1
|
Champie A, Lachance JC, Sastry A, Matteau D, Lloyd CJ, Grenier F, Lamoureux CR, Jeanneau S, Feist AM, Jacques PÉ, Palsson BO, Rodrigue S. Diagnosis and mitigation of the systemic impact of genome reduction in Escherichia coli DGF-298. mBio 2024; 15:e0087324. [PMID: 39207109 PMCID: PMC11481515 DOI: 10.1128/mbio.00873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Microorganisms with simplified genomes represent interesting cell chassis for systems and synthetic biology. However, genome reduction can lead to undesired traits, such as decreased growth rate and metabolic imbalances. To investigate the impact of genome reduction on Escherichia coli strain DGF-298, a strain in which ~ 36% of the genome has been removed, we reconstructed a strain-specific metabolic model (iAC1061), investigated the regulation of gene expression using iModulon-based transcriptome analysis, and performed adaptive laboratory evolution to let the strain correct potential imbalances that arose during its simplification. The model notably predicted that the removal of all three key pathways for glycolaldehyde disposal in this microorganism would lead to a metabolic bottleneck through folate starvation. Glycolaldehyde is also known to cause self-generation of reactive oxygen species, as evidenced by the increased expression of oxidative stress resistance genes in the SoxS iModulon. The reintroduction of the aldA gene, responsible for one native glycolaldehyde disposal route, alleviated the constitutive oxidative stress response. Our results suggest that systems-level approaches and adaptive laboratory evolution have additive benefits when trying to repair and optimize genome-engineered strains. IMPORTANCE Genomic streamlining can be employed in model organisms to reduce complexity and enhance strain predictability. One of the most striking examples is the bacterial strain Escherichia coli DGF-298, notable for having over one-third of its genome deleted. However, such extensive genome modifications raise the question of how similar this simplified cell remains when compared with its parent, and what are the possible unintended consequences of this simplification. In this study, we used metabolic modeling along with iModulon-based transcriptomic analysis in different growth conditions to assess the impact of genome reduction on metabolism and gene regulation. We observed little impact of genomic reduction on the regulatory network of E. coli DGF-298 and identified a potential metabolic bottleneck leading to the constitutive activity of the SoxS iModulon. We then leveraged the model's predictions to successfully restore SoxS activity to the basal level.
Collapse
Affiliation(s)
- Antoine Champie
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Anand Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Dominick Matteau
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Colton J. Lloyd
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Frédéric Grenier
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Cameron R. Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Simon Jeanneau
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam M. Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | | | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Sébastien Rodrigue
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Ma S, Su T, Lu X, Qi Q. Bacterial genome reduction for optimal chassis of synthetic biology: a review. Crit Rev Biotechnol 2024; 44:660-673. [PMID: 37380345 DOI: 10.1080/07388551.2023.2208285] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/13/2022] [Accepted: 02/20/2023] [Indexed: 06/30/2023]
Abstract
Bacteria with streamlined genomes, that harbor full functional genes for essential metabolic networks, are able to synthesize the desired products more effectively and thus have advantages as production platforms in industrial applications. To obtain streamlined chassis genomes, a large amount of effort has been made to reduce existing bacterial genomes. This work falls into two categories: rational and random reduction. The identification of essential gene sets and the emergence of various genome-deletion techniques have greatly promoted genome reduction in many bacteria over the past few decades. Some of the constructed genomes possessed desirable properties for industrial applications, such as: increased genome stability, transformation capacity, cell growth, and biomaterial productivity. The decreased growth and perturbations in physiological phenotype of some genome-reduced strains may limit their applications as optimized cell factories. This review presents an assessment of the advancements made to date in bacterial genome reduction to construct optimal chassis for synthetic biology, including: the identification of essential gene sets, the genome-deletion techniques, the properties and industrial applications of artificially streamlined genomes, the obstacles encountered in constructing reduced genomes, and the future perspectives.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| |
Collapse
|
3
|
Hitomi K, Ishii Y, Ying BW. Experimental evolution for the recovery of growth loss due to genome reduction. eLife 2024; 13:RP93520. [PMID: 38690805 PMCID: PMC11062635 DOI: 10.7554/elife.93520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.
Collapse
Affiliation(s)
- Kenya Hitomi
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Yoichiro Ishii
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| |
Collapse
|
4
|
Hamed MB, Busche T, Simoens K, Carpentier S, Kormanec J, Van Mellaert L, Anné J, Kalinowski J, Bernaerts K, Karamanou S, Economou A. Enhanced protein secretion in reduced genome strains of Streptomyces lividans. Microb Cell Fact 2024; 23:13. [PMID: 38183102 PMCID: PMC10768272 DOI: 10.1186/s12934-023-02269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND S. lividans TK24 is a popular host for the production of small molecules and the secretion of heterologous protein. Within its large genome, twenty-nine non-essential clusters direct the biosynthesis of secondary metabolites. We had previously constructed ten chassis strains, carrying deletions in various combinations of specialized metabolites biosynthetic clusters, such as those of the blue actinorhodin (act), the calcium-dependent antibiotic (cda), the undecylprodigiosin (red), the coelimycin A (cpk) and the melanin (mel) clusters, as well as the genes hrdD, encoding a non-essential sigma factor, and matAB, a locus affecting mycelial aggregation. Genome reduction was aimed at reducing carbon flow toward specialized metabolite biosynthesis to optimize the production of secreted heterologous protein. RESULTS Two of these S. lividans TK24 derived chassis strains showed ~ 15% reduction in biomass yield, 2-fold increase of their total native secretome mass yield and enhanced abundance of several secreted proteins compared to the parental strain. RNAseq and proteomic analysis of the secretome suggested that genome reduction led to cell wall and oxidative stresses and was accompanied by the up-regulation of secretory chaperones and of secDF, a Sec-pathway component. Interestingly, the amount of the secreted heterologous proteins mRFP and mTNFα, by one of these strains, was 12 and 70% higher, respectively, than that secreted by the parental strain. CONCLUSION The current study described a strategy to construct chassis strains with enhanced secretory abilities and proposed a model linking the deletion of specialized metabolite biosynthetic clusters to improved production of secreted heterologous proteins.
Collapse
Affiliation(s)
- Mohamed Belal Hamed
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Molecular Biology Depart, National Research Centre, Dokii, Cairo, Egypt
- Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Kenneth Simoens
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, Leuven, B-3001, Belgium
| | - Sebastien Carpentier
- SYBIOMA, KU Leuven facility for Systems Biology Based Mass Spectrometry, Leuven, B-3000, Belgium
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 84551, Slovakia
| | - Lieve Van Mellaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Jozef Anné
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Joern Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Kristel Bernaerts
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, Leuven, B-3001, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium.
| | - Anastassios Economou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
| |
Collapse
|
5
|
Amendola CR, Cordell WT, Kneucker CM, Szostkiewicz CJ, Ingraham MA, Monninger M, Wilton R, Pfleger BF, Salvachúa D, Johnson CW, Beckham GT. Comparison of wild-type KT2440 and genome-reduced EM42 Pseudomonas putida strains for muconate production from aromatic compounds and glucose. Metab Eng 2024; 81:88-99. [PMID: 38000549 DOI: 10.1016/j.ymben.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Pseudomonas putida KT2440 is a robust, aromatic catabolic bacterium that has been widely engineered to convert bio-based and waste-based feedstocks to target products. Towards industrial domestication of P. putida KT2440, rational genome reduction has been previously conducted, resulting in P. putida strain EM42, which exhibited characteristics that could be advantageous for production strains. Here, we compared P. putida KT2440- and EM42-derived strains for cis,cis-muconic acid production from an aromatic compound, p-coumarate, and in separate strains, from glucose. To our surprise, the EM42-derived strains did not outperform the KT2440-derived strains in muconate production from either substrate. In bioreactor cultivations, KT2440- and EM42-derived strains produced muconate from p-coumarate at titers of 45 g/L and 37 g/L, respectively, and from glucose at 20 g/L and 13 g/L, respectively. To provide additional insights about the differences in the parent strains, we analyzed growth profiles of KT2440 and EM42 on aromatic compounds as the sole carbon and energy sources. In general, the EM42 strain exhibited reduced growth rates but shorter growth lags than KT2440. We also observed that EM42-derived strains resulted in higher growth rates on glucose compared to KT2440-derived strains, but only at the lowest glucose concentrations tested. Transcriptomics revealed that genome reduction in EM42 had global effects on transcript levels and showed that the EM42-derived strains that produce muconate from glucose exhibit reduced modulation of gene expression in response to changes in glucose concentrations. Overall, our results highlight that additional studies are warranted to understand the effects of genome reduction on microbial metabolism and physiology, especially when intended for use in production strains.
Collapse
Affiliation(s)
- Caroline R Amendola
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - William T Cordell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin M Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Caralyn J Szostkiewicz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Michela Monninger
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Rosemarie Wilton
- Agile BioFoundry, Emeryville, CA, 94608, USA; Biosciences Division Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA.
| |
Collapse
|
6
|
Lee H, Cho YJ, Cho A, Kim OS. Environmental Adaptation of Psychrophilic Bacteria Subtercola spp. Isolated from Various Cryospheric Habitats. J Microbiol 2023; 61:663-672. [PMID: 37615929 DOI: 10.1007/s12275-023-00068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/25/2023]
Abstract
Subtercola boreus K300T is a novel psychrophilic strain that was isolated from permanently cold groundwater in Finland and has also been found in several places in Antarctica including lake, soil, and rocks. We performed genomic and transcriptomic analyses of 5 strains from Antarctica and a type strain to understand their adaptation to different environments. Interestingly, the isolates from rocks showed a low growth rate and smaller genome size than strains from the other isolation sources (lake, soil, and groundwater). Based on these habitat-dependent characteristics, the strains could be classified into two ecotypes, which showed differences in energy production, signal transduction, and transcription in the clusters of orthologous groups of proteins (COGs) functional category. In addition, expression pattern changes revealed differences in metabolic processes, including uric acid metabolism, DNA repair, major facilitator superfamily (MFS) transporters, and xylose degradation, depending on the nutritional status of their habitats. These findings provide crucial insights into the environmental adaptation of bacteria, highlighting genetic diversity and regulatory mechanisms that enable them to thrive in the cryosphere.
Collapse
Affiliation(s)
- Hanbyul Lee
- Division of Polar Life Science, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Yong-Joon Cho
- Division of Polar Life Science, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ahnna Cho
- Division of Polar Life Science, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Ok-Sun Kim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| |
Collapse
|
7
|
Buzzanca D, Kerkhof PJ, Alessandria V, Rantsiou K, Houf K. Arcobacteraceae comparative genome analysis demonstrates genome heterogeneity and reduction in species isolated from animals and associated with human illness. Heliyon 2023; 9:e17652. [PMID: 37449094 PMCID: PMC10336517 DOI: 10.1016/j.heliyon.2023.e17652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
The Arcobacteraceae family groups Gram-negative bacterial species previously included in the family Campylobacteraceae. These species of which some are considered foodborne pathogens, have been isolated from different environmental niches and hosts. They have been isolated from various types of foods, though predominantly from food of animal origin, as well as from stool of humans with enteritis. Their different abilities to survive in different hosts and environments suggest an evolutionary pressure with consequent variation in their genome content. Moreover, their different physiological and genomic characteristics led to the recent proposal to create new genera within this family, which is however criticized due to the lack of discriminatory features and biological and clinical relevance. Aims of the present study were to assess the Arcobacteraceae pangenome, and to characterize existing similarities and differences in 20 validly described species. For this, analysis has been conducted on the genomes of the corresponding type strains obtained by Illumina sequencing, applying several bioinformatic tools. Results of the present study do not support the proposed division into different genera and revealed the presence of pangenome partitions with numbers comparable to other Gram-negative bacteria genera, such as Campylobacter. Different gene class compositions in animal and human-associated species are present, including a higher percentage of virulence-related gene classes such as cell motility genes. The adaptation to environmental and/or host conditions of some species was identified by the presence of specific genes. Furthermore, a division into pathogenic and non-pathogenic species is suggested, which can support future research on food safety and public health.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Pieter-Jan Kerkhof
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Hou F, Ke Z, Xu Y, Wang Y, Zhu G, Gao H, Ji S, Xu X. Systematic Large Fragment Deletions in the Genome of Synechococcus elongatus and the Consequent Changes in Transcriptomic Profiles. Genes (Basel) 2023; 14:genes14051091. [PMID: 37239451 DOI: 10.3390/genes14051091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Genome streamlining, as a natural process in the evolution of microbes, has become a common approach for generating ideal chassis cells for synthetic biology studies and industrial applications. However, systematic genome reduction remains a bottleneck in the generation of such chassis cells with cyanobacteria, due to very time-consuming genetic manipulations. Synechococcus elongatus PCC 7942, a unicellular cyanobacterium, is a candidate for systematic genome reduction, as its essential and nonessential genes have been experimentally identified. Here, we report that at least 20 of the 23 over 10 kb nonessential gene regions could be deleted and that stepwise deletions of these regions could be achieved. A septuple-deletion mutant (genome reduced by 3.8%) was generated, and the effects of genome reduction on the growth and genome-wide transcription were investigated. In the ancestral triple to sextuple mutants (b, c, d, e1), an increasingly large number of genes (up to 998) were upregulated relative to the wild type, while slightly fewer genes (831) were upregulated in the septuple mutant (f). In a different sextuple mutant (e2) derived from the quintuple mutant d, much fewer genes (232) were upregulated. Under the standard conditions in this study, the mutant e2 showed a higher growth rate than the wild type, e1 and f. Our results indicate that it is feasible to extensively reduce the genomes of cyanobacteria for generation of chassis cells and for experimental evolutionary studies.
Collapse
Affiliation(s)
- Feifei Hou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhufang Ke
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yali Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Geqian Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hong Gao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shuiling Ji
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xudong Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
9
|
Matsui Y, Nagai M, Ying BW. Growth rate-associated transcriptome reorganization in response to genomic, environmental, and evolutionary interruptions. Front Microbiol 2023; 14:1145673. [PMID: 37032868 PMCID: PMC10073601 DOI: 10.3389/fmicb.2023.1145673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
The genomic, environmental, and evolutionary interruptions caused the changes in bacterial growth, which were stringently associated with changes in gene expression. The growth and gene expression changes remained unclear in response to these interruptions that occurred combinative. As a pilot study, whether and how bacterial growth was affected by the individual and dual interruptions of genome reduction, environmental stress, and adaptive evolution were investigated. Growth assay showed that the presence of the environmental stressors, i.e., threonine and chloramphenicol, significantly decreased the growth rate of the wild-type Escherichia coli, whereas not that of the reduced genome. It indicated a canceling effect in bacterial growth due to the dual interruption of the genomic and environmental changes. Experimental evolution of the reduced genome released the canceling effect by improving growth fitness. Intriguingly, the transcriptome architecture maintained a homeostatic chromosomal periodicity regardless of the genomic, environmental, and evolutionary interruptions. Negative epistasis in transcriptome reorganization was commonly observed in response to the dual interruptions, which might contribute to the canceling effect. It was supported by the changes in the numbers of differentially expressed genes (DEGs) and the enriched regulons and functions. Gene network analysis newly constructed 11 gene modules, one out of which was correlated to the growth rate. Enrichment of DEGs in these modules successfully categorized them into three types, i.e., conserved, responsive, and epistatic. Taken together, homeostasis in transcriptome architecture was essential to being alive, and it might be attributed to the negative epistasis in transcriptome reorganization and the functional differentiation in gene modules. The present study directly connected bacterial growth fitness with transcriptome reorganization and provided a global view of how microorganisms responded to genomic, environmental, and evolutionary interruptions for survival from wild nature.
Collapse
|
10
|
Pincheira‐Donoso D, Harvey LP, Johnson JV, Hudson D, Finn C, Goodyear LEB, Guirguis J, Hyland EM, Hodgson DJ. Genome size does not influence extinction risk in the world's amphibians. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Lilly P. Harvey
- School of Science and Technology Nottingham Trent University Nottingham UK
| | - Jack V. Johnson
- School of Biological Sciences Queen's University Belfast Belfast UK
| | - Dave Hudson
- Centre for Ecology and Conservation, College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Catherine Finn
- School of Biological Sciences Queen's University Belfast Belfast UK
| | | | - Jacinta Guirguis
- School of Biological Sciences Queen's University Belfast Belfast UK
| | - Edel M. Hyland
- School of Biological Sciences Queen's University Belfast Belfast UK
| | - Dave J. Hodgson
- Centre for Ecology and Conservation, College of Life and Environmental Sciences University of Exeter Penryn UK
| |
Collapse
|
11
|
Meng X, Zheng J, Wang F, Zheng J, Yang D. Dietary fiber chemical structure determined gut microbiota dynamics. IMETA 2022; 1:e64. [PMID: 38867894 PMCID: PMC10989905 DOI: 10.1002/imt2.64] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 06/14/2024]
Abstract
Precision modulation of gut microbiota requires elucidation of the relation between dietary fiber intake and gut microbe dynamics. However, current studies on this aspect are few due to many technical limitations. Here, we used Caenorhabditis elegans to minimize the complicated host-microbial factors and to find the relation between dietary fiber chemical structures and gut microbiota dynamics. The Allium schoenoprasum polysaccharide (AssP) structure was elucidated and used as the complex dietary fiber against the simple fiber inulin. In vitro bacterial growth and genome analysis indicated that AssP supports bacterial growth better than inulin, while in vivo gut microbiota analysis of C. elegans fed with AssP showed that microbiota richness increased significantly compared with those fed with inulin. It is concluded that the more complex the dietary fiber chemical structure, the more gut bacteria growth it supports. Together with the community bacterial interactions that alter their abundances in vivo, these factors regulate gut microbiota synergistically.
Collapse
Affiliation(s)
- Xin Meng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jun Zheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Fengqiao Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jie Zheng
- Center for Food Safety and Applied NutritionU.S. Food and Drug AdministrationCollege ParkMarylandUSA
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
12
|
Yang Z, Liu C, Wang Y, Chen Y, Li Q, Zhang Y, Chen Q, Ju J, Ma J. MGCEP 1.0: A Genetic-Engineered Marine-Derived Chassis Cell for a Scaled Heterologous Expression Platform of Microbial Bioactive Metabolites. ACS Synth Biol 2022; 11:3772-3784. [PMID: 36241611 DOI: 10.1021/acssynbio.2c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Marine microorganisms produce a variety of bioactive secondary metabolites, which represent a significant source of novel antibiotics. Heterologous expression is a valuable tool for discovering marine microbial secondary metabolites; however, marine-derived chassis cell is very scarce. Here, we build an efficient plug-and-play marine-derived gene clusters expression platform 1.0 (MGCEP 1.0) by the systematic engineering of the deep-sea-derived Streptomyces atratus SCSIO ZH16. For a proof of concept, four families of microbial bioactive metabolite biosynthetic gene clusters (BGCs), including alkaloids, aminonucleosides, nonribosomal peptides, and polyketides, were efficiently expressed in this platform. Moreover, 19 compounds, including two new angucycline antibiotics, were produced in MGCEP 1.0. Dynamic patterns of global biosynthetic gene expression in MGCEP 1.0 with or without a heterologous gene cluster were revealed at the transcriptome level. The platform MGCEP 1.0 provides new possibilities for expressing microbial secondary metabolites, especially of marine origin.
Collapse
Affiliation(s)
- Zhijie Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Chunyu Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Yuyang Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Yingying Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China
| | - Yun Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China
| | - Qi Chen
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China.,College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China.,College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| |
Collapse
|
13
|
Lao Z, Matsui Y, Ijichi S, Ying BW. Global coordination of the mutation and growth rates across the genetic and nutritional variety in Escherichia coli. Front Microbiol 2022; 13:990969. [PMID: 36204613 PMCID: PMC9530902 DOI: 10.3389/fmicb.2022.990969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Fitness and mutability are the primary traits of living organisms for adaptation and evolution. However, their quantitative linkage remained largely deficient. Whether there is any general relationship between the two features and how genetic and environmental variables influence them remained unclear and were addressed here. The mutation and growth rates of an assortment of Escherichia coli strain collections, including the wild-type strains and the genetically disturbed strains of either reduced genomes or deletion of the genes involved in the DNA replication fidelity, were evaluated in various media. The contribution of media to the mutation and growth rates was differentiated depending on the types of genetic disturbance. Nevertheless, the negative correlation between the mutation and growth rates was observed across the genotypes and was common in all media. It indicated the comprehensive association of the correlated mutation and growth rates with the genetic and medium variation. Multiple linear regression and support vector machine successfully predicted the mutation and growth rates and the categories of genotypes and media, respectively. Taken together, the study provided a quantitative dataset linking the mutation and growth rates, genotype, and medium and presented a simple and successful example of predicting bacterial growth and mutability by data-driven approaches.
Collapse
|
14
|
Aida H, Hashizume T, Ashino K, Ying BW. Machine learning-assisted discovery of growth decision elements by relating bacterial population dynamics to environmental diversity. eLife 2022; 11:76846. [PMID: 36017903 PMCID: PMC9417415 DOI: 10.7554/elife.76846] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/15/2022] [Indexed: 12/30/2022] Open
Abstract
Microorganisms growing in their habitat constitute a complex system. How the individual constituents of the environment contribute to microbial growth remains largely unknown. The present study focused on the contribution of environmental constituents to population dynamics via a high-throughput assay and data-driven analysis of a wild-type Escherichia coli strain. A large dataset constituting a total of 12,828 bacterial growth curves with 966 medium combinations, which were composed of 44 pure chemical compounds, was acquired. Machine learning analysis of the big data relating the growth parameters to the medium combinations revealed that the decision-making components for bacterial growth were distinct among various growth phases, e.g., glucose, sulfate, and serine for maximum growth, growth rate, and growth delay, respectively. Further analyses and simulations indicated that branched-chain amino acids functioned as global coordinators for population dynamics, as well as a survival strategy of risk diversification to prevent the bacterial population from undergoing extinction.
Collapse
Affiliation(s)
- Honoka Aida
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takamasa Hashizume
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuha Ashino
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
15
|
Hitomi K, Weng J, Ying BW. Contribution of the genomic and nutritional differentiation to the spatial distribution of bacterial colonies. Front Microbiol 2022; 13:948657. [PMID: 36081803 PMCID: PMC9448356 DOI: 10.3389/fmicb.2022.948657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Colony growth is a common phenomenon of structured populations dispersed in nature; nevertheless, studies on the spatial distribution of colonies are largely insufficient. Here, we performed a systematic survey to address the questions of whether and how the spatial distribution of colonies was influenced by the genome and environment. Six Escherichia coli strains carrying either the wild-type or reduced genomes and eight media of varied nutritional richness were used to evaluate the genomic and environmental impacts, respectively. The genome size and nutritional variation contributed to the mean size and total area but not the variation and shape of size distribution of the colonies formed within the identical space and of equivalent spatial density. The spatial analysis by means of the Voronoi diagram found that the Voronoi correlation remained nearly constant in common, in comparison to the Voronoi response decreasing in correlation to genome reduction and nutritional enrichment. Growth analysis at the single colony level revealed positive correlations of the relative growth rate to both the maximal colony size and the Voronoi area, regardless of the genomic and nutritional variety. This result indicated fast growth for the large space assigned and supported homeostasis in the Voronoi correlation. Taken together, the spatial distribution of colonies might benefit efficient clonal growth. Although the mechanisms remain unclear, the findings provide quantitative insights into the genomic and environmental contributions to the growth and distribution of spatially or geographically isolated populations.
Collapse
|
16
|
Shekhar C, Maeda T. A simple approach for random genomic insertion-deletions using ambiguous sequences in Escherichia coli. J Basic Microbiol 2022; 62:948-962. [PMID: 35739617 DOI: 10.1002/jobm.202100636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/20/2022] [Accepted: 06/11/2022] [Indexed: 11/07/2022]
Abstract
Escherichia coli K-12, being one of the best understood and thoroughly analyzed organisms, is the preferred platform for genetic and biochemical research. Among all genetic engineering approaches applied on E. coli, the homologous recombination approach is versatile and precise, which allows engineering genes or large segments of the chromosome directly by using polymerase chain reaction (PCR) products or synthetic oligonucleotides. The previously explained approaches for random insertion and deletions were reported as technically not easy and laborious. This study, first, finds the minimum length of homology extension that is efficient and accurate for homologous recombination, as 30 nt. Second, proposes an approach utilizing PCR products flanking ambiguous NNN-sequence (30-nt) extensions, which facilitate the homologous recombination to recombine them at multiple regions on the genome and generate insertion-deletion mutations. Further analysis found that these mutations were varying in number, that is, multiple genomic regions were deleted. Moreover, evaluation of the phenotype of all the multiple random insertion-deletion mutants demonstrated no significant changes in the normal metabolism of bacteria. This study not only presents the efficiency of ambiguous sequences in making random deletion mutations, but also demonstrates their further applicability in genomics.
Collapse
Affiliation(s)
- Chandra Shekhar
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
17
|
Mutational meltdown of putative microbial altruists in Streptomyces coelicolor colonies. Nat Commun 2022; 13:2266. [PMID: 35477578 PMCID: PMC9046218 DOI: 10.1038/s41467-022-29924-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/08/2022] [Indexed: 12/26/2022] Open
Abstract
In colonies of the filamentous multicellular bacterium Streptomyces coelicolor, a subpopulation of cells arises that hyperproduces metabolically costly antibiotics, resulting in a division of labor that increases colony fitness. Because these cells contain large genomic deletions that cause massive reductions to individual fitness, their behavior is similar to altruistic worker castes in social insects or somatic cells in multicellular organisms. To understand these mutant cells’ reproductive and genomic fate after their emergence, we use experimental evolution by serially transferring populations via spore-to-spore transfer for 25 cycles, reflective of the natural mode of bottlenecked transmission for these spore-forming bacteria. We show that in contrast to wild-type cells, putatively altruistic mutant cells continue to decline in fitness during transfer while they lose more fragments from their chromosome ends. In addition, the base-substitution rate in mutants increases roughly 10-fold, possibly due to mutations in genes for DNA replication and repair. Ecological damage, caused by reduced sporulation, coupled with DNA damage due to point mutations and deletions, leads to an inevitable and irreversible type of mutational meltdown in these cells. Taken together, these results suggest the cells arising in the S. coelicolor division of labor are analogous to altruistic reproductively sterile castes of social insects. In Streptomyces coelicolor, a subpopulation of cells can arise that produce metabolically costly antibiotics and a division of labor that maximizes colony fitness. This study uses experimental evolution to understand the reproductive and genomic fate of these mutant cells, showing that the arising altruistic cells are analogous to the reproductively sterile castes of social insects.
Collapse
|
18
|
Ma S, Su T, Liu J, Lu X, Qi Q. Reduction of the Bacterial Genome by Transposon-Mediated Random Deletion. ACS Synth Biol 2022; 11:668-677. [PMID: 35104106 DOI: 10.1021/acssynbio.1c00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genome reduction is an important strategy in synthetic biology for constructing functional chassis cells or minimal genomes. However, the limited knowledge of complex gene functions and interactions makes genome reduction by rational design encounter a bottleneck. Here, we present an iterative and random genome reduction method for Escherichia coli, named "transposon-mediated random deletion (TMRD)". TMRD generates random double-strand breaks (DSBs) in the genome by combining Tn5 transposition with the CRISPR/Cas9 system and allows genomic deletions of various sizes at random positions during DSB repair through the intracellular alternative end-joining mechanism. Using E. coli MG1655 as the original strain, a pool of cells with multiple random genomic deletions were obtained after five reduction cycles. The growth rates of the obtained cells were comparable to that of MG1655, while the electroporation efficiency increased by at least 2 magnitudes. TMRD can generate a small E. coli library carrying multiple and random genomic deletions while enriching the cells with environmental fitness in the population. TMRD has the potential to be widely applied in the construction of minimal genomes or chassis cells for metabolic engineering.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Jinming Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
19
|
Kurokawa M, Nishimura I, Ying BW. Experimental Evolution Expands the Breadth of Adaptation to an Environmental Gradient Correlated With Genome Reduction. Front Microbiol 2022; 13:826894. [PMID: 35154062 PMCID: PMC8826082 DOI: 10.3389/fmicb.2022.826894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022] Open
Abstract
Whether and how adaptive evolution adjusts the breadth of adaptation in coordination with the genome are essential issues for connecting evolution with ecology. To address these questions, experimental evolution in five Escherichia coli strains carrying either the wild-type genome or a reduced genome was performed in a defined minimal medium (C0). The ancestral and evolved populations were subsequently subjected to fitness and chemical niche analyses across an environmental gradient with 29 combinations of eight chemical components of the minimal medium. The results showed that adaptation was achieved not only specific to the evolutionary condition (C0), but also generally, to the environmental gradient; that is, the breadth of adaptation to the eight chemical niches was expanded. The magnitudes of the adaptive improvement and the breadth increase were both correlated with genome reduction and were highly significant in two out of eight niches (i.e., glucose and sulfate). The direct adaptation-induced correlated adaptation to the environmental gradient was determined by only a few genome mutations. An additive increase in fitness associated with the stepwise fixation of mutations was consistently observed in the reduced genomes. In summary, this preliminary survey demonstrated that evolution finely tuned the breadth of adaptation correlated with genome reduction.
Collapse
Affiliation(s)
- Masaomi Kurokawa
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Issei Nishimura
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
20
|
Hernández-Álvarez C, García-Oliva F, Cruz-Ortega R, Romero MF, Barajas HR, Piñero D, Alcaraz LD. Squash root microbiome transplants and metagenomic inspection for in situ arid adaptations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150136. [PMID: 34818799 DOI: 10.1016/j.scitotenv.2021.150136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 05/10/2023]
Abstract
Arid zones contain a diverse set of microbes capable of survival under dry conditions, some of which can form relationships with plants under drought stress conditions to improve plant health. We studied squash (Cucurbita pepo L.) root microbiome under historically arid and humid sites, both in situ and performing a common garden experiment. Plants were grown in soils from sites with different drought levels, using in situ collected soils as the microbial source. We described and analyzed bacterial diversity by 16S rRNA gene sequencing (N = 48) from the soil, rhizosphere, and endosphere. Proteobacteria were the most abundant phylum present in humid and arid samples, while Actinobacteriota abundance was higher in arid ones. The β-diversity analyses showed split microbiomes between arid and humid microbiomes, and aridity and soil pH levels could explain it. These differences between humid and arid microbiomes were maintained in the common garden experiment, showing that it is possible to transplant in situ diversity to the greenhouse. We detected a total of 1009 bacterial genera; 199 exclusively associated with roots under arid conditions. By 16S and shotgun metagenomics, we identified dry-associated taxa such as Cellvibrio, Ensifer adhaerens, and Streptomyces flavovariabilis. With shotgun metagenomic sequencing of rhizospheres (N = 6), we identified 2969 protein families in the squash core metagenome and found an increased number of exclusively protein families from arid (924) than humid samples (158). We found arid conditions enriched genes involved in protein degradation and folding, oxidative stress, compatible solute synthesis, and ion pumps associated with osmotic regulation. Plant phenotyping allowed us to correlate bacterial communities with plant growth. Our study revealed that it is possible to evaluate microbiome diversity ex-situ and identify critical species and genes involved in plant-microbe interactions in historically arid locations.
Collapse
Affiliation(s)
- Cristóbal Hernández-Álvarez
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Mexico
| | - Rocío Cruz-Ortega
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico
| | - Miguel F Romero
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico
| | - Hugo R Barajas
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico
| | - Luis D Alcaraz
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
21
|
Lu H, Aida H, Kurokawa M, Chen F, Xia Y, Xu J, Li K, Ying BW, Yomo T. Primordial mimicry induces morphological change in Escherichia coli. Commun Biol 2022; 5:24. [PMID: 35017623 PMCID: PMC8752768 DOI: 10.1038/s42003-021-02954-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022] Open
Abstract
The morphology of primitive cells has been the subject of extensive research. A spherical form was commonly presumed in prebiotic studies but lacked experimental evidence in living cells. Whether and how the shape of living cells changed are unclear. Here we exposed the rod-shaped bacterium Escherichia coli to a resource utilization regime mimicking a primordial environment. Oleate was given as an easy-to-use model prebiotic nutrient, as fatty acid vesicles were likely present on the prebiotic Earth and might have been used as an energy resource. Six evolutionary lineages were generated under glucose-free but oleic acid vesicle (OAV)-rich conditions. Intriguingly, fitness increase was commonly associated with the morphological change from rod to sphere and the decreases in both the size and the area-to-volume ratio of the cell. The changed cell shape was conserved in either OAVs or glucose, regardless of the trade-offs in carbon utilization and protein abundance. Highly differentiated mutations present in the genome revealed two distinct strategies of adaption to OAV-rich conditions, i.e., either directly targeting the cell wall or not. The change in cell morphology of Escherichia coli for adapting to fatty acid availability supports the assumption of the primitive spherical form. Lu et al. investigate the evolution of the shape of living cells by generating six experimental lineages of the rod-shaped E. coli under glucose-free conditions in the presence of oleic acid mimicking a primordial environment. The authors show that the morphological changes from rod to sphere accompanied fitness increases and adaptation amongst fatty acid availability supports the assumption of a primitive spherical form.
Collapse
Affiliation(s)
- Hui Lu
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Honoka Aida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masaomi Kurokawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Feng Chen
- School of Software Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Yang Xia
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Jian Xu
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Kai Li
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Tetsuya Yomo
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China.
| |
Collapse
|
22
|
Chuckran PF, Hungate BA, Schwartz E, Dijkstra P. Variation in genomic traits of microbial communities among ecosystems. FEMS MICROBES 2021. [DOI: 10.1093/femsmc/xtab020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ABSTRACT
Free-living bacteria in nutrient limited environments often exhibit traits which may reduce the cost of reproduction, such as smaller genome size, low GC content and fewer sigma (σ) factor and 16S rRNA gene copies. Despite the potential utility of these traits to detect relationships between microbial communities and ecosystem-scale properties, few studies have assessed these traits on a community-scale. Here, we analysed these traits from publicly available metagenomes derived from marine, soil, host-associated and thermophilic communities. In marine and thermophilic communities, genome size and GC content declined in parallel, consistent with genomic streamlining, with GC content in thermophilic communities generally higher than in marine systems. In contrast, soil communities averaging smaller genomes featured higher GC content and were often from low-carbon environments, suggesting unique selection pressures in soil bacteria. The abundance of specific σ-factors varied with average genome size and ecosystem type. In oceans, abundance of fliA, a σ-factor controlling flagella biosynthesis, was positively correlated with community average genome size—reflecting known trade-offs between nutrient conservation and chemotaxis. In soils, a high abundance of the stress response σ-factor gene rpoS was associated with smaller average genome size and often located in harsh and/or carbon-limited environments—a result which tracks features observed in culture and indicates an increased capacity for stress response in nutrient-poor soils. This work shows how ecosystem-specific constraints are associated with trade-offs which are embedded in the genomic features of bacteria in microbial communities, and which can be detected at the community level, highlighting the importance of genomic features in microbial community analysis.
Collapse
Affiliation(s)
- Peter F Chuckran
- Center for Ecosystem Science and Society (ECOSS) and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Bruce A Hungate
- Center for Ecosystem Science and Society (ECOSS) and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Egbert Schwartz
- Center for Ecosystem Science and Society (ECOSS) and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Paul Dijkstra
- Center for Ecosystem Science and Society (ECOSS) and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
23
|
Castle SD, Grierson CS, Gorochowski TE. Towards an engineering theory of evolution. Nat Commun 2021; 12:3326. [PMID: 34099656 PMCID: PMC8185075 DOI: 10.1038/s41467-021-23573-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Biological technologies are fundamentally unlike any other because biology evolves. Bioengineering therefore requires novel design methodologies with evolution at their core. Knowledge about evolution is currently applied to the design of biosystems ad hoc. Unless we have an engineering theory of evolution, we will neither be able to meet evolution's potential as an engineering tool, nor understand or limit its unintended consequences for our biological designs. Here, we propose the evotype as a helpful concept for engineering the evolutionary potential of biosystems, or other self-adaptive technologies, potentially beyond the realm of biology.
Collapse
Affiliation(s)
- Simeon D Castle
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Claire S Grierson
- School of Biological Sciences, University of Bristol, Bristol, UK
- BrisSynBio, University of Bristol, Bristol, UK
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Bristol, UK.
- BrisSynBio, University of Bristol, Bristol, UK.
| |
Collapse
|
24
|
Ziegler M, Zieringer J, Döring CL, Paul L, Schaal C, Takors R. Engineering of a robust Escherichia coli chassis and exploitation for large-scale production processes. Metab Eng 2021; 67:75-87. [PMID: 34098100 DOI: 10.1016/j.ymben.2021.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
In large-scale bioprocesses microbes are exposed to heterogeneous substrate availability reducing the overall process performance. A series of deletion strains was constructed from E. coli MG1655 aiming for a robust phenotype in heterogeneous fermentations with transient starvation. Deletion targets were hand-picked based on a list of genes derived from previous large-scale simulation runs. Each gene deletion was conducted on the premise of strict neutrality towards growth parameters in glucose minimal medium. The final strain of the series, named E. coli RM214, was cultivated continuously in an STR-PFR (stirred tank reactor - plug flow reactor) scale-down reactor. The scale-down reactor system simulated repeated passages through a glucose starvation zone. When exposed to nutrient gradients, E. coli RM214 had a significantly lower maintenance coefficient than E. coli MG1655 (Δms = 0.038 gGlucose/gCDW/h, p < 0.05). In an exemplary protein production scenario E. coli RM214 remained significantly more productive than E. coli MG1655 reaching 44% higher eGFP yield after 28 h of STR-PFR cultivation. This study developed E. coli RM214 as a robust chassis strain and demonstrated the feasibility of engineering microbial hosts for large-scale applications.
Collapse
Affiliation(s)
- Martin Ziegler
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Julia Zieringer
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Clarissa-Laura Döring
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Liv Paul
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Christoph Schaal
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Ralf Takors
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
25
|
Xue H, Kurokawa M, Ying BW. Correlation between the spatial distribution and colony size was common for monogenetic bacteria in laboratory conditions. BMC Microbiol 2021; 21:114. [PMID: 33858359 PMCID: PMC8051089 DOI: 10.1186/s12866-021-02180-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background Geographically separated population growth of microbes is a common phenomenon in microbial ecology. Colonies are representative of the morphological characteristics of this structured population growth. Pattern formation by single colonies has been intensively studied, whereas the spatial distribution of colonies is poorly investigated. Results The present study describes a first trial to address the questions of whether and how the spatial distribution of colonies determines the final colony size using the model microorganism Escherichia coli, colonies of which can be grown under well-controlled laboratory conditions. A computational tool for image processing was developed to evaluate colony density, colony size and size variation, and the Voronoi diagram was applied for spatial analysis of colonies with identical space resources. A positive correlation between the final colony size and the Voronoi area was commonly identified, independent of genomic and nutritional differences, which disturbed the colony size and size variation. Conclusions This novel finding of a universal correlation between the spatial distribution and colony size not only indicated the fair distribution of spatial resources for monogenetic colonies growing with identical space resources but also indicated that the initial localization of the microbial colonies decided by chance determined the fate of the subsequent population growth. This study provides a valuable example for quantitative analysis of the complex microbial ecosystems by means of experimental ecology. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02180-8.
Collapse
Affiliation(s)
- Heng Xue
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masaomi Kurokawa
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
26
|
Grosjean M, Guénard S, Giraud C, Muller C, Plésiat P, Juarez P. Targeted Genome Reduction of Pseudomonas aeruginosa Strain PAO1 Led to the Development of Hypovirulent and Hypersusceptible rDNA Hosts. Front Bioeng Biotechnol 2021; 9:640450. [PMID: 33777913 PMCID: PMC7991573 DOI: 10.3389/fbioe.2021.640450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a human opportunistic pathogen responsible for nosocomial infections, which is largely used as a model organism to study antibiotic resistance and pathogenesis. As other species of the genus, its wide metabolic versatility appears to be attractive to study biotechnological applications. However, its natural resistance to antibiotics and its capacity to produce a wide range of virulence factors argue against its biotechnological potential. By reducing the genome of the reference strain PAO1, we explored the development of four hypovirulent and hypersusceptible recombinant DNA hosts (rDNA hosts). Despite deleting up to 0.8% of the core genome, any of the developed strains presented alterations of fitness when cultured under standard laboratory conditions. Other features such as antibiotic susceptibility, cytotoxicity, in vivo pathogenesis, and expression of heterologous peptides were also explored to highlight the potential applications of these models. This work stands as the first stage of the development of a safe-platform strain of Pseudomonas aeruginosa that will be further optimized for biotechnological applications.
Collapse
Affiliation(s)
- Mélanie Grosjean
- Département Recherche et Développement, Smaltis SAS, Besançon, France.,Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - Sophie Guénard
- Département Recherche et Développement, Smaltis SAS, Besançon, France
| | | | - Cédric Muller
- Département Recherche et Développement, Smaltis SAS, Besançon, France
| | - Patrick Plésiat
- Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France.,Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Régional Universitaire de Besançon, Besançon, France
| | - Paulo Juarez
- Département Recherche et Développement, Smaltis SAS, Besançon, France
| |
Collapse
|
27
|
Castillo AI, Almeida RPP. Evidence of gene nucleotide composition favoring replication and growth in a fastidious plant pathogen. G3-GENES GENOMES GENETICS 2021; 11:6170658. [PMID: 33715000 PMCID: PMC8495750 DOI: 10.1093/g3journal/jkab076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022]
Abstract
Nucleotide composition (GC content) varies across bacteria species, genome regions, and specific genes. In Xylella fastidiosa, a vector-borne fastidious plant pathogen infecting multiple crops, GC content ranges between ∼51-52%; however, these values were gathered using limited genomic data. We evaluated GC content variations across X. fastidiosa subspecies fastidiosa (N = 194), subsp. pauca (N = 107), and subsp. multiplex (N = 39). Genomes were classified based on plant host and geographic origin; individual genes within each genome were classified based on gene function, strand, length, ortholog group, Core vs. Accessory, and Recombinant vs. Non-recombinant. GC content was calculated for each gene within each evaluated genome. The effects of genome and gene level variables were evaluated with a mixed effect ANOVA, and the marginal-GC content was calculated for each gene. Also, the correlation between gene-specific GC content vs. natural selection (dN/dS) and recombination/mutation (r/m) was estimated. Our analyses show that intra-genomic changes in nucleotide composition in X. fastidiosa are small and influenced by multiple variables. Higher AT-richness is observed in genes involved in replication and translation, and genes in the leading strand. In addition, we observed a negative correlation between high-AT and dN/dS in subsp. pauca. The relationship between recombination and GC content varied between core and accessory genes. We hypothesize that distinct evolutionary forces and energetic constraints both drive and limit these small variations in nucleotide composition.
Collapse
Affiliation(s)
- Andreina I Castillo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Zhang F, Huo K, Song X, Quan Y, Wang S, Zhang Z, Gao W, Yang C. Engineering of a genome-reduced strain Bacillus amyloliquefaciens for enhancing surfactin production. Microb Cell Fact 2020; 19:223. [PMID: 33287813 PMCID: PMC7720510 DOI: 10.1186/s12934-020-01485-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/28/2020] [Indexed: 01/17/2023] Open
Abstract
Background Genome reduction and metabolic engineering have emerged as intensive research hotspots for constructing the promising functional chassis and various microbial cell factories. Surfactin, a lipopeptide-type biosurfactant with broad spectrum antibiotic activity, has wide application prospects in anticancer therapy, biocontrol and bioremediation. Bacillus amyloliquefaciens LL3, previously isolated by our lab, contains an intact srfA operon in the genome for surfactin biosynthesis. Results In this study, a genome-reduced strain GR167 lacking ~ 4.18% of the B. amyloliquefaciens LL3 genome was constructed by deleting some unnecessary genomic regions. Compared with the strain NK-1 (LL3 derivative, ΔuppΔpMC1), GR167 exhibited faster growth rate, higher transformation efficiency, increased intracellular reducing power level and higher heterologous protein expression capacity. Furthermore, the chassis strain GR167 was engineered for enhanced surfactin production. Firstly, the iturin and fengycin biosynthetic gene clusters were deleted from GR167 to generate GR167ID. Subsequently, two promoters PRsuc and PRtpxi from LL3 were obtained by RNA-seq and promoter strength characterization, and then they were individually substituted for the native srfA promoter in GR167ID to generate GR167IDS and GR167IDT. The best mutant GR167IDS showed a 678-fold improvement in the transcriptional level of the srfA operon relative to GR167ID, and it produced 311.35 mg/L surfactin, with a 10.4-fold increase relative to GR167. Conclusions The genome-reduced strain GR167 was advantageous over the parental strain in several industrially relevant physiological traits assessed and it was highlighted as a chassis strain for further genetic modification. In future studies, further reduction of the LL3 genome can be expected to create high-performance chassis for synthetic biology applications.
Collapse
Affiliation(s)
- Fang Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xingyi Song
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yufen Quan
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shufang Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhiling Zhang
- Department of Oral and Maxillofacial Radiology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China. .,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| | - Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
29
|
Correlated chromosomal periodicities according to the growth rate and gene expression. Sci Rep 2020; 10:15531. [PMID: 32968121 PMCID: PMC7511328 DOI: 10.1038/s41598-020-72389-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 12/02/2022] Open
Abstract
Linking genetic information to population fitness is crucial to understanding living organisms. Despite the abundant knowledge of the genetic contribution to growth, the overall patterns/features connecting genes, their expression, and growth remain unclear. To reveal the quantitative and direct connections, systematic growth assays of single-gene knockout Escherichia coli strains under both rich and poor nutritional conditions were performed; subsequently, the resultant growth rates were associated with the original expression levels of the knockout genes in the parental genome. Comparative analysis of growth and the transcriptome identified not only the nutritionally differentiated fitness cost genes but also a significant correlation between the growth rates of the single-gene knockout strains and the original expression levels of these knockout genes in the parental strain, regardless of the nutritional variation. In addition, the coordinated chromosomal periodicities of the wild-type transcriptome and the growth rates of the strains lacking the corresponding genes were observed. The common six-period periodicity was somehow attributed to the essential genes, although the underlying mechanism remains to be addressed. The correlated chromosomal periodicities associated with the gene expression-growth dataset were highly valuable for bacterial growth prediction and discovering the working principles governing minimal genetic information.
Collapse
|
30
|
Suárez GA, Dugan KR, Renda BA, Leonard SP, Gangavarapu LS, Barrick JE. Rapid and assured genetic engineering methods applied to Acinetobacter baylyi ADP1 genome streamlining. Nucleic Acids Res 2020; 48:4585-4600. [PMID: 32232367 PMCID: PMC7192602 DOI: 10.1093/nar/gkaa204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
One goal of synthetic biology is to improve the efficiency and predictability of living cells by removing extraneous genes from their genomes. We demonstrate improved methods for engineering the genome of the metabolically versatile and naturally transformable bacterium Acinetobacter baylyi ADP1 and apply them to a genome streamlining project. In Golden Transformation, linear DNA fragments constructed by Golden Gate Assembly are directly added to cells to create targeted deletions, edits, or additions to the chromosome. We tested the dispensability of 55 regions of the ADP1 chromosome using Golden Transformation. The 18 successful multiple-gene deletions ranged in size from 21 to 183 kb and collectively accounted for 23.4% of its genome. The success of each multiple-gene deletion attempt could only be partially predicted on the basis of an existing collection of viable ADP1 single-gene deletion strains and a new transposon insertion sequencing (Tn-Seq) dataset that we generated. We further show that ADP1’s native CRISPR/Cas locus is active and can be retargeted using Golden Transformation. We reprogrammed it to create a CRISPR-Lock, which validates that a gene has been successfully removed from the chromosome and prevents it from being reacquired. These methods can be used together to implement combinatorial routes to further genome streamlining and for more rapid and assured metabolic engineering of this versatile chassis organism.
Collapse
Affiliation(s)
- Gabriel A Suárez
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kyle R Dugan
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brian A Renda
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P Leonard
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lakshmi Suryateja Gangavarapu
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
31
|
Malerba ME, Ghedini G, Marshall DJ. Genome Size Affects Fitness in the Eukaryotic Alga Dunaliella tertiolecta. Curr Biol 2020; 30:3450-3456.e3. [PMID: 32679103 DOI: 10.1016/j.cub.2020.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/28/2020] [Accepted: 06/09/2020] [Indexed: 11/18/2022]
Abstract
Genome size is tightly coupled to morphology, ecology, and evolution among species [1-5], with one of the best-known patterns being the relationship between cell size and genome size [6, 7]. Classic theories, such as the "selfish DNA hypothesis," posit that accumulating redundant DNA has fitness costs but that larger cells can tolerate larger genomes, leading to a positive relationship between cell size and genome size [8, 9]. Yet the evidence for fitness costs associated with relatively larger genomes remains circumstantial. Here, we estimated the relationships between genome size, cell size, energy fluxes, and fitness across 72 independent lineages in a eukaryotic phytoplankton. Lineages with relatively smaller genomes had higher fitness, in terms of both maximum growth rate and total biovolume reached at carrying capacity, but paradoxically, they also had lower energy fluxes than lineages with relative larger genomes. We then explored the evolutionary trajectories of absolute genome size over 100 generations and across a 10-fold change in cell size. Despite consistent directional selection across all lineages, genome size decreased by 11% in lineages with absolutely larger genomes but showed little evolution in lineages with absolutely smaller genomes, implying a lower absolute limit in genome size. Our results suggest that the positive relationship between cell size and genome size in nature may be the product of conflicting evolutionary pressures, on the one hand, to minimize redundant DNA and maximize performance-as theory predicts-but also to maintain a minimum level of essential function. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Martino E Malerba
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| | - Giulia Ghedini
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| | - Dustin J Marshall
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
32
|
Wang P, Li LZ, Qin YL, Liang ZL, Li XT, Yin HQ, Liu LJ, Liu SJ, Jiang CY. Comparative Genomic Analysis Reveals the Metabolism and Evolution of the Thermophilic Archaeal Genus Metallosphaera. Front Microbiol 2020; 11:1192. [PMID: 32655516 PMCID: PMC7325606 DOI: 10.3389/fmicb.2020.01192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Members of the genus Metallosphaera are widely found in sulfur-rich and metal-laden environments, but their physiological and ecological roles remain poorly understood. Here, we sequenced Metallosphaera tengchongensis Ric-A, a strain isolated from the Tengchong hot spring in Yunnan Province, China, and performed a comparative genome analysis with other Metallosphaera genomes. The genome of M. tengchongensis had an average nucleotide identity (ANI) of approximately 70% to that of Metallosphaera cuprina. Genes sqr, tth, sir, tqo, hdr, tst, soe, and sdo associated with sulfur oxidation, and gene clusters fox and cbs involved in iron oxidation existed in all Metallosphaera genomes. However, the adenosine-5'-phosphosulfate (APS) pathway was only detected in Metallosphaera sedula and Metallosphaera yellowstonensis, and several subunits of fox cluster were lost in M. cuprina. The complete 3-hydroxypropionate/4-hydroxybutyrate cycle and dicarboxylate/4-hydroxybutyrate cycle involved in carbon fixation were found in all Metallosphaera genomes. A large number of gene family gain events occurred in M. yellowstonensis and M. sedula, whereas gene family loss events occurred frequently in M. cuprina. Pervasive strong purifying selection was found acting on the gene families of Metallosphaera, of which transcription-related genes underwent the strongest purifying selection. In contrast, genes related to prophages, transposons, and defense mechanisms were under weaker purifying pressure. Taken together, this study expands knowledge of the genomic traits of Metallosphaera species and sheds light on their evolution.
Collapse
Affiliation(s)
- Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Ya Ling Qin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zong Lin Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiu Tong Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hua Qun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Li Jun Liu
- Department of Pathogen Biology, School of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Nagai M, Kurokawa M, Ying BW. The highly conserved chromosomal periodicity of transcriptomes and the correlation of its amplitude with the growth rate in Escherichia coli. DNA Res 2020; 27:5899727. [PMID: 32866232 PMCID: PMC7508348 DOI: 10.1093/dnares/dsaa018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/24/2020] [Indexed: 11/12/2022] Open
Abstract
The growth rate, representing the fitness of a bacterial population, is determined by the transcriptome. Chromosomal periodicity, which is known as the periodic spatial pattern of a preferred chromosomal distance in microbial genomes, is a representative overall feature of the transcriptome; however, whether and how it is associated with the bacterial growth rate are unknown. To address these questions, we analysed a total of 213 transcriptomes of multiple Escherichia coli strains growing in an assortment of culture conditions varying in terms of temperature, nutrition level and osmotic pressure. Intriguingly, Fourier transform analyses of the transcriptome identified a common chromosomal periodicity of transcriptomes, which was independent of the variation in genomes and environments. In addition, fitting of the data to a theoretical model, we found that the amplitudes of the periodic transcriptomes were significantly correlated with the growth rates. These results indicated that the amplitude of periodic transcriptomes is a parameter representing the global pattern of gene expression in correlation with the bacterial growth rate. Thus, our study provides a novel parameter for evaluating the adaptiveness of a growing bacterial population and quantitatively predicting the growth dynamics according to the global expression pattern.
Collapse
Affiliation(s)
- Motoki Nagai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Masaomi Kurokawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
34
|
Cao YY, Yomo T, Ying BW. Clustering of Bacterial Growth Dynamics in Response to Growth Media by Dynamic Time Warping. Microorganisms 2020; 8:microorganisms8030331. [PMID: 32111085 PMCID: PMC7143780 DOI: 10.3390/microorganisms8030331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 01/17/2023] Open
Abstract
Bacterial growth curves, representing population dynamics, are still poorly understood. The growth curves are commonly analyzed by model-based theoretical fitting, which is limited to typical S-shape fittings and does not elucidate the dynamics in their entirety. Thus, whether a certain growth condition results in any particular pattern of growth curve remains unclear. To address this question, up-to-date data mining techniques were applied to bacterial growth analysis for the first time. Dynamic time warping (DTW) and derivative DTW (DDTW) were used to compare the similarity among 1015 growth curves of 28 Escherichia coli strains growing in three different media. In the similarity evaluation, agglomerative hierarchical clustering, assessed with four statistic benchmarks, successfully categorized the growth curves into three clusters, roughly corresponding to the three media. Furthermore, a simple benchmark was newly proposed, providing a highly improved accuracy (~99%) in clustering the growth curves corresponding to the growth media. The biologically reasonable categorization of growth curves suggested that DTW and DDTW are applicable for bacterial growth analysis. The bottom-up clustering results indicate that the growth media determine some specific patterns of population dynamics, regardless of genomic variation, and thus have a higher priority of shaping the growth curves than the genomes do.
Collapse
Affiliation(s)
- Yang-Yang Cao
- Software Engineering Institute, East China Normal University, 3663 Zhong Shan Road (N), Shanghai 200062, China;
| | - Tetsuya Yomo
- School of Life Science, East China Normal University, 3663 Zhong Shan Road (N), Shanghai 200062, China
- Correspondence: (T.Y.); (B.-W.Y.); Tel.: +81-(0)29-853-6633 (B.-W.Y.)
| | - Bei-Wen Ying
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
- Correspondence: (T.Y.); (B.-W.Y.); Tel.: +81-(0)29-853-6633 (B.-W.Y.)
| |
Collapse
|
35
|
Kurokawa M, Ying BW. Experimental Challenges for Reduced Genomes: The Cell Model Escherichia coli. Microorganisms 2019; 8:E3. [PMID: 31861355 PMCID: PMC7022904 DOI: 10.3390/microorganisms8010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Genome reduction, as a top-down approach to obtain the minimal genetic information essential for a living organism, has been conducted with bacterial cells for decades. The most popular and well-studied cell models for genome reduction are Escherichia coli strains. As the previous literature intensively introduced the genetic construction and application of the genome-reduced Escherichia coli strains, the present review focuses the design principles and compares the reduced genome collections from the specific viewpoint of growth, which represents a fundamental property of living cells and is an important feature for their biotechnological application. For the extended simplification of the genomic sequences, the approach of experimental evolution and concern for medium optimization are newly proposed. The combination of the current techniques of genomic construction and the newly proposed methodologies could allow us to acquire growing Escherichia coli cells carrying the extensively reduced genome and to address the question of what the minimal genome essential for life is.
Collapse
Affiliation(s)
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 305-8572 Ibaraki, Japan;
| |
Collapse
|
36
|
Restructured Lactococcus lactis strains with emergent properties constructed by a novel highly efficient screening system. Microb Cell Fact 2019; 18:198. [PMID: 31727072 PMCID: PMC6854693 DOI: 10.1186/s12934-019-1249-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Background After 2.83% genome reduction in Lactococcus lactis NZ9000, a good candidate host for proteins production was obtained in our previous work. However, the gene deletion process was time consuming and laborious. Here, we proposed a convenient gene deletion method suitable for large-scale genome reduction in L. lactis NZ9000. Results Plasmid pNZ5417 containing a visually selectable marker PnisZ-lacZ was constructed, which allowed more efficient and convenient screening of gene deletion mutants. Using this plasmid, two large nonessential DNA regions, L-4A and L-5A, accounting for 1.25% of the chromosome were deleted stepwise in L. lactis 9k-3. When compared with the parent strain, the mutant L. lactis 9k-5A showed better growth characteristics, transformability, carbon metabolic capacity, and amino acids biosynthesis. Conclusions Thus, this study provides a convenient and efficient system for large-scale genome deletion in L. lactis through application of visually selectable marker, which could be helpful for rapid genome streamlining and generation of restructured L. lactis strains that can be used as cell factories.
Collapse
|
37
|
Predicting the decision making chemicals used for bacterial growth. Sci Rep 2019; 9:7251. [PMID: 31076576 PMCID: PMC6510730 DOI: 10.1038/s41598-019-43587-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Predicting the contribution of media components to bacterial growth was first initiated by introducing machine learning to high-throughput growth assays. A total of 1336 temporal growth records corresponding to 225 different media, which were composed of 13 chemical components, were generated. The growth rate and saturated density of each growth curve were automatically calculated with the newly developed data processing program. To identify the decision making factors related to growth among the 13 chemicals, big datasets linking the growth parameters to the chemical combinations were subjected to decision tree learning. The results showed that the only carbon source, glucose, determined bacterial growth, but it was not the first priority. Instead, the top decision making chemicals in relation to the growth rate and saturated density were ammonium and ferric ions, respectively. Three chemical components (NH4+, Mg2+ and glucose) commonly appeared in the decision trees of the growth rate and saturated density, but they exhibited different mechanisms. The concentration ranges for fast growth and high density were overlapped for glucose but distinguished for NH4+ and Mg2+. The results suggested that these chemicals were crucial in determining the growth speed and growth maximum in either a universal use or a trade-off manner. This differentiation might reflect the diversity in the resource allocation mechanisms for growth priority depending on the environmental restrictions. This study provides a representative example for clarifying the contribution of the environment to population dynamics through an innovative viewpoint of employing modern data science within traditional microbiology to obtain novel findings.
Collapse
|
38
|
Allen RC, Angst DC, Hall AR. Resistance Gene Carriage Predicts Growth of Natural and Clinical Escherichia coli Isolates in the Absence of Antibiotics. Appl Environ Microbiol 2019; 85:e02111-18. [PMID: 30530714 PMCID: PMC6365833 DOI: 10.1128/aem.02111-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens that carry antibiotic resistance alleles sometimes pay a cost in the form of impaired growth in antibiotic-free conditions. This cost of resistance is expected to be a key parameter for understanding how resistance spreads and persists in pathogen populations. Analysis of individual resistance alleles from laboratory evolution and natural isolates has shown they are typically costly, but these costs are highly variable and influenced by genetic variation at other loci. It therefore remains unclear how strongly resistance is linked to impaired antibiotic-free growth in bacteria from natural and clinical scenarios, where resistance alleles are likely to coincide with other types of genetic variation. To investigate this, we measured the growth of 92 natural and clinical Escherichia coli isolates across three antibiotic-free environments. We then tested whether variation of antibiotic-free growth among isolates was predicted by their resistance to 10 antibiotics, while accounting for the phylogenetic structure of the data. We found that isolates with similar resistance profiles had similar antibiotic-free growth profiles, but it was not simply that higher average resistance was associated with impaired growth. Next, we used whole-genome sequences to identify antibiotic resistance genes and found that isolates carrying a greater number of resistance gene types grew relatively poorly in antibiotic-free conditions, even when the resistance genes they carried were different. This suggests that the resistance of bacterial pathogens is linked to growth costs in nature, but it is the total genetic burden and multivariate resistance phenotype that predict these costs, rather than individual alleles or mean resistance across antibiotics.IMPORTANCE Managing the spread of antibiotic resistance in bacterial pathogens is a major challenge for global public health. Central to this challenge is understanding whether resistance is linked to impaired bacterial growth in the absence of antibiotics, because this determines whether resistance declines when bacteria are no longer exposed to antibiotics. We studied 92 isolates of the key bacterial pathogen Escherichia coli; these isolates varied in both their antibiotic resistance genes and other parts of the genome. Taking this approach, rather than focusing on individual genetic changes associated with resistance as in much previous work, revealed that growth without antibiotics was linked to the number of specialized resistance genes carried and the combination of antibiotics to which isolates were resistant but was not linked to average antibiotic resistance. This approach provides new insights into the genetic factors driving the long-term persistence of antibiotic-resistant bacteria, which is important for future efforts to predict and manage resistance.
Collapse
Affiliation(s)
| | - Daniel C Angst
- Institute for Integrative Biology, ETH Zürich, Switzerland
| | - Alex R Hall
- Institute for Integrative Biology, ETH Zürich, Switzerland
| |
Collapse
|
39
|
Ying BW, Yama K. Gene Expression Order Attributed to Genome Reduction and the Steady Cellular State in Escherichia coli. Front Microbiol 2018; 9:2255. [PMID: 30294319 PMCID: PMC6158460 DOI: 10.3389/fmicb.2018.02255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/04/2018] [Indexed: 11/13/2022] Open
Abstract
Transcriptomes not only reflect the growth status but also link to the genome in bacteria. To investigate if and how genome or cellular state changes contribute to the gene expression order, the growth profile-associated transcriptomes of an assortment of genetically differentiated Escherichia coli either exponentially growing under varied conditions or in response to environmental disturbance were analyzed. A total of 168 microarray data sets representing 56 transcriptome variations, were categorized by genome size (full length or reduced) and cellular state (steady or unsteady). At the genome-wide level, the power-law distribution of gene expression was found to be significantly disturbed by the genome size but not the cellular state. At the regulatory network level, more networks with improved coordination of growth rates were observed in genome reduction than at the steady state. At the single-gene level, both genome reduction and steady state increased the correlation of gene expression to growth rate, but the enriched gene categories with improved correlations were different. These findings not only illustrate the order of gene expression attributed to genome reduction and steady cellular state but also indicate that the accessory sequences acquired during genome evolution largely participated in the coordination of transcriptomes to growth fitness.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Institute of Biology and Information Science, East China Normal University, Shanghai, China.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuma Yama
- Advanced Analytical Science Laboratories, Research & Development Headquarters, Lion Corporation, Tokyo, Japan
| |
Collapse
|
40
|
Tsuchiya K, Cao YY, Kurokawa M, Ashino K, Yomo T, Ying BW. A decay effect of the growth rate associated with genome reduction in Escherichia coli. BMC Microbiol 2018; 18:101. [PMID: 30176803 PMCID: PMC6122737 DOI: 10.1186/s12866-018-1242-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/20/2018] [Indexed: 01/21/2023] Open
Abstract
Background Bacterial growth is an important topic in microbiology and of crucial importance to better understand living cells. Bacterial growth dynamics are quantitatively examined using various methods to determine the physical, chemical or biological features of growing populations. Due to methodological differences, the exponential growth rate, which is a parameter that is representative of growth dynamics, should be differentiated. Ignoring such differentiation in the growth analysis might overlook somehow slight but significant changes in cellular features of the growing population. Both experimental and theoretical investigations are required to address these issues. Results This study experimentally verified the differentiation in growth rates attributed to different methodologies, and demonstrated that the most popular method, optical turbidity, led to the determination of a lower growth rate in comparison to the methods based on colony formation and cellular adenosine triphosphate, due to a decay effect of reading OD600 during a population increase. Accordingly, the logistic model, which is commonly applied to the high-throughput growth data reading the OD600, was revised by introducing a new parameter: the decay rate, to compensate for the lowered estimation in growth rates. An improved goodness of fit in comparison to the original model was acquired due to this revision. Applying the modified logistic model to hundreds of growth data acquired from an assortment of Escherichia coli strains carrying the reduced genomes led to an intriguing finding of a correlation between the decay rate and the genome size. The decay effect seemed to be partially attributed to the decrease in cell size accompanied by a population increase and was medium dependent. Conclusions The present study provides not only an improved theoretical tool for the high-throughput studies on bacterial growth dynamics linking with optical turbidity to biological meaning, but also a novel insight of the genome reduction correlated decay effect, which potentially reflects the changing cellular features during population increase. It is valuable for understanding the genome evolution and the fitness increase in microbial life. Electronic supplementary material The online version of this article (10.1186/s12866-018-1242-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kouhei Tsuchiya
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8572, Japan
| | - Yang-Yang Cao
- Institute of Biology and Information Science, East China Normal University, 3663 Zhongshan Road (N), Shanghai, 200062, China
| | - Masaomi Kurokawa
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8572, Japan
| | - Kazuha Ashino
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8572, Japan
| | - Tetsuya Yomo
- Institute of Biology and Information Science, East China Normal University, 3663 Zhongshan Road (N), Shanghai, 200062, China
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8572, Japan.
| |
Collapse
|
41
|
Martinez-Urtaza J, van Aerle R, Abanto M, Haendiges J, Myers RA, Trinanes J, Baker-Austin C, Gonzalez-Escalona N. Genomic Variation and Evolution of Vibrio parahaemolyticus ST36 over the Course of a Transcontinental Epidemic Expansion. mBio 2017; 8:e01425-17. [PMID: 29138301 PMCID: PMC5686534 DOI: 10.1128/mbio.01425-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-related infections with illnesses undergoing a geographic expansion. In this process of expansion, the most fundamental change has been the transition from infections caused by local strains to the surge of pandemic clonal types. Pandemic clone sequence type 3 (ST3) was the only example of transcontinental spreading until 2012, when ST36 was detected outside the region where it is endemic in the U.S. Pacific Northwest causing infections along the U.S. northeast coast and Spain. Here, we used genome-wide analyses to reconstruct the evolutionary history of the V. parahaemolyticus ST36 clone over the course of its geographic expansion during the previous 25 years. The origin of this lineage was estimated to be in ~1985. By 1995, a new variant emerged in the region and quickly replaced the old clone, which has not been detected since 2000. The new Pacific Northwest (PNW) lineage was responsible for the first cases associated with this clone outside the Pacific Northwest region. After several introductions into the northeast coast, the new PNW clone differentiated into a highly dynamic group that continues to cause illness on the northeast coast of the United States. Surprisingly, the strains detected in Europe in 2012 diverged from this ancestral group around 2000 and have conserved genetic features present only in the old PNW lineage. Recombination was identified as the major driver of diversification, with some preliminary observations suggesting a trend toward a more specialized lifestyle, which may represent a critical element in the expansion of epidemics under scenarios of coastal warming.IMPORTANCEVibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio, the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe.
Collapse
Affiliation(s)
- Jaime Martinez-Urtaza
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, Somerset, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset, United Kingdom
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset, United Kingdom
| | - Michel Abanto
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, Somerset, United Kingdom
| | - Julie Haendiges
- Department of Health and Mental Hygiene, Baltimore, Maryland, USA
| | - Robert A Myers
- Department of Health and Mental Hygiene, Baltimore, Maryland, USA
| | - Joaquin Trinanes
- Laboratory of Systems, Technological Research Institute, Universidad de Santiago de Compostela, Campus Universitario Sur, Santiago de Compostela, Spain
- National Oceanic & Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset, United Kingdom
| | - Narjol Gonzalez-Escalona
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, FDA, College Park, Maryland, USA
| |
Collapse
|
42
|
Liu F, Wu W, Tran-Gyamfi MB, Jaryenneh JD, Zhuang X, Davis RW. Bioconversion of distillers' grains hydrolysates to advanced biofuels by an Escherichia coli co-culture. Microb Cell Fact 2017; 16:192. [PMID: 29121935 PMCID: PMC5679325 DOI: 10.1186/s12934-017-0804-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND First generation bioethanol production utilizes the starch fraction of maize, which accounts for approximately 60% of the ash-free dry weight of the grain. Scale-up of this technology for fuels applications has resulted in a massive supply of distillers' grains with solubles (DGS) coproduct, which is rich in cellulosic polysaccharides and protein. It was surmised that DGS would be rapidly adopted for animal feed applications, however, this has not been observed based on inconsistency of the product stream and other logistics-related risks, especially toxigenic contaminants. Therefore, efficient valorization of DGS for production of petroleum displacing products will significantly improve the techno-economic feasibility and net energy return of the established starch bioethanol process. In this study, we demonstrate 'one-pot' bioconversion of the protein and carbohydrate fractions of a DGS hydrolysate into C4 and C5 fusel alcohols through development of a microbial consortium incorporating two engineered Escherichia coli biocatalyst strains. RESULTS The carbohydrate conversion strain E. coli BLF2 was constructed from the wild type E. coli strain B and showed improved capability to produce fusel alcohols from hexose and pentose sugars. Up to 12 g/L fusel alcohols was produced from glucose or xylose synthetic medium by E. coli BLF2. The second strain, E. coli AY3, was dedicated for utilization of proteins in the hydrolysates to produce mixed C4 and C5 alcohols. To maximize conversion yield by the co-culture, the inoculation ratio between the two strains was optimized. The co-culture with an inoculation ratio of 1:1.5 of E. coli BLF2 and AY3 achieved the highest total fusel alcohol titer of up to 10.3 g/L from DGS hydrolysates. The engineered E. coli co-culture system was shown to be similarly applicable for biofuel production from other biomass sources, including algae hydrolysates. Furthermore, the co-culture population dynamics revealed by quantitative PCR analysis indicated that despite the growth rate difference between the two strains, co-culturing didn't compromise the growth of each strain. The q-PCR analysis also demonstrated that fermentation with an appropriate initial inoculation ratio of the two strains was important to achieve a balanced co-culture population which resulted in higher total fuel titer. CONCLUSIONS The efficient conversion of DGS hydrolysates into fusel alcohols will significantly improve the feasibility of the first generation bioethanol process. The integrated carbohydrate and protein conversion platform developed here is applicable for the bioconversion of a variety of biomass feedstocks rich in sugars and proteins.
Collapse
Affiliation(s)
- Fang Liu
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA, 94550, USA.
| | - Weihua Wu
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Mary B Tran-Gyamfi
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - James D Jaryenneh
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Xun Zhuang
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Ryan W Davis
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA, 94550, USA.
| |
Collapse
|
43
|
Weinert LA, Welch JJ. Why Might Bacterial Pathogens Have Small Genomes? Trends Ecol Evol 2017; 32:936-947. [PMID: 29054300 DOI: 10.1016/j.tree.2017.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
Abstract
Bacteria that cause serious disease often have smaller genomes, and fewer genes, than their nonpathogenic, or less pathogenic relatives. Here, we review evidence for the generality of this association, and summarise the various reasons why the association might hold. We focus on the population genetic processes that might lead to reductive genome evolution, and show how several of these could be connected to pathogenicity. We find some evidence for most of the processes having acted in bacterial pathogens, including several different modes of genome reduction acting in the same lineage. We argue that predictable processes of genome evolution might not reflect any common underlying process.
Collapse
Affiliation(s)
- Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
44
|
Abstract
Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.
Collapse
Affiliation(s)
- Masaomi Kurokawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba; Institute of Biology and Information Science, East China Normal University;
| |
Collapse
|
45
|
Abstract
Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment. Genome reduction is a powerful approach for investigating the fundamental rules for living systems. Whether genetically disturbed genomes have any specific properties that are different from or similar to those of natively evolved genomes has been under investigation. In the present study, we found that Escherichia coli cells with reduced genomes showed accelerated nucleotide substitution errors (mutation rates), although these cells retained the normal DNA mismatch repair systems. Intriguingly, this finding of correlation between reduced genome size and a higher mutation rate was consistent with the reported evolution of mutation rates. Furthermore, the increased mutation rate was quantitatively associated with a decreased growth rate, indicating that the global parameters related to the genome, growth, and mutation, which represent the amount of genetic information, the efficiency of propagation, and the fidelity of replication, respectively, are dynamically coordinated.
Collapse
|
46
|
Excess of non-conservative amino acid changes in marine bacterioplankton lineages with reduced genomes. Nat Microbiol 2017; 2:17091. [PMID: 28604700 DOI: 10.1038/nmicrobiol.2017.91] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 04/28/2017] [Indexed: 12/30/2022]
Abstract
Surface ocean waters are dominated by planktonic bacterial lineages with highly reduced genomes. The best examples are the cyanobacterial genus Prochlorococcus, the alphaproteobacterial clade SAR11 and the gammaproteobacterial clade SAR86, which together represent over 50% of the cells in surface oceans. Several studies have identified signatures of selection on these lineages in today's ocean and have postulated selection as the primary force throughout their evolutionary history. However, massive loss of genomic DNA in these lineages often occurred in the distant past, and the selective pressures underlying these ancient events have not been assessed. Here, we probe ancient selective pressures by computing %GC-corrected rates of conservative and radical nonsynonymous nucleotide substitutions. Surprisingly, we found an excess of radical changes in several of these lineages in comparison to their relatives with larger genomes. Furthermore, analyses of allelic genome sequences of several populations within these lineages consistently supported that radical replacements are more likely to be deleterious than conservative changes. Our results suggest coincidence of massive genomic DNA losses and increased power of genetic drift, but we also suggest that additional evidence independent of the nucleotide substitution analyses is needed to support a primary role of genetic drift driving ancient genome reduction of marine bacterioplankton lineages.
Collapse
|
47
|
Johnson CW, Abraham PE, Linger JG, Khanna P, Hettich RL, Beckham GT. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440. Metab Eng Commun 2017; 5:19-25. [PMID: 29188181 PMCID: PMC5699531 DOI: 10.1016/j.meteno.2017.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/28/2017] [Accepted: 05/30/2017] [Indexed: 01/02/2023] Open
Abstract
Carbon catabolite repression refers to the preference of microbes to metabolize certain growth substrates over others in response to a variety of regulatory mechanisms. Such preferences are important for the fitness of organisms in their natural environments, but may hinder their performance as domesticated microbial cell factories. In a Pseudomonas putida KT2440 strain engineered to convert lignin-derived aromatic monomers such as p-coumarate and ferulate to muconate, a precursor to bio-based nylon and other chemicals, metabolic intermediates including 4-hydroxybenzoate and vanillate accumulate and subsequently reduce productivity. We hypothesized that these metabolic bottlenecks may be, at least in part, the effect of carbon catabolite repression caused by glucose or acetate, more preferred substrates that must be provided to the strain for supplementary energy and cell growth. Using mass spectrometry-based proteomics, we have identified the 4-hydroxybenzoate hydroxylase, PobA, and the vanillate demethylase, VanAB, as targets of the Catabolite Repression Control (Crc) protein, a global regulator of carbon catabolite repression. By deleting the gene encoding Crc from this strain, the accumulation of 4-hydroxybenzoate and vanillate are reduced and, as a result, muconate production is enhanced. In cultures grown on glucose, the yield of muconate produced from p-coumarate after 36 h was increased nearly 70% with deletion of the gene encoding Crc (94.6 ± 0.6% vs. 56.0 ± 3.0% (mol/mol)) while the yield from ferulate after 72 h was more than doubled (28.3 ± 3.3% vs. 12.0 ± 2.3% (mol/mol)). The effect of eliminating Crc was similar in cultures grown on acetate, with the yield from p-coumarate just slightly higher in the Crc deletion strain after 24 h (47.7 ± 0.6% vs. 40.7 ± 3.6% (mol/mol)) and the yield from ferulate increased more than 60% after 72 h (16.9 ± 1.4% vs. 10.3 ± 0.1% (mol/mol)). These results are an example of the benefit that reducing carbon catabolite repression can have on conversion of complex feedstocks by microbial cell factories, a concept we posit could be broadly considered as a strategy in metabolic engineering for conversion of renewable feedstocks to value-added chemicals. Crc is a global regulator of carbon catabolite repression in pseudomonads. The gene encoding Crc was deleted from muconate a producing P. putida strain. Based on our proteomics data, expression of PobA and VanAB are regulated by Crc. Deleting Crc improved conversion to muconate in the presence of glucose or acetate. This may be a useful strategy toward developing pseudomonad cell factories.
Collapse
Affiliation(s)
- Christopher W Johnson
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Jeffrey G Linger
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Payal Khanna
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| |
Collapse
|
48
|
Draft Genome Sequence of the Anaerobic Ammonium-Oxidizing Bacterium "Candidatus Brocadia sp. 40". GENOME ANNOUNCEMENTS 2016; 4:4/6/e01377-16. [PMID: 27932661 PMCID: PMC5146453 DOI: 10.1128/genomea.01377-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The anaerobic ammonium-oxidizing (anammox) bacterium “Candidatus Brocadia sp. 40” demonstrated the fastest growth rate compared to others in this taxon. Here, we report the 2.93-Mb draft genome sequence of this bacterium, which has 2,565 gene-coding regions, 41 tRNAs, and a single rrn operon.
Collapse
|