1
|
Horgan FG. Virulence Adaptation by Rice Planthoppers and Leafhoppers to Resistance Genes and Loci: A Review. INSECTS 2024; 15:652. [PMID: 39336620 PMCID: PMC11432362 DOI: 10.3390/insects15090652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
In recent decades, research on developing and deploying resistant rice has accelerated due to the availability of modern molecular tools and, in particular, advances in marker-assisted selection. However, progress in understanding virulence adaptation has been relatively slow. This review tracks patterns in virulence adaptation to resistance genes (particularly Bph1, bph2, Bph3, and bph4) and examines the nature of virulence based on selection experiments, responses by virulent populations to differential rice varieties (i.e., varieties with different resistance genes), and breeding experiments that interpret the genetic mechanisms underlying adaptation. The review proposes that varietal resistance is best regarded as a combination of minor and major resistance traits against which planthoppers develop partial or complete virulence through heritable improvements that are reversable or through evolutionary adaptation, respectively. Agronomic practices, deployment patterns, and herbivore population pressures determine the rates of adaptation, and there is growing evidence that pesticide detoxification mechanisms can accelerate virulence adaptation. Research to delay adaptation has mainly focused on gene pyramiding (i.e., including ≥ two major genes in a variety) and multilines (i.e., including ≥ two resistant varieties in a field or landscape); however, these strategies have not been adequately tested and, if not managed properly, could inadvertently accelerate adaptation compared to sequential deployment. Several research gaps remain and considerable improvements in research methods are required to better understand and manage virulence adaptation.
Collapse
Affiliation(s)
- Finbarr G. Horgan
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland;
- Faculty of Agrarian and Forest Sciences, School of Agronomy, Catholic University of Maule, Casilla 7-D, Curicó 3349001, Chile
- Centre for Pesticide Suicide Prevention, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
2
|
Pixley KV, Falck-Zepeda JB, Giller KE, Glenna LL, Gould F, Mallory-Smith CA, Stelly DM, Stewart CN. Genome Editing, Gene Drives, and Synthetic Biology: Will They Contribute to Disease-Resistant Crops, and Who Will Benefit? ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:165-188. [PMID: 31150590 DOI: 10.1146/annurev-phyto-080417-045954] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Genetically engineered crops have been grown for more than 20 years, resulting in widespread albeit variable benefits for farmers and consumers. We review current, likely, and potential genetic engineering (GE) applications for the development of disease-resistant crop cultivars. Gene editing, gene drives, and synthetic biology offer novel opportunities to control viral, bacterial, and fungal pathogens, parasitic weeds, and insect vectors of plant pathogens. We conclude that there will be no shortage of GE applications totackle disease resistance and other farmer and consumer priorities for agricultural crops. Beyond reviewing scientific prospects for genetically engineered crops, we address the social institutional forces that are commonly overlooked by biological scientists. Intellectual property regimes, technology regulatory frameworks, the balance of funding between public- and private-sector research, and advocacy by concerned civil society groups interact to define who uses which GE technologies, on which crops, and for the benefit of whom. Ensuring equitable access to the benefits of genetically engineered crops requires affirmative policies, targeted investments, and excellent science.
Collapse
Affiliation(s)
- Kevin V Pixley
- International Maize and Wheat Improvement Center (CIMMYT), 56237 Texcoco, Mexico;
| | - Jose B Falck-Zepeda
- International Food Policy Research Institute (IFPRI), Washington, DC 20005-3915, USA
| | - Ken E Giller
- Plant Production Systems Group, Wageningen University & Research (WUR), 6700 AK Wageningen, The Netherlands
| | - Leland L Glenna
- Department of Agricultural Economics, Sociology, and Education, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Fred Gould
- Genetic Engineering and Society Center and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Carol A Mallory-Smith
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843-2474, USA
| | - C Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
3
|
Waiho K, Shi X, Fazhan H, Li S, Zhang Y, Zheng H, Liu W, Fang S, Ikhwanuddin M, Ma H. High-Density Genetic Linkage Maps Provide Novel Insights Into ZW/ZZ Sex Determination System and Growth Performance in Mud Crab ( Scylla paramamosain). Front Genet 2019; 10:298. [PMID: 31024620 PMCID: PMC6459939 DOI: 10.3389/fgene.2019.00298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Mud crab, Scylla paramamosain is one of the most important crustacean species in global aquaculture. To determine the genetic basis of sex and growth-related traits in S. paramamosain, a high-density genetic linkage map with 16,701 single nucleotide polymorphisms (SNPs) was constructed using SLAF-seq and a full-sib family. The consensus map has 49 linkage groups, spanning 5,996.66 cM with an average marker-interval of 0.81 cM. A total of 516 SNP markers, including 8 female-specific SNPs segregated in two quantitative trait loci (QTLs) for phenotypic sex were located on LG32. The presence of female-specific SNP markers only on female linkage map, their segregation patterns and lower female: male recombination rate strongly suggest the conformation of a ZW/ZZ sex determination system in S. paramamosain. The QTLs of most (90%) growth-related traits were found within a small interval (25.18–33.74 cM) on LG46, highlighting the potential involvement of LG46 in growth. Four markers on LG46 were significantly associated with 10–16 growth-related traits. BW was only associated with marker 3846. Based on the annotation of transcriptome data, 11 and 2 candidate genes were identified within the QTL regions of sex and growth-related traits, respectively. The newly constructed high-density genetic linkage map with sex-specific SNPs, and the identified QTLs of sex- and growth-related traits serve as a valuable genetic resource and solid foundation for marker-assisted selection and genetic improvement of crustaceans.
Collapse
Affiliation(s)
- Khor Waiho
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xi Shi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hanafiah Fazhan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Shaobin Fang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Mhd Ikhwanuddin
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China.,Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
4
|
Matsukawa M, Tasaki M, Doi K, Ito K, Kawakita K, Tanaka T. Regional population differences of the brown planthopper (Nilaparvata lugens Stål) in Cambodia using genotyping-by-sequencing. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:471-478. [PMID: 29061206 DOI: 10.1017/s0007485317000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The brown planthopper Nilaparvata lugens Stål (BPH) can be found year-round in tropical region and causes severe damage to rice. Although there has been documented BPH damage to rice crops in the past decade in Cambodia, the extent of this epidemic is poorly understood. Here, we examined the time variation of BPH population in the abundance of morphotypes in 13 main rice-producing provinces (86 sites) by aspirator method and in the Takeo Province (five sites) by yellow sticky trap method. At least three generations were observed during the 3-month collection period in the rainy growing season. Regarding the occurrence of BPH morphotypes, in July the macropterous adults were restricted to south Cambodia and in August all morphotypes, adults (macropterous and brachypterous) and nymphs, appeared in all sampling sites. To explain the difference of regional distribution, the genetic differentiation was analyzed in south and northwest Cambodia (three sites) by using single nucleotide polymorphisms (SNP) analysis via genotyping-by-sequencing (GBS) using next-generation sequencing. The 2455 SNPs obtained by GBS clarified the three sub-populations and they corresponded to the expected dissemination patterns. These results provide a clue to understand the differentiation and epidemic of BPH in Cambodia.
Collapse
Affiliation(s)
- M Matsukawa
- Graduate School of Bioagricultural Sciences,Nagoya University,Chikusa,Nagoya,Aichi 464-8601,Japan
| | - Mikako Tasaki
- International Cooperation Center for Agricultural Education,Nagoya University,Chikusa,Nagoya,Aichi 464-8601,Japan
| | - Kazuyuki Doi
- Graduate School of Bioagricultural Sciences,Nagoya University,Chikusa,Nagoya,Aichi 464-8601,Japan
| | - Kasumi Ito
- International Cooperation Center for Agricultural Education,Nagoya University,Chikusa,Nagoya,Aichi 464-8601,Japan
| | - Kazuhito Kawakita
- Graduate School of Bioagricultural Sciences,Nagoya University,Chikusa,Nagoya,Aichi 464-8601,Japan
| | - Toshiharu Tanaka
- International Cooperation Center for Agricultural Education,Nagoya University,Chikusa,Nagoya,Aichi 464-8601,Japan
| |
Collapse
|
5
|
Sun ZX, Kang K, Cai YJ, Zhang JQ, Zhai YF, Zeng RS, Zhang WQ. Transcriptional regulation of the vitellogenin gene through a fecundity-related single nucleotide polymorphism within a GATA-1 binding motif in the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2018; 27:365-372. [PMID: 29484744 DOI: 10.1111/imb.12378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Identifying the Single Nucleotide Polymorphisms (SNPs) with functions in insect fecundity promises to provide novel insight into genetic mechanisms of adaptation and to aid in effective control of insect populations. We previously identified several SNPs within the vitellogenin (Vg) promoter region between a high-fecundity population (HFP) and a low-fecundity population (LFP) of the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Here, we found that an A-to-T (HFP allele to LFP allele) transversion at nucleotide -953 upstream of Vg in a Nilaparvata lugens GATA-1 (NlGATA-1) binding motif is associated with the level of Vg transcription. We also characterized NlGATA-1, containing a double CX2 CX17 CX2 C zinc finger, which has been implicated in the activation of Vg gene expression. Knockdown of the NlGATA-1 gene results in a reduced basal level of expression of the Vg gene and fewer offspring of N. lugens in vivo, whereas overexpression of NlGATA-1 in cells increased Vg promoter activity. Moreover, upon cotransfection with NlGATA-1 expression vector, the luciferase activities of Vg reporter vectors with the A allele were significantly higher than those with the T allele. These findings support a mechanism in which a SNP within the promoter of Vg is associated with the level of Vg transcription by altering the binding activity of NlGATA-1 and subsequently affecting fecundity in N. lugens.
Collapse
Affiliation(s)
- Z-X Sun
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - K Kang
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - Y-J Cai
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - J-Q Zhang
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - Y-F Zhai
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - R-S Zeng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - W-Q Zhang
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Jairin J, Leelagud P, Pongmee A, Srivilai K. Chromosomal Location of a Recessive Red-Eye Mutant Gene in the Brown Planthopper <i>Nilaparvata lugens</i> (Stål) (Insecta: Hemiptera). ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ae.2017.51003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Kobayashi T. Evolving ideas about genetics underlying insect virulence to plant resistance in rice-brown planthopper interactions. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:32-39. [PMID: 26668110 DOI: 10.1016/j.jinsphys.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Many plant-parasite interactions that include major plant resistance genes have subsequently been shown to exhibit features of gene-for-gene interactions between plant Resistance genes and parasite Avirulence genes. The brown planthopper (BPH) Nilaparvata lugens is an important pest of rice (Oryza sativa). Historically, major Resistance genes have played an important role in agriculture. As is common in gene-for-gene interactions, evolution of BPH virulence compromises the effectiveness of singly-deployed resistance genes. It is therefore surprising that laboratory studies of BPH have supported the conclusion that virulence is conferred by changes in many genes rather than a change in a single gene, as is proposed by the gene-for-gene model. Here we review the behaviour, physiology and genetics of the BPH in the context of host plant resistance. A problem for genetic understanding has been the use of various insect populations that differ in frequencies of virulent genotypes. We show that the previously proposed polygenic inheritance of BPH virulence can be explained by the heterogeneity of parental populations. Genetic mapping of Avirulence genes indicates that virulence is a monogenic trait. These evolving concepts, which have brought the gene-for-gene model back into the picture, are accelerating our understanding of rice-BPH interactions at the molecular level.
Collapse
Affiliation(s)
- Tetsuya Kobayashi
- Division of Insect Sciences, National Institute of Agrobiological Sciences, 1-2, O-washi, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
8
|
Lv L, Peng X, Jing S, Liu B, Zhu L, He G. Intraspecific and Interspecific Variations in the Mitochondrial Genomes of Nilaparvata (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:2021-2029. [PMID: 26470349 DOI: 10.1093/jee/tov122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/23/2015] [Indexed: 06/05/2023]
Abstract
Planthoppers in the genus Nilaparvata Distant are serious pests of rice and many other crops in tropical and temperate Asia, and northern Australia. In this study, the mitochondrial genomes of four Nilaparvata planthoppers were sequenced, three in Nilaparvata lugens Stål and one in Nilaparvata muiri China. Mitochondrial genome of Nilaparvata contain the standard set of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a control region. The nucleotide composition of Nilaparvata mitochondrial sequence is biased toward adenine and thymine, and the amino acid composition is affected to a similar degree by the bias to AT. We compare the four mitochondrial genomes and find intra- and interspecific variation in gene length, base composition, nucleotide and amino acid substitutions, intergenic spacer length, and gene overlap. The intra- and interspecific variations reveal that nucleotide and amino acid substitutions in mitochondrial protein-coding genes make a contribution to the formation of various insect biotypes in one species. Furthermore, the accumulation of nonsynonymous substitutions in the mitochondrial protein-coding genes, as well as differences in start codons, the length of intergenic spacers, and gene overlap regions contribute to differences between the two species investigated here. In addition, cox is the most conserved gene family and nad4-nad4l cluster is variable in Nilaparvata mitochondrial genes for the intra- and interspecific variation.
Collapse
Affiliation(s)
- Lu Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xinxin Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Shengli Jing
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Bingfang Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
9
|
Stuart J. Insect effectors and gene-for-gene interactions with host plants. CURRENT OPINION IN INSECT SCIENCE 2015; 9:56-61. [PMID: 32846709 DOI: 10.1016/j.cois.2015.02.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 06/11/2023]
Abstract
Within the context of the four-phase model of plant immunity, gene-for-gene interactions have gained new relevance. Genes conferring resistance to the Asian rice gall midge (Orseolia oryzae) and the small brown planthopper (Nilaparvata lugens) have been cloned in rice (Oryza sativa). Mutations in insect avirulence genes that defeat plant resistance have been identified and cloned. Results are consistent with both the gene-for-gene hypothesis and the new model of plant immunity. Insect resistance genes encode proteins with nucleotide binding sites and leucine-rich repeats. Insects use effectors that elicit effector-triggered immunity. At least seven-percent of Hessian fly genes are effector encoding.
Collapse
Affiliation(s)
- Jeff Stuart
- Department of Entomology, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
10
|
Kobayashi T, Yamamoto K, Suetsugu Y, Kuwazaki S, Hattori M, Jairin J, Sanada-Morimura S, Matsumura M. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens. Proc Biol Sci 2015; 281:rspb.2014.0726. [PMID: 24870048 DOI: 10.1098/rspb.2014.0726] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers detected a single region on the 10th linkage group responsible for the virulence. The QTL explained from 57 to 84% of the total phenotypic variation. Bulked segregant analysis with next-generation sequencing in F2 progenies identified five SNPs genetically linked to the virulence. These analyses showed that virulence to Bph1 was controlled by a single recessive gene. In contrast to previous studies, the gene-for-gene relationship between the major resistance gene Bph1 and virulence gene of BPH was confirmed. Identified markers are available for map-based cloning of the major gene controlling BPH virulence to rice resistance.
Collapse
Affiliation(s)
- Tetsuya Kobayashi
- National Institute of Agrobiological Sciences, 1-2, O-washi, Tsukuba, Ibaraki 305-8634, Japan
| | - Kimiko Yamamoto
- National Institute of Agrobiological Sciences, 1-2, O-washi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yoshitaka Suetsugu
- National Institute of Agrobiological Sciences, 1-2, O-washi, Tsukuba, Ibaraki 305-8634, Japan
| | - Seigo Kuwazaki
- National Institute of Agrobiological Sciences, 1-2, O-washi, Tsukuba, Ibaraki 305-8634, Japan
| | - Makoto Hattori
- National Institute of Agrobiological Sciences, 1-2, O-washi, Tsukuba, Ibaraki 305-8634, Japan
| | - Jirapong Jairin
- Ubon Ratchathani Rice Research Center, PO Box 65, Muang, Ubon Ratchathani 34000, Thailand
| | - Sachiyo Sanada-Morimura
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Kumamoto 861-1192, Japan
| | - Masaya Matsumura
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Kumamoto 861-1192, Japan
| |
Collapse
|
11
|
Jing S, Zhang L, Ma Y, Liu B, Zhao Y, Yu H, Zhou X, Qin R, Zhu L, He G. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance. PLoS One 2014; 9:e98911. [PMID: 24911169 PMCID: PMC4049697 DOI: 10.1371/journal.pone.0098911] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/14/2014] [Indexed: 12/26/2022] Open
Abstract
Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens) is the most destructive rice (Oryza sativa) pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5) and 14 (Qgr14). This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for controlling this most destructive agricultural insect.
Collapse
Affiliation(s)
- Shengli Jing
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Lei Zhang
- Engineering Research Center of Protection and Utilization for Biological Resources in Minority Regions, College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Yinhua Ma
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Bingfang Liu
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Yan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Hangjin Yu
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Xi Zhou
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Rui Qin
- Engineering Research Center of Protection and Utilization for Biological Resources in Minority Regions, College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Yu C, Luo L, Pan H, Guo X, Wan H, Zhang Q. Filling gaps with construction of a genetic linkage map in tetraploid roses. FRONTIERS IN PLANT SCIENCE 2014; 5:796. [PMID: 25628638 PMCID: PMC4292389 DOI: 10.3389/fpls.2014.00796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/21/2014] [Indexed: 05/21/2023]
Abstract
Rose (Rosa sp.) is one of the most economically important ornamental crops worldwide. The present work contains a genetic linkage map for tetraploid roses that was constructed from an F1 segregation population using AFLPs and SSRs on 189 individuals. The preliminary 'Yunzheng Xiawei' and 'Sun City' maps consisted of 298 and 255 markers arranged into 26 and 32 linkage groups, respectively. The recombined parental maps covered 737 and 752 cM of the genome, respectively. The integrated linkage map was composed of 295 polymorphic markers that spanned 874 cM, and it had a mean intermarker distance of 2.9 cM. In addition, a set of newly developed EST-SSRs that are distributed evenly throughout the mapping population were released. The work identified 67 anchoring points that came from 43 common SSRs. The results that were produced from a large number of individuals (189) and polymorphic SSRs (242) will enhance the ability to construct higher density consensus maps with the available diploid level rose maps, and they will definitely serve as a tool for accurate QTL detection and marker assisted selection.
Collapse
Affiliation(s)
| | | | | | | | | | - Qixiang Zhang
- *Correspondence: Qixiang Zhang, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and rural ecological environment and College of Landscape Architecture, Beijing Forestry University, 35# Qinghua East Road, Beijing, 100083, China e-mail:
| |
Collapse
|