1
|
Ortolá B, Daròs JA. RNA Interference in Insects: From a Natural Mechanism of Gene Expression Regulation to a Biotechnological Crop Protection Promise. BIOLOGY 2024; 13:137. [PMID: 38534407 DOI: 10.3390/biology13030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Insect pests rank among the major limiting factors in agricultural production worldwide. In addition to direct effect on crops, some phytophagous insects are efficient vectors for plant disease transmission. Large amounts of conventional insecticides are required to secure food production worldwide, with a high impact on the economy and environment, particularly when beneficial insects are also affected by chemicals that frequently lack the desired specificity. RNA interference (RNAi) is a natural mechanism gene expression regulation and protection against exogenous and endogenous genetic elements present in most eukaryotes, including insects. Molecules of double-stranded RNA (dsRNA) or highly structured RNA are the substrates of cellular enzymes to produce several types of small RNAs (sRNAs), which play a crucial role in targeting sequences for transcriptional or post-transcriptional gene silencing. The relatively simple rules that underlie RNAi regulation, mainly based in Watson-Crick complementarity, have facilitated biotechnological applications based on these cellular mechanisms. This includes the promise of using engineered dsRNA molecules, either endogenously produced in crop plants or exogenously synthesized and applied onto crops, as a new generation of highly specific, sustainable, and environmentally friendly insecticides. Fueled on this expectation, this article reviews current knowledge about the RNAi pathways in insects, and some other applied questions such as production and delivery of recombinant RNA, which are critical to establish RNAi as a reliable technology for insect control in crop plants.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
2
|
Karlin DG. WIV, a protein domain found in a wide number of arthropod viruses, which probably facilitates infection. J Gen Virol 2024; 105. [PMID: 38193819 DOI: 10.1099/jgv.0.001948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
The most powerful approach to detect distant homologues of a protein is based on structure prediction and comparison. Yet this approach is still inapplicable to many viral proteins. Therefore, we applied a powerful sequence-based procedure to identify distant homologues of viral proteins. It relies on three principles: (1) traces of sequence similarity can persist beyond the significance cutoff of homology detection programmes; (2) candidate homologues can be identified among proteins with weak sequence similarity to the query by using 'contextual' information, e.g. taxonomy or type of host infected; (3) these candidate homologues can be validated using highly sensitive profile-profile comparison. As a test case, this approach was applied to a protein without known homologues, encoded by ORF4 of Lake Sinai viruses (which infect bees). We discovered that the ORF4 protein contains a domain that has homologues in proteins from >20 taxa of viruses infecting arthropods. We called this domain 'widespread, intriguing, versatile' (WIV), because it is found in proteins with a wide variety of functions and within varied domain contexts. For example, WIV is found in the NSs protein of tospoviruses, a global threat to food security, which infect plants as well as their arthropod vectors; in the RNA2 ORF1-encoded protein of chronic bee paralysis virus, a widespread virus of bees; and in various proteins of cypoviruses, which infect the silkworm Bombyx mori. Structural modelling with AlphaFold indicated that the WIV domain has a previously unknown fold, and bibliographical evidence suggests that it facilitates infection of arthropods.
Collapse
Affiliation(s)
- David G Karlin
- Division Phytomedicine, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Lentzeallee 55/57, D-14195 Berlin, Germany
- Independent Researcher, Marseille, France
| |
Collapse
|
3
|
Sun M, Fan X, Long Q, Zang H, Zhang Y, Liu X, Feng P, Song Y, Li K, Wu Y, Jiang H, Chen D, Guo R. First Characterization and Regulatory Function of piRNAs in the Apis mellifera Larval Response to Ascosphaera apis Invasion. Int J Mol Sci 2023; 24:16358. [PMID: 38003547 PMCID: PMC10671575 DOI: 10.3390/ijms242216358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
piRNAs are a class of small non-coding RNAs that play essential roles in modulating gene expression and abundant biological processes. To decode the piRNA-regulated larval response of western honeybees (Apis mellifera) to Ascosphaera apis infection, the expression pattern of piRNAs in Apis mellifera ligustica larval guts after A. apis inoculation was analyzed based on previously obtained high-quality small RNA-seq datasets, followed by structural characterization, target prediction, regulatory network investigation, and functional dissection. Here, 504, 657, and 587 piRNAs were respectively identified in the 4-, 5-, and 6-day-old larval guts after inoculation with A. apis, with 411 ones shared. These piRNAs shared a similar length distribution and first base bias with mammal piRNAs. Additionally, 96, 103, and 143 DEpiRNAs were detected in the 4-, 5-, and 6-day-old comparison groups. Targets of the DEpiRNAs were engaged in diverse pathways such as the phosphatidylinositol signaling system, inositol phosphate metabolism, and Wnt signaling pathway. These targets were involved in three energy metabolism-related pathways, eight development-associated signaling pathways, and seven immune-relevant pathways such as the Jak-STAT signaling pathway. The expression trends of five randomly selected DEpiRNAs were verified using a combination of RT-PCR and RT-qPCR. The effective overexpression and knockdown of piR-ame-945760 in A. apis-infected larval guts were achieved by feeding a specific mimic and inhibitor. Furthermore, piR-ame-945760 negatively regulated the expression of two target immune mRNAs, SOCS5 and ARF1, in the larval gut during the A. apis infection. These findings indicated that the overall expression level of piRNAs was increased and the expression pattern of piRNAs in larval guts was altered due to the A. apis infection, DEpiRNAs were putative regulators in the A. apis-response of A. m. ligustica worker larvae. Our data provide not only a platform for the functional investigation of piRNAs in honeybees, especially in bee larvae, but also a foundation for illuminating the piRNA-involved mechanisms underlying the host response to the A. apis infection.
Collapse
Affiliation(s)
- Minghui Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - He Zang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Yiqiong Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Xiaoyu Liu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Peilin Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Yuxuan Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Kunze Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jilin 132000, China; (Y.W.); (H.J.)
| | - Haibin Jiang
- Apiculture Science Institute of Jilin Province, Jilin 132000, China; (Y.W.); (H.J.)
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
4
|
Xia J, Fei S, Wu H, Yang Y, Yu W, Zhang M, Guo Y, Swevers L, Sun J, Feng M. The piRNA pathway is required for nucleopolyhedrovirus replication in Lepidoptera. INSECT SCIENCE 2023; 30:1378-1392. [PMID: 36495071 DOI: 10.1111/1744-7917.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The Piwi-interacting RNA (piRNA) pathway has been shown to be involved in the antiviral defense against RNA viruses, especially in mosquitoes, but its universality has been questioned. Here, we used the Bombyx mori nucleopolyhedrovirus (BmNPV) -infected silkworm as a model to explore the effects of the key factors of piRNA pathway, BmAgo3 and Siwi, on replication of a large DNA virus (belonging to the family of Baculoviridae). We demonstrated that BmAgo3 and Siwi could promote the replication of BmNPV through both overexpression and knockdown experiments in BmN cell lines and silkworm larvae. In addition, we also studied the effect of PIWI-class genes on Autographa californica nucleopolyhedrovirus (AcMNPV) replication in the Spodoptera frugiperda cell line Sf9. By knocking down the expression of PIWI-class genes in Sf9, we found that Piwi-like-1 and Piwi-like-2-3 could inhibit AcMNPV replication, while Piwi-like-4-5 promoted virus replication. Our study provides compelling evidence that the piRNA pathway affects host infection by exogenous viruses in Lepidoptera. Also, our results reflect the diversity of the roles of PIWI-class genes in virus infection of the host across species. This study is the first to explore the interaction of PIWI-class proteins with DNA viruses, providing new insights into the functional roles of the piRNA pathway.
Collapse
Affiliation(s)
- Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongyun Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yifan Yang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wensheng Yu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengmeng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiyao Guo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Center for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Yoth M, Maupetit-Méhouas S, Akkouche A, Gueguen N, Bertin B, Jensen S, Brasset E. Reactivation of a somatic errantivirus and germline invasion in Drosophila ovaries. Nat Commun 2023; 14:6096. [PMID: 37773253 PMCID: PMC10541861 DOI: 10.1038/s41467-023-41733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Most Drosophila transposable elements are LTR retrotransposons, some of which belong to the genus Errantivirus and share structural and functional characteristics with vertebrate endogenous retroviruses. Like endogenous retroviruses, it is unclear whether errantiviruses retain some infectivity and transposition capacity. We created conditions where control of the Drosophila ZAM errantivirus through the piRNA pathway was abolished leading to its de novo reactivation in somatic gonadal cells. After reactivation, ZAM invaded the oocytes and severe fertility defects were observed. While ZAM expression persists in the somatic gonadal cells, the germline then set up its own adaptive genomic immune response by producing piRNAs against the constantly invading errantivirus, restricting invasion. Our results suggest that although errantiviruses are continuously repressed by the piRNA pathway, they may retain their ability to infect the germline and transpose, thus allowing them to efficiently invade the germline if they are expressed.
Collapse
Affiliation(s)
- Marianne Yoth
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France
| | | | - Abdou Akkouche
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France
| | - Nathalie Gueguen
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France
| | - Benjamin Bertin
- LIMAGRAIN EUROPE, Centre de recherche, 63720, Chappes, France
| | - Silke Jensen
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France.
| | - Emilie Brasset
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Sugiyama H, Katsuma S. A method for screening the suppressor genes of siRNA and piRNA pathways using cultured silkworm cells. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000953. [PMID: 37799201 PMCID: PMC10550373 DOI: 10.17912/micropub.biology.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023]
Abstract
The BmN-4 cell line originates from the ovaries of silkworm, Bombyx mori , and possesses endogenous small interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) pathways. BmN-4 cells are latently infected with Bombyx mori latent virus (BmLV), an RNA virus whose replication is strictly controlled by both siRNA and piRNA pathways. Knockdown or knockout of the core factors of these two small RNA pathways increases BmLV RNA amount, which in turn inhibits cell growth. Here, we used the known RNAi suppressor CrPV-1A to assess whether the BmN-4 cell line can be used for screening the suppressors of siRNA and piRNA pathways.
Collapse
Affiliation(s)
- Haruka Sugiyama
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Verdonckt TW, Bilsen A, Van Nieuwerburgh F, De Troij L, Santos D, Vanden Broeck J. Identification and Profiling of a Novel Bombyx mori latent virus Variant Acutely Infecting Helicoverpa armigera and Trichoplusia ni. Viruses 2023; 15:v15051183. [PMID: 37243270 DOI: 10.3390/v15051183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Insect cell expression systems are increasingly being used in the medical industry to develop vaccines against diseases such as COVID-19. However, viral infections are common in these systems, making it necessary to thoroughly characterize the viruses present. One such virus is Bombyx mori latent virus (BmLV), which is known to be specific to Bombyx mori and to have low pathogenicity. However, there has been little research on the tropism and virulence of BmLV. In this study, we examined the genomic diversity of BmLV and identified a variant that persistently infects Trichoplusia ni-derived High Five cells. We also assessed the pathogenicity of this variant and its effects on host responses using both in vivo and in vitro systems. Our results showed that this BmLV variant causes acute infections with strong cytopathic effects in both systems. Furthermore, we characterized the RNAi-based immune response in the T. ni cell line and in Helicoverpa armigera animals by assessing the regulation of RNAi-related genes and profiling the generated viral small RNAs. Overall, our findings shed light on the prevalence and infectious properties of BmLV. We also discuss the potential impact of virus genomic diversity on experimental outcomes, which can help interpret past and future research results.
Collapse
Affiliation(s)
- Thomas-Wolf Verdonckt
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Anton Bilsen
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Loes De Troij
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
9
|
Santos D, Verdonckt TW, Mingels L, Van den Brande S, Geens B, Van Nieuwerburgh F, Kolliopoulou A, Swevers L, Wynant N, Vanden Broeck J. PIWI Proteins Play an Antiviral Role in Lepidopteran Cell Lines. Viruses 2022; 14:v14071442. [PMID: 35891422 PMCID: PMC9321812 DOI: 10.3390/v14071442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Insect antiviral immunity primarily relies on RNAi mechanisms. While a key role of small interfering (si)RNAs and AGO proteins has been well established in this regard, the situation for PIWI proteins and PIWI-interacting (pi)RNAs is not as clear. In the present study, we investigate whether PIWI proteins and viral piRNAs are involved in the immunity against single-stranded RNA viruses in lepidopteran cells, where two PIWIs are identified (Siwi and Ago3). Via loss- and gain-of-function studies in Bombyx mori BmN4 cells and in Trichoplusia ni High Five cells, we demonstrated an antiviral role of Siwi and Ago3. However, small RNA analysis suggests that viral piRNAs can be absent in these lepidopteran cells. Together with the current literature, our results support a functional diversification of PIWI proteins in insects.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
- Correspondence:
| | - Thomas-Wolf Verdonckt
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Lina Mingels
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Stijn Van den Brande
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Bart Geens
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Gent University, Ottergemsesteenweg 460, 9000 Gent, Belgium;
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 153 10 Athens, Greece; (A.K.); (L.S.)
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 153 10 Athens, Greece; (A.K.); (L.S.)
| | - Niels Wynant
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| |
Collapse
|
10
|
Wang ZZ, Ye XQ, Huang JH, Chen XX. Virus and endogenous viral element-derived small non-coding RNAs and their roles in insect-virus interaction. CURRENT OPINION IN INSECT SCIENCE 2022; 49:85-92. [PMID: 34974161 DOI: 10.1016/j.cois.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
RNA interference pathways mediated by different types of small non-coding RNAs (siRNAs, miRNAs and piRNAs) are conserved biological responses to exotic stresses, including viral infection. Aside from the well-established siRNA pathway, the miRNA pathway and the piRNA pathway process viral sequences, exogenously or endogenously, into miRNAs and piRNAs, respectively. During the host-virus interaction, viral sequences, including both coding and non-coding sequences, can be integrated as endogenous viral elements (EVEs) and thereby become present within the germline of a non-viral organism. In recent years, significant progress has been made in characterizing the biogenesis and function of viruses and EVEs associated with snRNAs. Overall, the siRNA pathway acts as the primarily antiviral defense against a wide range of exogenous viruses; the miRNA pathways associated with viruses or EVEs function in antiviral response and host gene regulation; EVE derived piRNAs with a ping-pong signature have the potential to limit cognate viral infection.
Collapse
Affiliation(s)
- Zhi-Zhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xi-Qian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China; State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Shigematsu M, Kawamura T, Morichika K, Izumi N, Kiuchi T, Honda S, Pliatsika V, Matsubara R, Rigoutsos I, Katsuma S, Tomari Y, Kirino Y. RNase κ promotes robust piRNA production by generating 2',3'-cyclic phosphate-containing precursors. Nat Commun 2021; 12:4498. [PMID: 34301931 PMCID: PMC8302750 DOI: 10.1038/s41467-021-24681-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
In animal germlines, PIWI proteins and the associated PIWI-interacting RNAs (piRNAs) protect genome integrity by silencing transposons. Here we report the extensive sequence and quantitative correlations between 2',3'-cyclic phosphate-containing RNAs (cP-RNAs), identified using cP-RNA-seq, and piRNAs in the Bombyx germ cell line and mouse testes. The cP-RNAs containing 5'-phosphate (P-cP-RNAs) identified by P-cP-RNA-seq harbor highly consistent 5'-end positions as the piRNAs and are loaded onto PIWI protein, suggesting their direct utilization as piRNA precursors. We identified Bombyx RNase Kappa (BmRNase κ) as a mitochondria-associated endoribonuclease which produces cP-RNAs during piRNA biogenesis. BmRNase κ-depletion elevated transposon levels and disrupted a piRNA-mediated sex determination in Bombyx embryos, indicating the crucial roles of BmRNase κ in piRNA biogenesis and embryonic development. Our results reveal a BmRNase κ-engaged piRNA biogenesis pathway, in which the generation of cP-RNAs promotes robust piRNA production.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Keisuke Morichika
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Natsuko Izumi
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Shozo Honda
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Venetia Pliatsika
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryuma Matsubara
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Feng M, Kolliopoulou A, Zhou YH, Fei SG, Xia JM, Swevers L, Sun JC. The piRNA response to BmNPV infection in the silkworm fat body and midgut. INSECT SCIENCE 2021; 28:662-679. [PMID: 32367653 DOI: 10.1111/1744-7917.12796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a DNA virus that causes huge losses to the silkworm industry but the piRNA responses during BmNPV infection in the silkworm remain uninvestigated. Here, silkworm piRNA profiles of uninfected and BmNPV-infected fat body and midgut were determined by high-through sequencing in the early stages of BmNPV infection. A total of 2675 and 3396 genome-derived piRNAs were identified from fat body and midgut, respectively. These genome-derived piRNAs mainly originated from unannotated instead of transposon regions in the silkworm genome. In total, 572 piRNAs were associated with 280 putative target genes in fat body and 805 piRNAs with 380 target genes in midgut. Compared to uninfected tissues, 322 and 129 piRNAs were significantly upregulated in BmNPV-infected fat body and midgut, respectively. In addition, 276 and 117 piRNAs were significantly downregulated. Moreover, differentially expressed (DE) piRNAs during BmNPV infection differed significantly between fat body and midgut. Putative DE piRNA-targeted genes were associated with "response to stimulus" and "environmental information processing" in fat body after infection with BmNPV, which may indicate an active piRNA response to BmNPV infection in fat body. This study may lay the foundation for future research of the potential roles of the piRNA pathway and specific piRNAs in BmNPV pathogenesis.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Yao-Hong Zhou
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shi-Gang Fei
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun-Ming Xia
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jing-Chen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Jiang L. Insights Into the Antiviral Pathways of the Silkworm Bombyx mori. Front Immunol 2021; 12:639092. [PMID: 33643323 PMCID: PMC7904692 DOI: 10.3389/fimmu.2021.639092] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
The lepidopteran model silkworm, Bombyx mori, is an important economic insect. Viruses cause serious economic losses in sericulture; thus, the economic importance of these viruses heightens the need to understand the antiviral pathways of silkworm to develop antiviral strategies. Insect innate immunity pathways play a critical role in the outcome of infection. The RNA interference (RNAi), NF-kB-mediated, immune deficiency (Imd), and stimulator of interferon gene (STING) pathways, and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway are the major antiviral defense mechanisms, and these have been shown to play important roles in the antiviral immunity of silkworms. In contrast, viruses can modulate the prophenol oxidase (PPO), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the extracellular signal-regulated kinase (ERK) signaling pathways of the host to elevate their proliferation in silkworms. In this review, we present an overview of the current understanding of the main immune pathways in response to viruses and the signaling pathways modulated by viruses in silkworms. Elucidation of these pathways involved in the antiviral mechanism of silkworms furnishes a theoretical basis for the enhancement of virus resistance in economic insects, such as upregulating antiviral immune pathways through transgenic overexpression, RNAi of virus genes, and targeting these virus-modulated pathways by gene editing or inhibitors.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Katsuma S, Shoji K, Suzuki Y, Iwanaga M. Potential for small RNA production against Bombyx mori latent virus in Bombyx mori ovaries. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21761. [PMID: 33225529 DOI: 10.1002/arch.21761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Bombyx mori latent virus (BmLV) is a positive, single-stranded insect RNA virus closely related to plant maculaviruses. BmLV was first isolated from Bombyx mori ovary-derived cell line BmN-4, and this virus has already infected most B. mori-derived cultured cell lines. We previously reported that small interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) pathways function cooperatively to maintain the amount of BmLV RNA for normal BmN-4 cell growth. On the other hand, BmLV does not propagate in B. mori larvae. Here we conducted BmLV injection into the larval body cavities of B. mori, and examined BmLV accumulation in larval ovaries where siRNA and piRNA pathways are both active, to investigate whether this in vivo resistance is governed by small RNA pathways. Expression levels of RNA-dependent RNA polymerase, coat protein, and p15 genes in BmLV-injected larval ovaries were extremely low compared with those in B. mori cultured cells, indicating that B. mori larval ovaries are more resistant to BmLV than B. mori cultured cells. We also sequenced small RNAs prepared from BmLV-injected larval ovaries and mapped them onto the BmLV genome. Although their amounts were very small, we were able to detect BmLV-derived small RNAs in the ovaries. According to their length distribution and nucleotide bias, they were likely to be siRNAs and piRNAs. These results suggest that B. mori ovaries can potentially produce small RNAs against BmLV, but the resistance of larval ovaries against BmLV is not dependent on RNA silencing pathways.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Shoji
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masashi Iwanaga
- Department of Agrobiology and Bioresources, Utsunomiya University, Utsunomiya-shi, Tochigi, Japan
| |
Collapse
|
15
|
CRISPR/Cas9-mediated mutagenesis of Ago2 and Siwi in silkworm cultured cells. Gene 2020; 768:145314. [PMID: 33220342 DOI: 10.1016/j.gene.2020.145314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 11/22/2022]
Abstract
The BmN-4 cell line, originated from the silkworm Bombyx mori ovary, possesses endogenous small interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) pathways. We performed CRISPR/Cas9-mediated genome editing of Ago2 and Siwi, which are the core factors for siRNA and piRNA pathways, respectively, to understand the importance of the two distinct small RNA pathways in this cell line. We found that approximately half of the alleles contained loss-of-function mutations in both Ago2- and Siwi-mutated cells. The mutated cells grew at a slower rate compared to the control cells, strongly suggesting that the siRNA and piRNA pathways are both crucial for the normal growth of BmN-4 cells. The amounts of piRNAs decreased markedly in the Siwi-mutated cells, but global de-repression of transposable elements was not observed. Although the RNA amount of latently infected RNA virus, Bombyx mori macula-like virus (BmLV), increased in both Ago2- and Siwi-mutated cells, the siRNA and piRNA pathways showed a bias toward targeting BmLV genomic and subgenomic RNA, respectively. These results indicate the common, specific, and crucial roles of the two small RNA pathways in B. mori cultured cells.
Collapse
|
16
|
Matsuda–Imai N, Katsuma S. Characterization of Bombyx mori nucleopolyhedrovirus infection in fat body-derived Bombyx mori cultured cells. J Invertebr Pathol 2020; 177:107476. [DOI: 10.1016/j.jip.2020.107476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023]
|
17
|
Proteotranscriptomics assisted gene annotation and spatial proteomics of Bombyx mori BmN4 cell line. BMC Genomics 2020; 21:690. [PMID: 33023468 PMCID: PMC7541253 DOI: 10.1186/s12864-020-07088-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background The process of identifying all coding regions in a genome is crucial for any study at the level of molecular biology, ranging from single-gene cloning to genome-wide measurements using RNA-seq or mass spectrometry. While satisfactory annotation has been made feasible for well-studied model organisms through great efforts of big consortia, for most systems this kind of data is either absent or not adequately precise. Results Combining in-depth transcriptome sequencing and high resolution mass spectrometry, we here use proteotranscriptomics to improve gene annotation of protein-coding genes in the Bombyx mori cell line BmN4 which is an increasingly used tool for the analysis of piRNA biogenesis and function. Using this approach we provide the exact coding sequence and evidence for more than 6200 genes on the protein level. Furthermore using spatial proteomics, we establish the subcellular localization of thousands of these proteins. We show that our approach outperforms current Bombyx mori annotation attempts in terms of accuracy and coverage. Conclusions We show that proteotranscriptomics is an efficient, cost-effective and accurate approach to improve previous annotations or generate new gene models. As this technique is based on de-novo transcriptome assembly, it provides the possibility to study any species also in the absence of genome sequence information for which proteogenomics would be impossible.
Collapse
|
18
|
Swevers L, Feng M, Ren F, Sun J. Antiviral defense against Cypovirus 1 (Reoviridae) infection in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21616. [PMID: 31502703 DOI: 10.1002/arch.21616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Recent years have shown a large increase in studies of infection of the silkworm (Bombyx mori) with Cypovirus 1 (previously designated as B. mori cytoplasmic polyhedrosis virus), that causes serious damage in sericulture. Cypovirus 1 has a single-layered capsid that encapsulates a segmented double-strand RNA (dsRNA) genome which are attractive features for the establishment of a biotechnological platform for the production of specialized gene silencing agents, either as recombinant viruses or as viral-like particles with nonreplicative dsRNA cargo. For both combatting viral disease and application of Cypovirus-based pest control, however, a better understanding is needed of the innate immune response caused by Cypovirus infection of the midgut of lepidopteran larvae. Studies of deep sequencing of viral small RNAs have indicated the importance of the RNA interference pathway in the control of Cypovirus infection although many functional aspects still need to be elucidated and conclusive evidence is lacking. A considerable number of transcriptome studies were carried out that revealed a complex response that hitherto remains uncharacterized because of a dearth in functional studies. Also, the uptake mechanism of Cypovirus by the midgut cells remains unclarified because of contrasting mechanisms revealed by electron microscopy and functional studies. The field will benefit from an increase in functional studies that will depend on transgenic silkworm technology and reverse genetics systems for Cypovirus 1.
Collapse
Affiliation(s)
- Luc Swevers
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Insect Molecular Genetics, Athens, Greece
| | - Min Feng
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Insect Molecular Genetics, Athens, Greece
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Feifei Ren
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
piRNA-Guided CRISPR-like Immunity in Eukaryotes. Trends Immunol 2019; 40:998-1010. [DOI: 10.1016/j.it.2019.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
|
20
|
Kolliopoulou A, Santos D, Taning CNT, Wynant N, Vanden Broeck J, Smagghe G, Swevers L. PIWI pathway against viruses in insects. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1555. [PMID: 31183996 DOI: 10.1002/wrna.1555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are an animal-specific class of small non-coding RNAs that are generated via a biogenesis pathway distinct from small interfering RNAs (siRNAs) and microRNAs (miRNAs). There are variations in piRNA biogenesis that depend on several factors, such as the cell type (germline or soma), the organism, and the purpose for which they are being produced, such as transposon-targeting, viral-targeting, or gene-derived piRNAs. Interestingly, the genes involved in the PIWI/piRNA pathway are more rapidly evolving compared with other RNA interference (RNAi) genes. In this review, the role of the piRNA pathway in the antiviral response is reviewed based on recent findings in insect models such as Drosophila, mosquitoes, midges and the silkworm, Bombyx mori. We extensively discuss the special features that characterize host-virus piRNA responses with respect to the proteins and the genes involved, the viral piRNAs' sequence characteristics, the target strand orientation biases as well as the viral piRNA target hotspots across the viral genomes. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niels Wynant
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
21
|
Wang L, Cappelle K, Santos D, Vanden Broeck J, Smagghe G, Swevers L. Short-term persistence precedes pathogenic infection: Infection kinetics of cricket paralysis virus in silkworm-derived Bm5 cells. JOURNAL OF INSECT PHYSIOLOGY 2019; 115:1-11. [PMID: 30905610 DOI: 10.1016/j.jinsphys.2019.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/16/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Next generation sequencing has revealed the widespread occurrence of persistent virus infections in insects but little is known regarding to what extent persistent infections can affect cellular physiology and how they might contribute to the development of disease. In contrast to the pathogenic infections occurring in Drosophila S2 cells, it was observed that Cricket Paralysis virus (CrPV; Dicistroviridae) causes persistent infections in 9 lepidopteran and 2 coleopteran cell lines. The status of the persistent infection was subsequently investigated in more detail using silkworm-derived Bm5 cells, where the infection eventually becomes pathogenic after 3-4 weeks. The short-term persistence period in Bm5 cells is characterized by low levels of viral replication and virion production as well as by the production of viral siRNAs. However, during this period cellular physiology also becomes altered since the cells become susceptible to infection by the nodavirus Flock House virus (FHV). Pathogenicity and widespread mortality at 4 weeks is preceded by a large increase in virion production and the transcriptional activation of immune-related genes encoding RNAi factors and transcription factors in the Toll, Imd and Jak-STAT pathways. During the infection of Bm5 cells, the infective properties of CrPV are not altered, indicating changes in the physiology of the host cells during the transition from short-term persistence to pathogenicity. The in vitro system of Bm5 cells persistently infected with CrPV can therefore be presented as an easily accessible model to study the nature of persistent virus infections and the processes that trigger the transition to pathogenicity, for instance through the application of different "omics" approaches (transcriptomics, proteomics, metabolomics). The different factors that can cause the transition from persistence to pathogenicity in the Bm5-CrPV infection model are discussed.
Collapse
Affiliation(s)
- Luoluo Wang
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Kaat Cappelle
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Leuven, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Leuven, Belgium.
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
22
|
Infectious Virions of Bombyx Mori Latent Virus Are Incorporated into Bombyx Mori Nucleopolyhedrovirus Occlusion Bodies. Viruses 2019; 11:v11040316. [PMID: 30939808 PMCID: PMC6521139 DOI: 10.3390/v11040316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/17/2022] Open
Abstract
The Bombyx mori latent virus (BmLV) belongs to the unassigned plant virus family Tymoviridae and contains a positive-sense, single-stranded RNA genome. BmLV has infected almost all B. mori-derived cultured cell lines through unknown routes. The source of BmLV infection and the BmLV life cycle are still unknown. Here, we examined the interaction between BmLV and the insect DNA virus Bombyx mori nucleopolyhedrovirus (BmNPV). Persistent infection with BmLV caused a slight delay in BmNPV propagation, and BmLV propagation was enhanced in B. mori larvae via co-infection with BmNPV. We also showed that BmLV infectious virions were co-occluded with BmNPV virions into BmNPV occlusion bodies. We propose a new relationship between BmLV and BmNPV.
Collapse
|