Affiliation(s)
- Gyab Ala Kelsang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Mentseekhang, Traditional Tibetan Hospital, Lhasa 850000, China
| | - Lianghong Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhili Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Fu H, Wang Y, Mi F, Wang L, Yang Y, Wang F, Yue Z, He Y. Transcriptome and metabolome analysis reveals mechanism of light intensity modulating iridoid biosynthesis in Gentiana macrophylla Pall. BMC PLANT BIOLOGY 2024; 24:526. [PMID: 38858643 PMCID: PMC11165902 DOI: 10.1186/s12870-024-05217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Light intensity is a key factor affecting the synthesis of secondary metabolites in plants. However, the response mechanisms of metabolites and genes in Gentiana macrophylla under different light intensities have not been determined. In the present study, G. macrophylla seedlings were treated with LED light intensities of 15 µmol/m2/s (low light, LL), 90 µmol/m2/s (medium light, ML), and 200 µmol/m2/s (high light, HL), and leaves were collected on the 5th day for further investigation. A total of 2162 metabolites were detected, in which, the most abundant metabolites were identified as flavonoids, carbohydrates, terpenoids and amino acids. A total of 3313 and 613 differentially expressed genes (DEGs) were identified in the LL and HL groups compared with the ML group, respectively, mainly enriched in KEGG pathways such as carotenoid biosynthesis, carbon metabolism, glycolysis/gluconeogenesis, amino acids biosynthesis, plant MAPK pathway and plant hormone signaling. Besides, the transcription factors of GmMYB5 and GmbHLH20 were determined to be significantly correlated with loganic acid biosynthesis; the expression of photosystem-related enzyme genes was altered under different light intensities, regulating the expression of enzyme genes involved in the carotenoid, chlorophyll, glycolysis and amino acids pathway, then affecting their metabolic biosynthesis. As a result, low light inhibited photosynthesis, delayed glycolysis, thus, increased certain amino acids and decreased loganic acid production, while high light got an opposite trend. Our research contributed significantly to understand the molecular mechanism of light intensity in controlling metabolic accumulation in G. macrophylla.
Collapse
Affiliation(s)
- Huanhuan Fu
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Yaomin Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Fakai Mi
- College of Life Science, Qinghai Normal University, Xining, 810016, P.R. China
| | - Li Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Ye Yang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Fang Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Zhenggang Yue
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China.
- College of Life Science, Qinghai Normal University, Xining, 810016, P.R. China.
| | - Yihan He
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China.
| |
Collapse
|
3
|
Yin Y, Fu H, Mi F, Yang Y, Wang Y, Li Z, He Y, Yue Z. Genomic characterization of WRKY transcription factors related to secoiridoid biosynthesis in Gentiana macrophylla. BMC PLANT BIOLOGY 2024; 24:66. [PMID: 38262919 PMCID: PMC10804491 DOI: 10.1186/s12870-024-04727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
Gentiana macrophylla is one of Chinese herbal medicines in which 4 kinds of iridoids or secoiridoids, such as loganic acid, sweroside, swertiamarin, and gentiopicroside, are identified as the dominant medicinal secondary metabolites. WRKY, as a large family of transcription factors (TFs), plays an important role in the synthesis of secondary metabolites in plants. Therefore, WRKY genes involved in the biosynthesis of secoiridoids in G. macrophylla were systematically studied. First, a comprehensive genome-wide analysis was performed, and 42 GmWRKY genes were identified, which were unevenly distributed in 12 chromosomes. Accordingly, gene structure, collinearity, sequence alignment, phylogenetic, conserved motif and promoter analyses were performed, and the GmWRKY proteins were divided into three subfamilies based on phylogenetic and multiple sequence alignment analyses. Moreover, the enzyme-encoding genes of the secoiridoid biosynthesis pathway and their promoters were then analysed, and the contents of the four secoiridoids were determined in different tissues. Accordingly, correlation analysis was performed using Pearson's correlation coefficient to construct WRKY gene-enzyme-encoding genes and WRKY gene-metabolite networks. Meanwhile, G. macrophylla seedlings were treated with methyl jasmonate (MeJA) to detect the dynamic change trend of GmWRKYs, biosynthetic genes, and medicinal ingredient accumulation. Thus, a total of 12 GmWRKYs were identified to be involved in the biosynthesis of secoiridoids, of which 8 (GmWRKY1, 6, 12, 17, 33, 34, 38 and 39) were found to regulate the synthesis of gentiopicroside, and 4 (GmWRKY7, 14, 26 and 41) were found to regulate the synthesis of loganic acid. Taken together, this study systematically identified WRKY transcription factors related to the biosynthesis of secoiridoids in G. macrophylla, which could be used as a cue for further investigation of WRKY gene functions in secondary metabolite accumulation.
Collapse
Affiliation(s)
- Yangyang Yin
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Coconstruction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization By Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Huanhuan Fu
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Coconstruction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization By Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Fakai Mi
- College of Life Science, Qinghai Normal University, Xining, 810016, People's Republic of China
| | - Ye Yang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Coconstruction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization By Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Yaomin Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Coconstruction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization By Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Zhe Li
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Coconstruction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization By Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Yihan He
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Coconstruction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization By Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China.
| | - Zhenggang Yue
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Coconstruction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization By Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China.
- College of Life Science, Qinghai Normal University, Xining, 810016, People's Republic of China.
| |
Collapse
|
4
|
Huang PQ, Kang KW, Huang DY, Zhao CL, Zheng H, Luo YX, Wen Y, Zou MF, Li DL, Wu RH, Tian YC, Tian Y, Zhang WH, Jin JW, Yin S, Gan LS. Lignan glucosides from Gentiana macrophylla with potential anti-arthritis and hepatoprotective activities. PHYTOCHEMISTRY 2024; 217:113920. [PMID: 37951561 DOI: 10.1016/j.phytochem.2023.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Ten lignans, including six previously undescribed phenolic ester glycosyl lignans (1-6), were isolated from a well-known traditional Chinese medicine, Qin-Jiao, which is the dry root of Gentiana macrophylla Pall. (Gentianaceae). Their structures were determined by spectroscopic and chemical methods, especially 2D NMR techniques. Quantum chemical calculations of theoretical ECD spectra allowed the determination of their absolute configurations. Refer to its traditional applications for the treatment of rheumatic arthralgia and hepatopathy, these compounds were evaluated on a TNF-α induced MH7A human synoviocyte inflammation model and a D-GalN induced AML12 hepatocyte injury model. Compounds 1, 2, 5, and 6 significantly reduced the release of proinflammatory cytokine IL-1β in MH7A cells at 15 μM and they also could strongly protect AML12 cells against D-GalN injury at 30 μM. Flow cytometry and Western blot analysis showed that compound 5 ameliorated D-GalN induced AML12 cell apoptosis by upregulating the expression of anti-apoptotic Bcl-2 protein and down-regulating the expression of pro-apoptotic Bax protein.
Collapse
Affiliation(s)
- Pei-Qi Huang
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, PR China
| | - Kai-Wen Kang
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, PR China
| | - Dan-Yu Huang
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, PR China
| | - Chun-Lin Zhao
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, PR China
| | - Hao Zheng
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, PR China
| | - Yong-Xin Luo
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, PR China
| | - Yan Wen
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, PR China
| | - Ming-Feng Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Dong-Li Li
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, PR China
| | - Ri-Hui Wu
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, PR China
| | - Yun-Cai Tian
- Shanghai ZZZC Tech. Ltd, 400 Zhuanghangbei Rd, Shanghai, 201415, PR China
| | - Yong Tian
- Shanghai ZZZC Tech. Ltd, 400 Zhuanghangbei Rd, Shanghai, 201415, PR China
| | - Wen-Huan Zhang
- Shanghai ZZZC Tech. Ltd, 400 Zhuanghangbei Rd, Shanghai, 201415, PR China
| | - Jing-Wei Jin
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, PR China.
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Li-She Gan
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, PR China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
5
|
Tominaga T, Ueno K, Saito H, Egusa M, Yamaguchi K, Shigenobu S, Kaminaka H. Monoterpene glucosides in Eustoma grandiflorum roots promote hyphal branching in arbuscular mycorrhizal fungi. PLANT PHYSIOLOGY 2023; 193:2677-2690. [PMID: 37655911 PMCID: PMC10663111 DOI: 10.1093/plphys/kiad482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Host plant-derived strigolactones trigger hyphal branching in arbuscular mycorrhizal (AM) fungi, initiating a symbiotic interaction between land plants and AM fungi. However, our previous studies revealed that gibberellin-treated lisianthus (Eustoma grandiflorum, Gentianaceae) activates rhizospheric hyphal branching in AM fungi using unidentified molecules other than strigolactones. In this study, we analyzed independent transcriptomic data of E. grandiflorum and found that the biosynthesis of gentiopicroside (GPS) and swertiamarin (SWM), characteristic monoterpene glucosides in Gentianaceae, was upregulated in gibberellin-treated E. grandiflorum roots. Moreover, these metabolites considerably promoted hyphal branching in the Glomeraceae AM fungi Rhizophagus irregularis and Rhizophagus clarus. GPS treatment also enhanced R. irregularis colonization of the monocotyledonous crop chive (Allium schoenoprasum). Interestingly, these metabolites did not provoke the germination of the root parasitic plant common broomrape (Orobanche minor). Altogether, our study unveiled the role of GPS and SWM in activating the symbiotic relationship between AM fungi and E. grandiflorum.
Collapse
Affiliation(s)
- Takaya Tominaga
- The United Graduate School of Agricultural Science, Tottori University, Tottori 680-8553, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Hikaru Saito
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori 680-8550, Japan
| |
Collapse
|
6
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
7
|
Huang PQ, Luo YX, Zhang YJ, Li ZX, Wen Y, Zhang K, Li DL, Jin JW, Wu RH, Gan LS. Terpenoid Glucosides from Gentiana macrophylla That Attenuate TNF-α Induced Pulmonary Inflammation in A549 Cells. Molecules 2023; 28:6613. [PMID: 37764389 PMCID: PMC10535684 DOI: 10.3390/molecules28186613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
Four previously undescribed terpenoid glucosides, including one sesquiterpenoid di-glucoside (1), two new iridoid glucosides (2, 3), and a new triterpenoid tri-glucoside (4), were isolated from a 70% ethanol extract of the root of Gentiana macrophylla (Gentianaceae), along with eight known terpenoids. Their structures were determined by spectroscopic techniques, including 1D, 2D NMR, and HRMS (ESI), as well as chemical methods. The absolute configuration of compound 1 was determined by quantum chemical calculation of its theoretical electronic circular dichroism (ECD) spectrum. The sugar moieties of all the new compounds were confirmed to be D-glucose by GC analysis after acid hydrolysis and acetylation. Anti-pulmonary inflammation activity of the iridoids were evaluated on a TNF-α induced inflammation model in A549 cells. Compound 2 could significantly alleviate the release of proinflammatory cytokines IL-1β and IL-8 and increase the expression of anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Pei-Qi Huang
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China; (P.-Q.H.); (Y.-X.L.); (Y.-J.Z.); (Z.-X.L.); (Y.W.); (K.Z.); (D.-L.L.); (J.-W.J.)
| | - Yong-Xin Luo
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China; (P.-Q.H.); (Y.-X.L.); (Y.-J.Z.); (Z.-X.L.); (Y.W.); (K.Z.); (D.-L.L.); (J.-W.J.)
| | - Yu-Jia Zhang
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China; (P.-Q.H.); (Y.-X.L.); (Y.-J.Z.); (Z.-X.L.); (Y.W.); (K.Z.); (D.-L.L.); (J.-W.J.)
| | - Zhi-Xuan Li
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China; (P.-Q.H.); (Y.-X.L.); (Y.-J.Z.); (Z.-X.L.); (Y.W.); (K.Z.); (D.-L.L.); (J.-W.J.)
| | - Yan Wen
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China; (P.-Q.H.); (Y.-X.L.); (Y.-J.Z.); (Z.-X.L.); (Y.W.); (K.Z.); (D.-L.L.); (J.-W.J.)
| | - Kun Zhang
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China; (P.-Q.H.); (Y.-X.L.); (Y.-J.Z.); (Z.-X.L.); (Y.W.); (K.Z.); (D.-L.L.); (J.-W.J.)
| | - Dong-Li Li
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China; (P.-Q.H.); (Y.-X.L.); (Y.-J.Z.); (Z.-X.L.); (Y.W.); (K.Z.); (D.-L.L.); (J.-W.J.)
| | - Jing-Wei Jin
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China; (P.-Q.H.); (Y.-X.L.); (Y.-J.Z.); (Z.-X.L.); (Y.W.); (K.Z.); (D.-L.L.); (J.-W.J.)
| | - Ri-Hui Wu
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China; (P.-Q.H.); (Y.-X.L.); (Y.-J.Z.); (Z.-X.L.); (Y.W.); (K.Z.); (D.-L.L.); (J.-W.J.)
| | - Li-She Gan
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China; (P.-Q.H.); (Y.-X.L.); (Y.-J.Z.); (Z.-X.L.); (Y.W.); (K.Z.); (D.-L.L.); (J.-W.J.)
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
8
|
A Comparative Transcriptomic with UPLC-Q-Exactive MS Reveals Differences in Gene Expression and Components of Iridoid Biosynthesis in Various Parts of Gentiana macrophylla. Genes (Basel) 2022; 13:genes13122372. [PMID: 36553639 PMCID: PMC9778098 DOI: 10.3390/genes13122372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Gentiana macrophylla Pall. (G. macrophylla)-a member of the family Gentianaceae-is a well-known traditional Chinese medical herb. Iridoids are the main active components of G. macrophylla, which has a wide range of pharmacological activities such as dispelling wind, eliminating dampness, clearing heat and asthenic fever, hepatoprotective and choleretic actions, and other medicinal effects. In this study, a total of 67,048 unigenes were obtained by transcriptomic sequencing analysis of G. macrophylla. A BLAST analysis showed that 48.21%, 33.66%, 46.32%, and 32.62% of unigenes were identified in the NR, Swiss-Prot, eggNOG, and KEGG databases, respectively. Twenty-five key enzymes were identified in the iridoid biosynthesis pathway. Most of the upregulated unigenes were enriched in flowers and leaves. The trustworthiness of the transcriptomic data was validated by real-time quantitative PCR (qRT-PCR). A total of 22 chemical constituents were identified by ultra-high performance liquid chromatography-quadrupole-electrostatic field Orbitrap mass spectrometry (UPLC-Q-Exactive MS), including 10 iridoids. A correlation analysis showed that the expression of 7-DLH and SLS was closely related to iridoids. The expression of 7-DLH and SLS was higher in flowers, indicating that flowers are important for iridoid biosynthesis in G. macrophylla.
Collapse
|