1
|
Han MJ, Luo C, Hu H, Lin M, Lu K, Shen J, Ren J, Ye Y, Westhof E, Tong X, Dai F. Multiple independent origins of the female W chromosome in moths and butterflies. SCIENCE ADVANCES 2024; 10:eadm9851. [PMID: 38896616 PMCID: PMC11186504 DOI: 10.1126/sciadv.adm9851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Lepidoptera, the most diverse group of insects, exhibit female heterogamy (Z0 or ZW), which is different from most other insects (male heterogamy, XY). Previous studies suggest a single origin of the Z chromosome. However, the origin of the lepidopteran W chromosome remains poorly understood. Here, we assemble the genome from females down to the chromosome level of a model insect (Bombyx mori) and identify a W chromosome of approximately 10.1 megabase using a newly developed tool. In addition, we identify 3593 genes that were not previously annotated in the genomes of B. mori. Comparisons of 21 lepidopteran species (including 17 ZW and four Z0 systems) and three trichopteran species (Z0 system) reveal that the formation of Ditrysia W involves multiple mechanisms, including previously proposed canonical and noncanonical models, as well as a newly proposed mechanism called single-Z turnover. We conclude that there are multiple independent origins of the W chromosome in the Ditrysia (most moths and all butterflies) of Lepidoptera.
Collapse
Affiliation(s)
- Min-Jin Han
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Chaorui Luo
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Hai Hu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Meixing Lin
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Kunpeng Lu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jianghong Shen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jianyu Ren
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Yanzhuo Ye
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Eric Westhof
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, UPR9002 CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Do Ty3/Gypsy Transposable Elements Play Preferential Roles in Sex Chromosome Differentiation? Life (Basel) 2022; 12:life12040522. [PMID: 35455013 PMCID: PMC9025612 DOI: 10.3390/life12040522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) comprise a substantial portion of eukaryotic genomes. They have the unique ability to integrate into new locations and serve as the main source of genomic novelties by mediating chromosomal rearrangements and regulating portions of functional genes. Recent studies have revealed that TEs are abundant in sex chromosomes. In this review, we propose evolutionary relationships between specific TEs, such as Ty3/Gypsy, and sex chromosomes in different lineages based on the hypothesis that these elements contributed to sex chromosome differentiation processes. We highlight how TEs can drive the dynamics of sex-determining regions via suppression recombination under a selective force to affect the organization and structural evolution of sex chromosomes. The abundance of TEs in the sex-determining regions originates from TE-poor genomic regions, suggesting a link between TE accumulation and the emergence of the sex-determining regions. TEs are generally considered to be a hallmark of chromosome degeneration. Finally, we outline recent approaches to identify TEs and study their sex-related roles and effects in the differentiation and evolution of sex chromosomes.
Collapse
|
3
|
Käfer J, Lartillot N, Marais GAB, Picard F. Detecting sex-linked genes using genotyped individuals sampled in natural populations. Genetics 2021; 218:iyab053. [PMID: 33764439 PMCID: PMC8225351 DOI: 10.1093/genetics/iyab053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
We propose a method, SDpop, able to infer sex-linkage caused by recombination suppression typical of sex chromosomes. The method is based on the modeling of the allele and genotype frequencies of individuals of known sex in natural populations. It is implemented in a hierarchical probabilistic framework, accounting for different sources of error. It allows statistical testing for the presence or absence of sex chromosomes, and detection of sex-linked genes based on the posterior probabilities in the model. Furthermore, for gametologous sequences, the haplotype and level of nucleotide polymorphism of each copy can be inferred, as well as the divergence between them. We test the method using simulated data, as well as data from both a relatively recent and an old sex chromosome system (the plant Silene latifolia and humans) and show that, for most cases, robust predictions are obtained with 5 to 10 individuals per sex.
Collapse
Affiliation(s)
- Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne F-69622, France
| | - Nicolas Lartillot
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne F-69622, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne F-69622, France
| | - Franck Picard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne F-69622, France
| |
Collapse
|
4
|
Elkrewi M, Moldovan MA, Picard MAL, Vicoso B. Schistosome W-linked genes inform temporal dynamics of sex chromosome evolution and suggest candidate for sex determination. Mol Biol Evol 2021; 38:5345-5358. [PMID: 34146097 PMCID: PMC8662593 DOI: 10.1093/molbev/msab178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Schistosomes, the human parasites responsible for snail fever, are female-heterogametic. Different parts of their ZW sex chromosomes have stopped recombining in distinct lineages, creating "evolutionary strata" of various ages. While the Z-chromosome is well characterized at the genomic and molecular level, the W-chromosome has remained largely unstudied from an evolutionary perspective, as only a few W-linked genes have been detected outside of the model species Schistosoma mansoni. Here, we characterize the gene content and evolution of the W-chromosomes of S. mansoni and of the divergent species S. japonicum. We use a combined RNA/DNA k-mer based pipeline to assemble around one hundred candidate W-specific transcripts in each of the species. About half of them map to known protein coding genes, the majority homologous to S. mansoni Z-linked genes. We perform an extended analysis of the evolutionary strata present in the two species (including characterizing a previously undetected young stratum in S. japonicum) to infer patterns of sequence and expression evolution of W-linked genes at different time points after recombination was lost. W-linked genes show evidence of degeneration, including high rates of protein evolution and reduced expression. Most are found in young lineage-specific strata, with only a few high expression ancestral W-genes remaining, consistent with the progressive erosion of non-recombining regions. Among these, the splicing factor U2AF2 stands out as a promising candidate for primary sex determination, opening new avenues for understanding the molecular basis of the reproductive biology of this group.
Collapse
Affiliation(s)
- Marwan Elkrewi
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria
| | - Mikhail A Moldovan
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Marion A L Picard
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria.,Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria
| |
Collapse
|
5
|
Palmer DH, Rogers TF, Dean R, Wright AE. How to identify sex chromosomes and their turnover. Mol Ecol 2019; 28:4709-4724. [PMID: 31538682 PMCID: PMC6900093 DOI: 10.1111/mec.15245] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Although sex is a fundamental component of eukaryotic reproduction, the genetic systems that control sex determination are highly variable. In many organisms the presence of sex chromosomes is associated with female or male development. Although certain groups possess stable and conserved sex chromosomes, others exhibit rapid sex chromosome evolution, including transitions between male and female heterogamety, and turnover in the chromosome pair recruited to determine sex. These turnover events have important consequences for multiple facets of evolution, as sex chromosomes are predicted to play a central role in adaptation, sexual dimorphism, and speciation. However, our understanding of the processes driving the formation and turnover of sex chromosome systems is limited, in part because we lack a complete understanding of interspecific variation in the mechanisms by which sex is determined. New bioinformatic methods are making it possible to identify and characterize sex chromosomes in a diverse array of non-model species, rapidly filling in the numerous gaps in our knowledge of sex chromosome systems across the tree of life. In turn, this growing data set is facilitating and fueling efforts to address many of the unanswered questions in sex chromosome evolution. Here, we synthesize the available bioinformatic approaches to produce a guide for characterizing sex chromosome system and identity simultaneously across clades of organisms. Furthermore, we survey our current understanding of the processes driving sex chromosome turnover, and highlight important avenues for future research.
Collapse
Affiliation(s)
- Daniela H. Palmer
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Thea F. Rogers
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Rebecca Dean
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Alison E. Wright
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
6
|
The Caribou ( Rangifer tarandus) Genome. Genes (Basel) 2019; 10:genes10070540. [PMID: 31319535 PMCID: PMC6678279 DOI: 10.3390/genes10070540] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
Rangifer tarandus, known as caribou or reindeer, is a widespread circumpolar species which presents significant variability in their morphology, ecology, and genetics. A genome was sequenced from a male boreal caribou (R. t. caribou) from Manitoba, Canada. Both paired end and Chicago libraries were constructed and sequenced on Illumina platforms. The final assembly consists of approximately 2.205 Gb, and has a scaffold N50 of 11.765 Mb. BUSCO (Benchmarking Universal Single-Copy Orthologs) reconstructed 3820 (93.1%) complete mammalian genes, and genome annotation identified the locations of 33,177 protein-coding genes. An alignment to the bovine genome was carried out, indicating sequence coverage on all bovine chromosomes. A high-quality reference genome will be invaluable for evolutionary research and for conservation efforts for the species. Further information about the genome, including a FASTA file of the assembly and the annotation files, is available on our caribou genome website. Raw sequence data is available at the National Centre for Biotechnology Information (NCBI), under the BioProject accession number PRJNA549927.
Collapse
|
7
|
Morris J, Darolti I, Bloch NI, Wright AE, Mank JE. Shared and Species-Specific Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. Genes (Basel) 2018; 9:E238. [PMID: 29751570 PMCID: PMC5977178 DOI: 10.3390/genes9050238] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 11/22/2022] Open
Abstract
Sex chromosomes form once recombination is halted around the sex-determining locus between a homologous pair of chromosomes, resulting in a male-limited Y chromosome. We recently characterized the nascent sex chromosome system in the Trinidadian guppy (Poeciliareticulata). The guppy Y is one of the youngest animal sex chromosomes yet identified, and therefore offers a unique window into the early evolutionary forces shaping sex chromosome formation, particularly the rate of accumulation of repetitive elements and Y-specific sequence. We used comparisons between male and female genomes in P. reticulata and its sister species, Endler’s guppy (P. wingei), which share an ancestral sex chromosome, to identify male-specific sequences and to characterize the degree of differentiation between the X and Y chromosomes. We identified male-specific sequence shared between P. reticulata and P. wingei consistent with a small ancestral non-recombining region. Our assembly of this Y-specific sequence shows substantial homology to the X chromosome, and appears to be significantly enriched for genes implicated in pigmentation. We also found two plausible candidates that may be involved in sex determination. Furthermore, we found that the P. wingei Y chromosome exhibits a greater signature of repetitive element accumulation than the P. reticulata Y chromosome. This suggests that Y chromosome divergence does not necessarily correlate with the time since recombination suppression. Overall, our results reveal the early stages of Y chromosome divergence in the guppy.
Collapse
Affiliation(s)
- Jake Morris
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Iulia Darolti
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Natasha I Bloch
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden.
| |
Collapse
|