1
|
Cui Y, Zhao D, Liu K, Mei X, Sun S, Du B, Ding Y. Abh, AbrB3, and Spo0A play distinct regulatory roles during polymyxin synthesis in Paenibacillus polymyxa SC2. Microbiol Spectr 2024; 12:e0229323. [PMID: 38054717 PMCID: PMC10782996 DOI: 10.1128/spectrum.02293-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Polymyxins are considered the last line of defense against multidrug-resistant bacteria. The regulatory mechanism of polymyxin synthesis is poorly studied in Paenibacillus polymyxa. In this study, we found that Abh and AbrB3 negatively regulated, whereas Spo0A positively regulated polymyxin synthesis in P. polymyxa SC2. In addition, a regulatory relationship between Abh, AbrB3, and Spo0A was revealed, which regulate polymyxin synthesis via multiple regulatory mechanisms in P. polymyxa.
Collapse
Affiliation(s)
- Yanru Cui
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Dongying Zhao
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Kai Liu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Xiangui Mei
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Shanshan Sun
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Binghai Du
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Yanqin Ding
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
2
|
Lambrecht SJ, Stappert N, Sommer F, Schroda M, Steglich C. A Cyanophage MarR-Type Transcription Factor Regulates Host RNase E Expression during Infection. Microorganisms 2022; 10:2245. [PMID: 36422315 PMCID: PMC9692554 DOI: 10.3390/microorganisms10112245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/30/2024] Open
Abstract
The marine picocyanobacterium Prochlorococcus contributes significantly to global primary production, and its abundance and diversity is shaped in part by viral infection. Here, we identified a cyanophage-encoded MarR-type transcription factor that induces the gene expression of host Prochlorococcus MED4 endoribonuclease (RNase) E during phage infection. The increase in rne transcript levels relies on the phage (p)MarR-mediated activation of an alternative promoter that gives rise to a truncated yet enzymatically fully functional RNase E isoform. In this study, we demonstrate that pMarR binds to an atypical activator site downstream of the transcriptional start site and that binding is enhanced in the presence of Ca2+ ions. Furthermore, we show that dimeric pMarR interacts with the α subunit of RNA polymerase, and we identified amino acid residues S66, R67, and G106, which are important for Ca2+ binding, DNA binding, and dimerization of pMarR, respectively.
Collapse
Affiliation(s)
- S. Joke Lambrecht
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Medical Faculty, Medical Center, Institute for Surgical Pathology, University of Freiburg, 79106 Freiburg, Germany
| | - Nils Stappert
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Frederik Sommer
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Song K, Hagemann M, Georg J, Maaß S, Becher D, Hess WR. Expression of the Cyanobacterial F oF 1 ATP Synthase Regulator AtpΘ Depends on Small DNA-Binding Proteins and Differential mRNA Stability. Microbiol Spectr 2022; 10:e0256221. [PMID: 35446123 PMCID: PMC9241938 DOI: 10.1128/spectrum.02562-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/19/2022] [Indexed: 11/20/2022] Open
Abstract
FoF1 ATP synthases produce ATP, the universal biological energy source. ATP synthase complexes on cyanobacterial thylakoid membranes use proton gradients generated either by photosynthesis or respiration. AtpΘ is an ATP synthase regulator in cyanobacteria which is encoded by the gene atpT. AtpΘ prevents the hydrolysis of ATP (reverse reaction) that otherwise would occur under unfavorable conditions. In the cyanobacterium Synechocystis sp. PCC 6803, AtpΘ is expressed maximum in darkness but at very low levels under optimum phototrophic growth conditions or in the presence of glucose. DNA coimmunoprecipitation experiments followed by mass spectrometry identified the binding of the two transcriptional regulators cyAbrB1 and cyAbrB2 to the promoter and the histone-like protein HU to the 5'UTR of atpT. Analyses of nucleotide substitutions in the promoter and GFP reporter assays identified a functionally relevant sequence motif resembling the HLR1 element bound by the RpaB transcription factor. Electrophoretic mobility shift assays confirmed interaction of cyAbrB1, cyAbrB2, and RpaB with the promoter DNA. However, overall the effect of transcriptional regulation was comparatively low. In contrast, atpT transcript stabilities differed dramatically, half-lives were 1.6 min in the light, 33 min in the dark and substantial changes were observed if glucose or DCMU were added. These findings show that transcriptional control of atpT involves nucleoid-associated DNA-binding proteins, positive regulation through RpaB, while the major effect on the condition-dependent regulation of atpT expression is mediated by controlling mRNA stability, which is related to the cellular redox and energy status. IMPORTANCE FoF1 ATP synthases produce ATP, the universal biological energy source. Under unfavorable conditions, ATP synthases can operate in a futile reverse reaction, pumping protons while ATP is used up. Cyanobacteria perform plant-like photosynthesis, but they cannot use the same mechanism as plant chloroplasts to inhibit ATP synthases during the night because respiratory and photosynthetic complexes are both located in the same membrane system. AtpΘ is a small protein encoded by the gene atpT in cyanobacteria that can prevent the ATP synthase reverse reaction (ATPase activity). Here we found that three transcription factors contribute to the regulation of atpT expression. However, the control of mRNA stability was identified as the major regulatory process governing atpT expression. Thus, it is the interplay between transcriptional and posttranscriptional regulation that position the AtpΘ-based regulatory mechanism within the context of the cellular redox and energy balance.
Collapse
Affiliation(s)
- Kuo Song
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- Plant Physiology Department, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Lott SC, Voigt K, Lambrecht SJ, Hess WR, Steglich C. A framework for the computational prediction and analysis of non-coding RNAs in microbial environmental populations and their experimental validation. THE ISME JOURNAL 2020; 14:1955-1965. [PMID: 32346084 PMCID: PMC7368042 DOI: 10.1038/s41396-020-0658-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 11/09/2022]
Abstract
Small regulatory RNAs and antisense RNAs play important roles in the regulation of gene expression in bacteria but are underexplored, especially in natural populations. While environmentally relevant microbes often are not amenable to genetic manipulation or cannot be cultivated in the laboratory, extensive metagenomic and metatranscriptomic datasets for these organisms might be available. Hence, dedicated workflows for specific analyses are needed to fully benefit from this information. Here, we identified abundant sRNAs from oceanic environmental populations of the ecologically important primary producer Prochlorococcus starting from a metatranscriptomic differential RNA-Seq (mdRNA-Seq) dataset. We tracked their homologs in laboratory isolates, and we provide a framework for their further detailed characterization. Several of the experimentally validated sRNAs responded to ecologically relevant changes in cultivation conditions. The expression of the here newly discovered sRNA Yfr28 was highly stimulated in low-nitrogen conditions. Its predicted top targets include mRNAs encoding cell division proteins, a sigma factor, and several enzymes and transporters, suggesting a pivotal role of Yfr28 in the coordination of primary metabolism and cell division. A cis-encoded antisense RNA was identified as a possible positive regulator of atpF encoding subunit b' of the ATP synthase complex. The presented workflow will also be useful for other environmentally relevant microorganisms for which experimental validation abilities are frequently limiting although there is wealth of sequence information available.
Collapse
Affiliation(s)
- Steffen C Lott
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - Karsten Voigt
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - S Joke Lambrecht
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - Claudia Steglich
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany.
| |
Collapse
|
5
|
Ruan H, Yu H, Xu J. The glucose uptake systems in Corynebacterium glutamicum: a review. World J Microbiol Biotechnol 2020; 36:126. [PMID: 32712859 DOI: 10.1007/s11274-020-02898-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/12/2020] [Indexed: 11/29/2022]
Abstract
The phosphoenolpyruvate-dependent glucose phosphotransferase system (PTSGlc) is the major uptake system responsible for transporting glucose, and is involved in glucose translocation and phosphorylation in Corynebacterium glutamicum. For the longest time, the PTSGlc was considered as the only uptake system for glucose. However, some PTS-independent glucose uptake systems (non-PTSGlc) were discovered in recent years, such as the coupling system of inositol permeases and glucokinases (IPGS) and the coupling system of β-glucoside-PTS permease and glucokinases (GPGS). The products (e.g. lysine, phenylalanine and leucine) will be increased because of the increasing intracellular level of phosphoenolpyruvate (PEP), while some by-products (e.g. lactic acid, alanine and acetic acid) will be reduced when this system become the main uptake pathway for glucose. In this review, we survey the uptake systems for glucose in C. glutamicum and their composition. Furthermore, we summarize the latest research of the regulatory mechanisms among these glucose uptake systems. Detailed strategies to manipulate glucose uptake system are addressed based on this knowledge.
Collapse
Affiliation(s)
- Haozhe Ruan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Haibo Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Jianzhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
6
|
Labella JI, Cantos R, Salinas P, Espinosa J, Contreras A. Distinctive Features of PipX, a Unique Signaling Protein of Cyanobacteria. Life (Basel) 2020; 10:life10060079. [PMID: 32481703 PMCID: PMC7344720 DOI: 10.3390/life10060079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
PipX is a unique cyanobacterial protein identified by its ability to bind to PII and NtcA, two key regulators involved in the integration of signals of the nitrogen/carbon and energy status, with a tremendous impact on nitrogen assimilation and gene expression in cyanobacteria. PipX provides a mechanistic link between PII, the most widely distributed signaling protein, and NtcA, a global transcriptional regulator of cyanobacteria. PII, required for cell survival unless PipX is inactivated or down-regulated, functions by protein–protein interactions with transcriptional regulators, transporters, and enzymes. In addition, PipX appears to be involved in a wider signaling network, supported by the following observations: (i) PII–PipX complexes interact with PlmA, an as yet poorly characterized transcriptional regulator also restricted to cyanobacteria; (ii) the pipX gene is functionally connected with pipY, a gene encoding a universally conserved pyridoxal phosphate binding protein (PLPBP) involved in vitamin B6 and amino acid homeostasis, whose loss-of-function mutations cause B6-dependent epilepsy in humans, and (iii) pipX is part of a relatively robust, six-node synteny network that includes pipY and four additional genes that might also be functionally connected with pipX. In this overview, we propose that the study of the protein–protein interaction and synteny networks involving PipX would contribute to understanding the peculiarities and idiosyncrasy of signaling pathways that are conserved in cyanobacteria.
Collapse
|
7
|
He P, Cai X, Chen K, Fu X. Identification of small RNAs involved in nitrogen fixation in Anabaena sp. PCC 7120 based on RNA-seq under steady state conditions. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01557-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Purpose
Anabaena sp. PCC7120 is a genetically tractable model organism for nitrogen fixation and photosynthesis research. The importance of small regulatory RNAs (sRNAs) as mediators of a number of cellular processes in bacteria has begun to be recognized. Bacterial sRNA binds to target genes through base pairing, and play a regulatory role. Many studies have shown that bacterial sRNA can regulate cell stress response, carbon and nitrogen fixation, and so on. However, little is known about sRNAs in Anabaena sp. PCC 7120 regarded to nitrogen fixation under later steady state.
Methods
To provide a comprehensive study of sRNAs in this model organism, the sRNA (< 200 nt) extracted from Anabaena sp. PCC 7120 under nitrogen step-down treatment of 12 days, together with the sRNA from the control, was analyzed using deep RNA sequencing. Possible target genes regulated by all identified putative sRNAs were predicted by IntaRNA and further analyzed for functional categorizations for biological pathways.
Result
Totally, 14,132 transcripts were produced from the de novo assembly. Among them, transcripts that are located either in the intergenic region or antisense strand were kept, which resulted in 1219 sRNA candidates, for further analysis. RPKM-based differential expression analysis showed that 418 sRNAs were significantly differentially expressed between the samples from control (nitrogen addition, N+) and nitrogen depletion, (N−). Among them, 303 sRNAs were significantly upregulated, whereas 115 sRNAs were significantly downregulated. RT-PCR of 18 randomly chosen sRNAs showed a similar pattern as RNA-seq result, which confirmed the reliability of the RNA-seq data. In addition, the possible target genes regulated by unique sRNAs of Anabaena sp. PCC 7120 under nitrogen addition (N+) condition or that under nitrogen depletion (N−) condition were analyzed for functional categorization and biological pathways, which provided the evidences that sRNAs were indeed involved in many different metabolic pathways.
Conclusion
The information from the present study provides a valuable reference for understanding the sRNA-mediated regulation of the nitrogen fixation in Anabaena PCC 7120 under steady state conditions.
Collapse
|
8
|
Lambrecht SJ, Steglich C, Hess WR. A minimum set of regulators to thrive in the ocean. FEMS Microbiol Rev 2020; 44:232-252. [DOI: 10.1093/femsre/fuaa005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT
Marine cyanobacteria of the genus Prochlorococcus thrive in high cell numbers throughout the euphotic zones of the world's subtropical and tropical oligotrophic oceans, making them some of the most ecologically relevant photosynthetic microorganisms on Earth. The ecological success of these free-living phototrophs suggests that they are equipped with a regulatory system competent to address many different stress situations. However, Prochlorococcus genomes are compact and streamlined, with the majority encoding only five different sigma factors, five to six two-component systems and eight types of other transcriptional regulators. Here, we summarize the existing information about the functions of these protein regulators, about transcriptomic responses to defined stress conditions, and discuss the current knowledge about riboswitches, RNA-based regulation and the roles of certain metabolites as co-regulators. We focus on the best-studied isolate, Prochlorococcus MED4, but extend to other strains and ecotypes when appropriate, and we include some information gained from metagenomic and metatranscriptomic analyses.
Collapse
Affiliation(s)
- S Joke Lambrecht
- Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
9
|
Muro-Pastor AM, Hess WR. Regulatory RNA at the crossroads of carbon and nitrogen metabolism in photosynthetic cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194477. [PMID: 31884117 DOI: 10.1016/j.bbagrm.2019.194477] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are photosynthetic bacteria that populate widely different habitats. Accordingly, cyanobacteria exhibit a wide spectrum of lifestyles, physiologies, and morphologies and possess genome sizes and gene numbers which may vary by up to a factor of ten within the phylum. Consequently, large differences exist between individual species in the size and complexity of their regulatory networks. Several non-coding RNAs have been identified that play crucial roles in the acclimation responses of cyanobacteria to changes in the environment. Some of these regulatory RNAs are conserved throughout the cyanobacterial phylum, while others exist only in a few taxa. Here we give an overview on characterized regulatory RNAs in cyanobacteria, with a focus on regulators of photosynthesis, carbon and nitrogen metabolism. However, chances are high that these regulators represent just the tip of the iceberg.
Collapse
Affiliation(s)
- Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany; University of Freiburg, Freiburg Institute for Advanced Studies, Albertstr. 19, D-79104 Freiburg, Germany.
| |
Collapse
|
10
|
Lambrecht SJ, Kanesaki Y, Fuss J, Huettel B, Reinhardt R, Steglich C. Interplay and Targetome of the Two Conserved Cyanobacterial sRNAs Yfr1 and Yfr2 in Prochlorococcus MED4. Sci Rep 2019; 9:14331. [PMID: 31586076 PMCID: PMC6778093 DOI: 10.1038/s41598-019-49881-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/02/2019] [Indexed: 01/22/2023] Open
Abstract
The sRNA Yfr1 and members of the Yfr2 sRNA family are almost universally present within cyanobacteria. The conserved motifs of these sRNAs are nearly complementary to each other, suggesting their ability to participate in crosstalk. The conserved motif of Yfr1 is shared by members of the Yfr10 sRNA family, members of which are otherwise less conserved in sequence, structure, and synteny compared to Yfr1. The different structural properties enable the discrimination of unique targets of Yfr1 and Yfr10. Unlike most studied regulatory sRNAs, Yfr1 gene expression only slightly changes under the tested stress conditions and is present at high levels at all times. In contrast, cellular levels of Yfr10 increase during the course of acclimation to darkness, and levels of Yfr2 increase when cells are shifted to high light or nitrogen limitation conditions. In this study, we investigated the targetomes of Yfr2, Yfr1, and Yfr10 in Prochlorococcus MED4, establishing CRAFD-Seq as a new method for identifying direct targets of these sRNAs that is applicable to all bacteria, including those that are not amenable to genetic modification. The results suggest that these sRNAs are integrated within a regulatory network of unprecedented complexity in the adjustment of carbon and nitrogen-related primary metabolism.
Collapse
Affiliation(s)
- S Joke Lambrecht
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Janina Fuss
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, D-50829, Köln, Germany
| | - Bruno Huettel
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, D-50829, Köln, Germany
| | - Richard Reinhardt
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, D-50829, Köln, Germany
| | - Claudia Steglich
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany.
| |
Collapse
|
11
|
Forcada-Nadal A, Llácer JL, Contreras A, Marco-Marín C, Rubio V. The P II-NAGK-PipX-NtcA Regulatory Axis of Cyanobacteria: A Tale of Changing Partners, Allosteric Effectors and Non-covalent Interactions. Front Mol Biosci 2018; 5:91. [PMID: 30483512 PMCID: PMC6243067 DOI: 10.3389/fmolb.2018.00091] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
PII, a homotrimeric very ancient and highly widespread (bacteria, archaea, plants) key sensor-transducer protein, conveys signals of abundance or poorness of carbon, energy and usable nitrogen, converting these signals into changes in the activities of channels, enzymes, or of gene expression. PII sensing is mediated by the PII allosteric effectors ATP, ADP (and, in some organisms, AMP), 2-oxoglutarate (2OG; it reflects carbon abundance and nitrogen scarcity) and, in many plants, L-glutamine. Cyanobacteria have been crucial for clarification of the structural bases of PII function and regulation. They are the subject of this review because the information gathered on them provides an overall structure-based view of a PII regulatory network. Studies on these organisms yielded a first structure of a PII complex with an enzyme, (N-acetyl-Lglutamate kinase, NAGK), deciphering how PII can cause enzyme activation, and how it promotes nitrogen stockpiling as arginine in cyanobacteria and plants. They have also revealed the first clear-cut mechanism by which PII can control gene expression. A small adaptor protein, PipX, is sequestered by PII when nitrogen is abundant and is released when is scarce, swapping partner by binding to the 2OG-activated transcriptional regulator NtcA, co-activating it. The structures of PII-NAGK, PII-PipX, PipX alone, of NtcA in inactive and 2OG-activated forms and as NtcA-2OG-PipX complex, explain structurally PII regulatory functions and reveal the changing shapes and interactions of the T-loops of PII depending on the partner and on the allosteric effectors bound to PII. Cyanobacterial studies have also revealed that in the PII-PipX complex PipX binds an additional transcriptional factor, PlmA, thus possibly expanding PipX roles beyond NtcA-dependency. Further exploration of these roles has revealed a functional interaction of PipX with PipY, a pyridoxal-phosphate (PLP) protein involved in PLP homeostasis whose mutations in the human ortholog cause epilepsy. Knowledge of cellular levels of the different components of this PII-PipX regulatory network and of KD values for some of the complexes provides the basic background for gross modeling of the system at high and low nitrogen abundance. The cyanobacterial network can guide searches for analogous components in other organisms, particularly of PipX functional analogs.
Collapse
Affiliation(s)
- Alicia Forcada-Nadal
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - José Luis Llácer
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras - Instituto de Salud Carlos III, Valencia, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Clara Marco-Marín
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras - Instituto de Salud Carlos III, Valencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras - Instituto de Salud Carlos III, Valencia, Spain
| |
Collapse
|