1
|
Ageitos L, Torres MDT, de la Fuente-Nunez C. Biologically Active Peptides from Venoms: Applications in Antibiotic Resistance, Cancer, and Beyond. Int J Mol Sci 2022; 23:ijms232315437. [PMID: 36499761 PMCID: PMC9740984 DOI: 10.3390/ijms232315437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022] Open
Abstract
Peptides are potential therapeutic alternatives against global diseases, such as antimicrobial-resistant infections and cancer. Venoms are a rich source of bioactive peptides that have evolved over time to act on specific targets of the prey. Peptides are one of the main components responsible for the biological activity and toxicity of venoms. South American organisms such as scorpions, snakes, and spiders are important producers of a myriad of peptides with different biological activities. In this review, we report the main venom-derived peptide families produced from South American organisms and their corresponding activities and biological targets.
Collapse
Affiliation(s)
- Lucía Ageitos
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
2
|
Adamude FA, Dingwoke EJ, Abubakar MS, Ibrahim S, Mohamed G, Klein A, Sallau AB. Proteomic analysis of three medically important Nigerian Naja (Naja haje, Naja katiensis and Naja nigricollis) snake venoms. Toxicon 2021; 197:24-32. [PMID: 33775665 DOI: 10.1016/j.toxicon.2021.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Proteomics technologies enable a comprehensive study of complex proteins and their functions. The venom proteomes of three medically important Nigerian Elapidae snakes Naja haje, Naja katiensis and Naja nigricollis was studied using HILIC coupled with LC-MS/MS analysis. Results revealed a total of 57, 55, and 46 proteins in the venoms of N. haje, N. katiensis, and N. nigricollis, respectively, with molecular mass ranging between 5 and 185 kDa. These snakes have 38 common proteins in addition to 3 uncommon proteins: actiflagelin, cathelicidin, and cystatin identified in their venoms. The identified proteins belonged to 14 protein families in N. haje and N. katiensis, and 12 protein families in N. nigricollis. Of the total venom proteins, 3FTx was the most abundant protein family, constituting 52% in N. haje and N. katiensis, and 41% in N. nigricollis, followed by PLA2, constituting 37% in N. nigricollis, 26% in N. haje, and 24% in N. katiensis. Other protein families, including LAAO, CRISPs, VEGF, PLB, CVF, SVMP, SVH, AMP, PI, Globin, Actin, and C-type lectins, were also detected, although, at very low abundances. Quantification of the relative abundance of each protein revealed that alpha and beta fibrinogenase and PLA2, which constituted 18-26% of the total proteome, were the most abundant. The 3 uncommon proteins have no known function in snake venom. However, actiflagelin activates sperm motility; cystatin inhibits angiogenesis, while cathelicidin exerts antimicrobial effects. The three Nigerian Naja genus proteomes displayed 70% similarity in composition, which suggests the possibility of formulating antivenom that may cross-neutralise the venoms of cobra species found in Nigeria. These data provide insights into clinically relevant peptides/proteins present in the venoms of these snakes. Data are available via ProteomeXchange with identifier PXD024627.
Collapse
Affiliation(s)
- Fatima Amin Adamude
- Department of Biochemistry, Faculty of Sciences, Federal University of Lafia, Nasarawa State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Emeka John Dingwoke
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - Mujitaba Suleiman Abubakar
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Gadija Mohamed
- Agri-Food Systems and Omics, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council, Infrutec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Ashwil Klein
- Proteomics Research Unit, Department of Biotechnology, Faculty of Natural Sciences, University of Western Cape, South Africa
| | - Abdullahi Balarabe Sallau
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
3
|
Muniz DF, Dos Santos Barbosa CR, de Menezes IRA, de Sousa EO, Pereira RLS, Júnior JTC, Pereira PS, de Matos YMLS, da Costa RHS, de Morais Oliveira-Tintino CD, Coutinho HDM, Filho JMB, Ribeiro de Sousa G, Filho JR, Siqueira-Junior JP, Tintino SR. In vitro and in silico inhibitory effects of synthetic and natural eugenol derivatives against the NorA efflux pump in Staphylococcus aureus. Food Chem 2020; 337:127776. [PMID: 32777574 DOI: 10.1016/j.foodchem.2020.127776] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/04/2020] [Accepted: 08/02/2020] [Indexed: 12/27/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterium responsible for a number of diseases and has demonstrated resistance to conventional antibiotics. This study aimed to evaluate the antibacterial activity of eugenol and its derivatives allylbenzene, 4-allylanisole, isoeugenol and 4-allyl-2,6-dimethoxyphenol against the S. aureus NorA efflux pump (EP) in association with norfloxacin and ethidium bromide. The antibacterial activity of the compounds was assessed using the broth microdilution method to determine the minimum inhibitory concentration (MIC). A reduction in the MIC of ethidium bromide (a substrate for several efflux pumps) or norfloxacin was used as a parameter of EP inhibition. Molecular modeling studies were used to predict the 3D structure and analyze the interaction of selected compounds with the binding pocket of the NorA efflux pump. Except for 4-allylanisole and allylbenzene, the compounds presented clinically effective antibacterial activity. When associated with norfloxacin against the SA 1199B strain, 4-allyl-2,6-dimethoxyphenol eugenol and isoeugenol caused significant reduction in the MIC of the antibiotic, demonstrating synergistic effects. Similar effects were observed when 4-allyl-2,6-dimethoxyphenol, allylbenzene and isoeugenol were associated with ethidium bromide. Together, these findings indicate a potential inhibition of the NorA pump by eugenol and its derivatives. This in vitro evidence was corroborated by docking results demonstrating favorable interactions between 4-allyl-2,6-dimetoxypheno and the NorA pump mediated by hydrogen bonds and hydrophobic interactions. In conclusion, eugenol derivatives have the potential to be used in antibacterial drug development in strains carrying the NorA efflux pump.
Collapse
Affiliation(s)
- Débora Feitosa Muniz
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | | | | | - Erlânio Oliveira de Sousa
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | - Raimundo Luiz Silva Pereira
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | | | - Pedro Silvino Pereira
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | - Yedda M L S de Matos
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | - Roger H S da Costa
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | | | | | - José Maria Barbosa Filho
- Laboratory of Phamaceutical Tecnology Federal, University of João Pessoa (UFPB), CCBS/URCA, Brazil
| | | | - Jaime Ribeiro Filho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | | | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, Brazil
| |
Collapse
|
4
|
Hitchhiking with Nature: Snake Venom Peptides to Fight Cancer and Superbugs. Toxins (Basel) 2020; 12:toxins12040255. [PMID: 32326531 PMCID: PMC7232197 DOI: 10.3390/toxins12040255] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Abstract For decades, natural products in general and snake venoms (SV) in particular have been a rich source of bioactive compounds for drug discovery, and they remain a promising substrate for therapeutic development. Currently, a handful of SV-based drugs for diagnosis and treatment of various cardiovascular disorders and blood abnormalities are on the market. Likewise, far more SV compounds and their mimetics are under investigation today for diverse therapeutic applications, including antibiotic-resistant bacteria and cancer. In this review, we analyze the state of the art regarding SV-derived compounds with therapeutic potential, focusing on the development of antimicrobial and anticancer drugs. Specifically, information about SV peptides experimentally validated or predicted to act as antimicrobial and anticancer peptides (AMPs and ACPs, respectively) has been collected and analyzed. Their principal activities both in vitro and in vivo, structures, mechanisms of action, and attempts at sequence optimization are discussed in order to highlight their potential as drug leads. Key Contribution This review describes the state of the art in snake venom-derived peptides and their therapeutic applications. This work reinforces the potential of snake venom components as therapeutic agents, particularly in the quest for new antimicrobial and anticancer drugs.
Collapse
|
5
|
Rheubert JL, Meyer MF, Strobel RM, Pasternak MA, Charvat RA. Predicting antibacterial activity from snake venom proteomes. PLoS One 2020; 15:e0226807. [PMID: 31978103 PMCID: PMC6980403 DOI: 10.1371/journal.pone.0226807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 12/04/2019] [Indexed: 11/18/2022] Open
Abstract
The continued evolution of antibiotic resistance has increased the urgency for new antibiotic development, leading to exploration of non-traditional sources. In particular, snake venom has garnered attention for its potent antibacterial properties. Numerous studies describing snake venom proteomic composition as well as antibiotic efficacy have created an opportunity to synthesize relationships between venom proteomes and their antibacterial properties. Using literature reported values from peer-reviewed studies, our study generated models to predict efficacy given venom protein family composition, snake taxonomic family, bacterial Gram stain, bacterial morphology, and bacterial respiration strategy. We then applied our predictive models to untested snake species with known venom proteomic compositions. Overall, our results provide potential protein families that serve as accurate predictors of efficacy as well as promising organisms in terms of antibacterial properties of venom. The results from this study suggest potential future research trajectories for antibacterial properties in snake venom by offering hypotheses for a variety of taxa.
Collapse
Affiliation(s)
- Justin L. Rheubert
- Department of Biology, University of Findlay, Findlay, Ohio, United States of America
| | - Michael F. Meyer
- School of the Environment, Washington State University, Pullman, Washington, United States of America
| | - Raeshelle M. Strobel
- Department of Biology, University of Findlay, Findlay, Ohio, United States of America
| | - Megan A. Pasternak
- Department of Biology, University of Findlay, Findlay, Ohio, United States of America
| | - Robert A. Charvat
- Department of Biology, University of Findlay, Findlay, Ohio, United States of America
| |
Collapse
|
6
|
Abstract
Abstract
An increasing problem in the field of health protection is the emergence of drug-resistant and multi-drug-resistant bacterial strains. They cause a number of infections, including hospital infections, which currently available antibiotics are unable to fight. Therefore, many studies are devoted to the search for new therapeutic agents with bactericidal and bacteriostatic properties. One of the latest concepts is to search for this type of substances among toxins produced by venomous animals. In this approach, however, special attention is paid to snake venom because it contains molecules with antibacterial properties. Thorough investigations have shown that the phospholipases A2 (PLA2) and l-amino acids oxidases (LAAO), as well as fragments of these enzymes, are mainly responsible for the bactericidal properties of snake venoms. Some preliminary research studies also suggest that fragments of three-finger toxins (3FTx) are bactericidal. It has also been proven that some snakes produce antibacterial peptides (AMP) homologous to human defensins and cathelicidins. The presence of these proteins and peptides means that snake venoms continue to be an interesting material for researchers and can be perceived as a promising source of antibacterial agents.
Collapse
|
7
|
Molecular docking and dynamic studies of crepiside E beta glucopyranoside as an inhibitor of snake venom PLA2. J Mol Model 2019; 25:88. [PMID: 30847632 DOI: 10.1007/s00894-019-3954-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Alternative treatments from plant-derived small molecules for neutralizing the venom lethality in snake envenomation are prevalent now. Elephantopus scaber, a tropical plant species has been recognized for its various pharmacological activities and especially anti-snake venom property; however, the molecular basis for this property is not understood. It is reported that snake venom PLA2 is a toxic factor with pharmacological effects independent of their catalytic activity. Here we report the inhibition of catalytic property of Cobra and Viper (group I and group II) snake venom PLA2 by the phytocompounds from E. scaber through molecular docking and dynamics studies. Initially, Lipinski's rule, ADMET, and molecular docking studies were carried out. Our results show that among 124 phytocompounds, crepiside E (deacylcynaropicrin-3' beta-glucopyranoside) has shown interactions with the conserved catalytic active site residues, His 48 and Asp 49, in both the PLA2s. Further, molecular dynamic simulations for 60 ns confirmed the stability of crepiside E in the active site of PLA2s and were found to be stable throughout the simulation. In order to understand the drug-likeness of crepiside E, pIC50 and MMGBSA scores were correlated by performing a linear regression analysis. Crepiside E was found to have similar chemical features to that of doxycycline, a known PLA2 inhibitor as indicated by a similarity score of 64.15%. Hence, it is concluded that crepiside E beta glucopyranoside present in Elephantopus scaber contributes to neutralizing the snake venom.
Collapse
|
8
|
Silvestrini AVP, de Macedo LH, de Andrade TAM, Mendes MF, Pigoso AA, Mazzi MV. Intradermal Application of Crotamine Induces Inflammatory and Immunological Changes In Vivo. Toxins (Basel) 2019; 11:toxins11010039. [PMID: 30646542 PMCID: PMC6357061 DOI: 10.3390/toxins11010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Crotamine is a single-chain polypeptide with cell-penetrating properties, which is considered a promising molecule for clinical use. Nevertheless, its biosafety data are still scarce. Herein, we assessed the in vivo proinflammatory properties of crotamine, including its local effect and systemic serum parameters. Sixty male Wistar rats were intradermically injected with 200, 400 and 800 µg crotamine and analyzed after 1, 3 and 7 days. Local effect of crotamine was assessed by determination of MPO and NAG activities, NO levels and angiogenesis. Systemic inflammatory response was assessed by determination of IL-10, TNF-α, CRP, NO, TBARS and SH groups. Crotamine induced macrophages and neutrophils chemotaxis as evidenced by the upregulation of both NAG (0.5–0.6 OD/mg) and MPO (0.1–0.2 OD/mg) activities, on the first and third day of analysis, respectively. High levels of NO were observed for all concentrations and time-points. Moreover, 800 μg crotamine resulted in serum NO (64.7 μM) and local tissue NO (58.5 μM) levels higher or equivalent to those recorded for their respective histamine controls (55.7 μM and 59.0 μM). Crotamine also induced a significant angiogenic response compared to histamine. Systemically, crotamine induced a progressive increase in serum CRP levels up to the third day of analysis (22.4–45.8 mg/mL), which was significantly greater than control values. Crotamine (400 μg) also caused an increase in serum TNF-α, in the first day of analysis (1095.4 pg/mL), however a significant increase in IL-10 (122.2 pg/mL) was also recorded for the same time-point, suggesting the induction of an anti-inflammatory effect. Finally, crotamine changed the systemic redox state by inducing gradual increase in serum levels of TBARS (1.0–1.8 μM/mL) and decrease in SH levels (124.7–19.5 μM/mL) throughout the experimental period of analysis. In summary, rats intradermally injected with crotamine presented local and systemic acute inflammatory responses similarly to histamine, which limits crotamine therapeutic use on its original form.
Collapse
Affiliation(s)
- Ana Vitória Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Luana Henrique de Macedo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Thiago Antônio Moretti de Andrade
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Maíra Felonato Mendes
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Acácio Antônio Pigoso
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Maurício Ventura Mazzi
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| |
Collapse
|
9
|
Domínguez-Pérez D, Durban J, Agüero-Chapin G, López JT, Molina-Ruiz R, Almeida D, Calvete JJ, Vasconcelos V, Antunes A. The Harderian gland transcriptomes of Caraiba andreae, Cubophis cantherigerus and Tretanorhinus variabilis, three colubroid snakes from Cuba. Genomics 2018; 111:1720-1727. [PMID: 30508561 DOI: 10.1016/j.ygeno.2018.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023]
Abstract
The Harderian gland is a cephalic structure, widely distributed among vertebrates. In snakes, the Harderian gland is anatomically connected to the vomeronasal organ via the nasolacrimal duct, and in some species can be larger than the eyes. The function of the Harderian gland remains elusive, but it has been proposed to play a role in the production of saliva, pheromones, thermoregulatory lipids and growth factors, among others. Here, we have profiled the transcriptomes of the Harderian glands of three non-front-fanged colubroid snakes from Cuba: Caraiba andreae (Cuban Lesser Racer); Cubophis cantherigerus (Cuban Racer); and Tretanorhinus variabilis (Caribbean Water Snake), using Illumina HiSeq2000 100 bp paired-end. In addition to ribosomal and non-characterized proteins, the most abundant transcripts encode putative transport/binding, lipocalin/lipocalin-like, and bactericidal/permeability-increasing-like proteins. Transcripts coding for putative canonical toxins described in venomous snakes were also identified. This transcriptional profile suggests a more complex function than previously recognized for this enigmatic organ.
Collapse
Affiliation(s)
- Dany Domínguez-Pérez
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Jordi Durban
- Evolutionary and Translational Venomics Laboratory, CSIC, Jaume Roig, 11, 46010, Valencia, Spain.
| | - Guillermin Agüero-Chapin
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Javier Torres López
- Department of Ecology and Evolutionary Biology, The University of Kansas, 1345 Jayhawk Blvd., Lawrence, Kansas 66045, USA; Faculty of Biology, University of Havana, 25 St. 455, La Habana 10400, Cuba.
| | - Reinaldo Molina-Ruiz
- Centro de Bioactivos Químicos, Universidad Central "Marta Abreu" de Las Villas, 54830 Santa Clara, Cuba.
| | - Daniela Almeida
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, CSIC, Jaume Roig, 11, 46010, Valencia, Spain.
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| |
Collapse
|
10
|
Kunalan S, Othman I, Syed Hassan S, Hodgson WC. Proteomic Characterization of Two Medically Important Malaysian Snake Venoms, Calloselasma rhodostoma (Malayan Pit Viper) and Ophiophagus hannah (King Cobra). Toxins (Basel) 2018; 10:toxins10110434. [PMID: 30373186 PMCID: PMC6266455 DOI: 10.3390/toxins10110434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Calloselasma rhodostoma (CR) and Ophiophagus hannah (OH) are two medically important snakes found in Malaysia. While some studies have described the biological properties of these venoms, feeding and environmental conditions also influence the concentration and distribution of snake venom toxins, resulting in variations in venom composition. Therefore, a combined proteomic approach using shotgun and gel filtration chromatography, analyzed by tandem mass spectrometry, was used to examine the composition of venoms from these Malaysian snakes. The analysis revealed 114 proteins (15 toxin families) and 176 proteins (20 toxin families) in Malaysian Calloselasma rhodostoma and Ophiophagus hannah species, respectively. Flavin monoamine oxidase, phospholipase A2, phosphodiesterase, snake venom metalloproteinase, and serine protease toxin families were identified in both venoms. Aminopeptidase, glutaminyl-peptide cyclotransferase along with ankyrin repeats were identified for the first time in CR venom, and insulin, c-type lectins/snaclecs, hepatocyte growth factor, and macrophage colony-stimulating factor together with tumor necrosis factor were identified in OH venom for the first time. Our combined proteomic approach has identified a comprehensive arsenal of toxins in CR and OH venoms. These data may be utilized for improved antivenom production, understanding pathological effects of envenoming, and the discovery of biologically active peptides with medical and/or biotechnological value.
Collapse
Affiliation(s)
- Sugita Kunalan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|
11
|
Analysis of snake venom composition and antimicrobial activity. Toxicon 2018; 150:151-167. [PMID: 29800609 DOI: 10.1016/j.toxicon.2018.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/24/2018] [Accepted: 05/21/2018] [Indexed: 02/02/2023]
Abstract
With the threat of a post-antibiotic era looming, the search for new and effective antibiotics from novel sources is imperative. Not only has crude snake venom been shown to be effective, but specific components within the venoms, such as Phospholipase A2s and l-amino acid oxidases have been isolated and demonstrated to be effective as well. Despite numerous studies being completed on snake venoms, there is a heavy bias towards utilizing the venoms from the highly toxic Elapidae and Viperidae species. Very few studies have been conducted on the less toxic, but taxonomically more diverse, Colubridae. Furthermore, an extensive review of the literature examining the efficacy and potential specificity of these venoms has not been completed. Therefore, the aims of this study were to elucidate any similarities in snake venoms as well as investigate the efficacy of snake venom antimicrobial properties towards morphologically and metabolically diverse microbial classes and the prevalence of snake species with antimicrobial properties within each snake family. The results indicate that snake venoms and their isolated components are powerful antimicrobial agents but vary in efficacy towards different microbial classes. Furthermore, due to similarities in venom composition, and limited preliminary studies, the less toxic Colubridae family may be a fruitful area of research to find novel antimicrobial agents that are less harmful to humans.
Collapse
|
12
|
dos Santos JF, Tintino SR, de Freitas TS, Campina FF, de A. Menezes IR, Siqueira-Júnior JP, Coutinho HD, Cunha FA. In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comp Immunol Microbiol Infect Dis 2018; 57:22-28. [DOI: 10.1016/j.cimid.2018.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/05/2018] [Indexed: 02/07/2023]
|
13
|
Viperatoxin-II: A novel viper venom protein as an effective bactericidal agent. FEBS Open Bio 2015; 5:928-41. [PMID: 26793432 PMCID: PMC4688439 DOI: 10.1016/j.fob.2015.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022] Open
Abstract
Two novel viperatoxins (VipTx-I and VipTx-II) from Indian Russell’s viper snake venom were purified and characterized. VipTx-II but not VipTx-I showed strong antimicrobial effects against S. aureus and Burkholderia pseudomallei (strains KHW/TES), Proteus vulgaris and P. mirabilis. In broth dilution assays, VipTx-II had a potent bactericidal effect at the lowest dilutions against B. pseudomallei (strains KHW/TES), S. aureus and P. mirabilis. Protein-induced bactericidal potency was closely associated with pore formation and membrane damage. These proteins showed a low level of cytotoxic effects on human cells.
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have become a rising threat to public health. There is an urgent need for development of promising new therapeutic agents against drug resistant bacteria like S. aureus. This report discusses purification and characterization of proteins from Indian Russell’s viper snake venom. Novel 15-kDa proteins called “Viperatoxin” (VipTx-I and VipTx-II) were extracted from the whole venom and evaluated using in vitro antimicrobial experiments. The N-terminal amino acid sequence of “Viperatoxin” showed high sequence homology to daboiatoxin isolated from the same venom and also matched phospholipase A2 (PLA2) enzymes isolated from other snake venoms. In an in vitro plate assay, VipTx-II but not VipTx-I showed strong antimicrobial effects against S. aureus and Burkholderia pseudomallei (KHW & TES), Proteus vulgaris and P. mirabilis. The VipTx-II was further tested by a broth-dilution assay at 100–3.1 μg/ml concentrations. The most potent bactericidal effect was found at the lowest dilutions (MICs of 6.25 μg/ml) against B. pseudomallei, S. aureus and P. vulgaris (MICs of 12.25 μg/ml). Electron microscopic investigation revealed that the protein-induced bactericidal potency was closely associated with pore formation and membrane damage, even at the lowest concentrations (<20 μg/ml). The toxin caused a low level of cytotoxic effects as observed in human (THP-1) cells at higher concentrations. Molecular weight determinations of VipTx-II by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one major, along with a few minor bands. The results indicate that VipTx-II plays a significant role in bactericidal and membrane damaging effects in vitro. Non-cytotoxic properties on human cells highlight it as a promising candidate for further evaluation of antimicrobial potential in vivo.
Collapse
Key Words
- Bactericidal
- Daboia russelli russelli
- MALDI-TOF/MS, matrix-assisted laser desorption ionization-time of flight/mass spectrometer
- MDR, multi-drug resistant
- MH, Mueller Hinton
- MICs, minimum inhibitory concentrations
- MRSA, methicillin-resistant Staphylococcus aureus
- MTXs, myotoxins
- PLA2, phospholipase A2
- Phospholipase A2
- SEM, scanning electron microscopy
- TEM, transmission electron microscopy
- TS, Tryptic Soya
- VipTx-I and VipTx-II, viperatoxins I and II
- Viperatoxin-I
- Viperatoxin-II
Collapse
|
14
|
Al-Asmari AK, Abbasmanthiri R, Abdo Osman NM, Siddiqui Y, Al-Bannah FA, Al-Rawi AM, Al-Asmari SA. Assessment of the Antimicrobial Activity of Few Saudi Arabian Snake Venoms. Open Microbiol J 2015; 9:18-25. [PMID: 26668657 PMCID: PMC4676055 DOI: 10.2174/1874285801509010018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 11/25/2022] Open
Abstract
Background Venoms of two cobras, four vipers, a standard antibiotic and an antimycotic, were evaluated comparatively, as antimicrobials. Methods: Six venom concentrations and three of the standard antibiotic and the antimycotic were run in micro-dilution and diffusion plates against the microorganisms. RESULTS: Echis pyramidum, Echis coloratus
and Cerastes cerastes gasperettii highest venom concentrations gave significant growth inhibition zones (GIZ) with
respect to a negative control, except Bitis arietans, whose concentrations were significant. The cobra Walterinnesia aegyptia
had significant venom concentrations more than Naja haje arabica. The Staphylococcus aureus Methicillin Resistant
(MRSA) bacterium was the most susceptible, with a highly (P < 0.001) significant GIZ mean difference followed by
the Gram positive Staphylococcus aureus, (P < 0.001), Escherichia coli (P < 0.001), Enterococcus faecalis (P < 0.001)
and Pseudomonas aeruginosa which, had the least significance (P < 0.05). The fungus Candida albicans was resistant to
both viper and cobra venoms (P > 0.05). The antibiotic Vancomycin was more effective than snake venoms though, they
were more efficient in inhibiting growth of the resistant Pseudomonas aeruginosa. This antibiotic was also inactive
against the fungus, whilst its specific antifungal Fungizone was highly efficient with no antibacterial activity. Conclusions: These findings showed that snake venoms had antibacterial activity comparable to antibiotics, with a directly proportional
relationship of venom concentration and GIZ, though, they were more efficient in combatting resistant types of
bacteria. Both venoms and the standard antibiotic, showed no antifungal benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sarah A Al-Asmari
- Dentistry, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Santos-Filho NA, Lorenzon EN, Ramos MAS, Santos CT, Piccoli JP, Bauab TM, Fusco-Almeida AM, Cilli EM. Synthesis and characterization of an antibacterial and non-toxic dimeric peptide derived from the C-terminal region of Bothropstoxin-I. Toxicon 2015; 103:160-8. [PMID: 26160494 DOI: 10.1016/j.toxicon.2015.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 12/14/2022]
Abstract
Infectious diseases are among the leading global causes of death, increasing the search for novel antibacterial agents. Among these, biologically active peptides are an excellent research tool. Using solid-phase peptide synthesis (SPPS), this work aimed to synthesize the peptide derived from the C-terminal region of Bothropstoxin-I (BthTX-I) (p-BthTX-I, sequence: KKYRYHLKPFCKK), and its disulfide-linked dimeric form, obtained via air oxidation (p-BthTX-I)2. Two other peptides were synthesized to evaluate the dimerization effect on antimicrobial activity. In both sequences, the cysteine (Cys) residue was replaced by the serine (Ser) residue, differing, however, in their C-terminus position. The antimicrobial activity of the peptides against gram-negative (Escherichia (E.) coli) and gram-positive (Staphylococcus (S.) aureus) bacteria and yeast (Candida (C.) albicans) was evaluated. Interestingly, only peptides containing the Cys residue showed antimicrobial activity, suggesting the importance of Cys residue and its dimerization for the observed activity. Apparently, p-BthTX-I and (p-BthTX-I)2 did not promote lysis or form pores and were not able to interact with membranes. Furthermore, they neither showed antifungal activity against C. albicans nor toxicity against erythrocytes, epithelial cells, or macrophages, indicating a potential specificity against prokaryotic cells.
Collapse
Affiliation(s)
| | - Esteban N Lorenzon
- Instituto de Química, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Matheus A S Ramos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Claudia T Santos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Julia P Piccoli
- Instituto de Química, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Tais M Bauab
- Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Eduardo M Cilli
- Instituto de Química, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil.
| |
Collapse
|
16
|
Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics. Biochimie 2015; 111:30-44. [PMID: 25583073 DOI: 10.1016/j.biochi.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/02/2015] [Indexed: 11/24/2022]
Abstract
Antimicrobial peptides (AMPs) play a vital role in defense against resistant bacteria. In this study, eight different AMPs synthesized from Python reticulatus serum protein were tested for bactericidal activity against various Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Burkholderia pseudomallei (KHW and TES strains), and Proteus vulgaris) using a disc-diffusion method (20 μg/disc). Among the tested peptides, phospholipase A2 inhibitory peptide (PIP)-18[59-76], β-Asp65-PIP[59-67], D-Ala66-PNT.II, and D60,65E-PIP[59-67] displayed the most potent bactericidal activity against all tested pathogens in a dose-dependent manner (100-6.8 μg/ml), with a remarkable activity noted against S. aureus at 6.8 μg/ml dose within 6 h of incubation. Determination of minimum inhibitory concentrations (MICs) by a micro-broth dilution method at 100-3.125 μg/ml revealed that PIP-18[59-76], β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides exerted a potent inhibitory effect against S. aureus and B. pseudomallei (KHW) (MICs 3.125 μg/ml), while a much less inhibitory potency (MICs 12.5 μg/ml) was noted for β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides against B. pseudomallei (TES). Higher doses of peptides had no effect on the other two strains (i.e., Klebsiella pneumoniae and Streptococcus pneumoniae). Overall, PIP-18[59-76] possessed higher antimicrobial activity than that of chloramphenicol (CHL), ceftazidime (CF) and streptomycin (ST) (30 μg/disc). When the two most active peptides, PIP-18[59-76] and β-Asp65-PIP[59-67], were applied topically at a 150 mg/kg dose for testing wound healing activity in a mouse model of S. aureus infection, the former accelerates faster wound healing than the latter peptide at 14 days post-treatment. The western blot data suggest that the topical application of peptides (PIP-18[59-67] and β-Asp65-PIP[59-67]) modulates NF-kB mediated wound repair in mice with relatively little haemolytic (100-1.56 μg/ml) and cytotoxic (1000-3.125 μg/ml) effects evident on human cells in vitro.
Collapse
|
17
|
Dubovskii PV, Utkin YN. Cobra cytotoxins: structural organization and antibacterial activity. Acta Naturae 2014; 6:11-8. [PMID: 25349711 PMCID: PMC4207557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Cardiotoxins (cytotoxins, CT) are β-structured proteins isolated from the venom of cobra. They consist of 59-61 amino acid residues, whose antiparallel chains form three 'fingers'. In contrast to neurotoxins with an overall similar fold, CTs are amphiphilic. The amphiphilicity is caused by positively charged lysine and arginine residues flanking the tips of the loops that consist primarily of hydrophobic amino acids. A similar distribution of amino acid residues is typical for linear (without disulfide bonds) cationic cytolytic peptides from the venoms of other snakes and insects. Many of them are now considered to be lead compounds in combatting bacterial infections and cancer. In the present review, we summarize the data on the antibacterial activity of CTs and compare it to the activity of linear peptides.
Collapse
Affiliation(s)
- P. V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - Y. N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| |
Collapse
|
18
|
Biradar YS, Jagatap S, Khandelwal KR, Singhania SS. Exploring of Antimicrobial Activity of Triphala Mashi-an Ayurvedic Formulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 5:107-13. [PMID: 18317557 PMCID: PMC2249739 DOI: 10.1093/ecam/nem002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Accepted: 09/26/2006] [Indexed: 11/22/2022]
Abstract
Triphala Mashi is an ayurvedic formulation that was prepared in our lab. Aqueous and alcoholic extracts of both Triphala and Triphala Mashi were used, to evaluate antimicrobial activity. Comparative phytochemical profile of Triphala and Triphala Mashi was done by preliminary phytochemical screening, total phenolic content and thin layer chromatography (TLC). Antimicrobial activity includes isolation of pathogens from clinical samples, its characterization, testing its multiple drug resistance against standard antibiotics and antimicrobial activity of aqueous and alcoholic extracts of both Triphala and Triphala Mashi against these organisms by using agar gel diffusion method. Triphala Mashi containing phenolic compounds, tannins exhibited comparable antimicrobial activity in relation to Triphala against all the microorganisms tested. It inhibits the dose-dependent growth of Gram-positive and Gram-negative bacteria. In conclusion, it appears that Triphala Mashi has non-specific antimicrobial activity.
Collapse
Affiliation(s)
- Yogesh S Biradar
- Department of Pharmacognosy, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune 411 038, Department of Microbiology, University of Pune and Department of Management Sciences, University of Pune, Pune, Maharashtra, India
| | | | | | | |
Collapse
|
19
|
Antileukemic potential of PEGylated gold nanoparticle conjugated with protein toxin (NKCT1) isolated from Indian cobra ( Naja kaouthia) venom. Cancer Nanotechnol 2013; 4:39-55. [PMID: 26069500 PMCID: PMC4451861 DOI: 10.1007/s12645-013-0036-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/26/2013] [Accepted: 03/05/2013] [Indexed: 02/08/2023] Open
Abstract
Limited efficacy of current first-line treatment for leukemia calls attention for further development of efficient strategies. Recently, much attention has been given to nanoparticle-based drug delivery systems loaded with dual drugs to improve current disease therapies by overcoming toxicity. In the present study, we document to explore an approach to conjugate gold nanoparticles (GNPs) with protein toxin (NKCT1), a protein toxin from the Indian cobra (Naja kaouthia) venom, and to establish its antileukemic activity. GNP was prepared by NaBH4 reduction method. UV–vis spectroscopy of GNP showed the absorbance at 530 nm for plasma resonance. Dynamic light scattering (DLS) size of GNPs was 2–8 nm and the GNP-NKCT1 was 68–122 nm. CD spectra of GNP-NKCT1 showed change in percentage of β-turn as compared with NKCT1. GNP-NKCT1 significantly inhibited leukemic cell growth in dose- and time-dependent manner by two- to threefold more than NKCT1. For human leukemic lymphoma cell line and human myelogenous leukemic cell line, the IC50 dose was found to be 1.2 and 0.75 μg/ml, respectively, observed by trypan blue exclusion method and tetrazolium bromide reduction assay. Flow cytometric analysis showed appreciable number of both cell lines in early and late apoptotic stages and arrested cell cycle in the G1 phase by GNP-NKCT1. Resilient power of leukemic cell line after wound healing and migration or invasive power of the cell line was significantly low in GNP-NKCT1-treated plate than the control plate. These analyses reveal that GNP-NKCT1 possesses significant and selective anticancer activity, likely by inducing programmed cell death through mitochondrial and/or lysosomal pathway.
Collapse
|
20
|
Sathler PC, Lourenço AL, Miceli LA, Rodrigues CR, Albuquerque MG, Cabral LM, Castro HC. Structural model of haptoglobin and its complex with the anticoagulant ecotin variants: structure-activity relationship study and analysis of interactions. J Enzyme Inhib Med Chem 2013; 29:256-62. [PMID: 23477410 DOI: 10.3109/14756366.2013.774389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently the literature described the binding of Haptoglobin (HP) with ecotin, a fold-specific serine-proteases inhibitor with an anticoagulant profile and produced by Escherichia coli. In this work, we used some in silico and in vitro techniques to evaluate HP 3D-fold and its interaction with wild-type ecotin and two variants. Our data showed HP models conserved trypsin fold, in agreement to the in vitro immunological recognition of HP by trypsin antibodies. The analysis of the three ecotin-HP complexes using the mutants RR and TSRR/R besides the wild type revealed several hydrogen bonds between HP and ecotin secondary site. These data are in agreement with the in vitro PAGE assays that showed the HP-RR complex in native gel conditions. Interestingly, the ternary complex interactions varied depending on the inhibitor structure and site-directed mutation. The interaction of HP with TSRR/R involved new residues compared to wild type, which infers a binding energy increase caused by the mutation.
Collapse
|
21
|
Vargas LJ, Quintana JC, Pereañez JA, Núñez V, Sanz L, Calvete J. Cloning and characterization of an antibacterial l-amino acid oxidase from Crotalus durissus cumanensis venom. Toxicon 2013; 64:1-11. [DOI: 10.1016/j.toxicon.2012.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/14/2012] [Accepted: 11/29/2012] [Indexed: 12/09/2022]
|
22
|
Boback SM, Dichter EK, Mistry HL. A developmental staging series for the African house snake, Boaedon (Lamprophis) fuliginosus. ZOOLOGY 2012; 115:38-46. [DOI: 10.1016/j.zool.2011.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 08/14/2011] [Accepted: 09/01/2011] [Indexed: 11/26/2022]
|
23
|
Wang XY, He ZC, Song LY, Spencer S, Yang LX, Peng F, Liu GM, Hu MH, Li HB, Wu XM, Zeng S, Hilgenfeld R, Stöckigt J, Zhao Y, Qian JF. Chemotherapeutic effects of bioassay-guided extracts of the American cockroach, Periplaneta americana. Integr Cancer Ther 2011; 10:NP12-23. [PMID: 21733985 DOI: 10.1177/1534735411413467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The organic extract of Periplaneta americana L. (Dictyoptera; Blattidae) has been traditionally used in southwestern China as an alternative medicine against disorders such as hepatitis, trauma, gastric ulcers, burns, and heart disease. The present study describes bioassay-guided purification and chemotherapeutic evaluation of the 60% ethanolic fraction of P americana organic extracts (PAE60). The most effective cytotoxic fraction was determined by way of repeated in vitro screenings against 12 distinct cultured human carcinoma cell lines: Eca 109, BGC823, HO8910, LS174T, CNE, HeLa, K562, PC-3, A549, BEL 7404, HL-60, and KB, followed by in vivo antitumor assays of the lead fraction (PAE60). The complexity of enriched active fraction was qualitatively evaluated using thin layer chromatography. Reconstituted PAE60 was effective at inhibiting HL-60, KB, CNE, and BGC823 cell growth with IC(50) values <20 µg mL-(1). PAE60 reduced tumor growth in S180-bearing immunocompetent mice by 72.62% after 10 days following oral doses of 500 mg kg d-(1) compared with 78.75% inhibition following 40 mg kg d-(1) of cyclophosphamide (CTX). Thymus and spleen indices of S180-bearing mice treated with PAE60 were significantly greater (P < .05) than CTX treatment groups, suggesting potential immunomodulation of antitumor host defenses by PAE60. Antiviral activity was also investigated and PAE60 inhibited herpes simplex type-2 replication (IC(50) = 4.11 ± 0.64 µg mL-(1)) with a selectivity index (CC(50) to IC(50) ratio) of 64.84 in Vero cells but was less effective on type-1 virus (IC(50) of 25.6 ± 3.16 µg mL-(1)). These results support future clinical trials on P. americana as an alternative or complementary medicinal agent.
Collapse
|
24
|
Ferreira BL, Santos DO, Dos Santos AL, Rodrigues CR, de Freitas CC, Cabral LM, Castro HC. Comparative analysis of viperidae venoms antibacterial profile: a short communication for proteomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:960267. [PMID: 18955360 PMCID: PMC3137867 DOI: 10.1093/ecam/nen052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 07/16/2008] [Indexed: 11/13/2022]
Abstract
Bacterial infections involving multidrug-resistant strains are one of the ten leading causes of death and an important health problem in need for new antibacterial sources and agents. Herein, we tested and compared four snake venoms (Agkistrodon rhodostoma, Bothrops jararaca, B. atrox and Lachesis muta) against 10 Gram-positive and Gram-negative drug-resistant clinical bacteria strains to identify them as new sources of potential antibacterial molecules. Our data revealed that, as efficient as some antibiotics currently on the market (minimal inhibitory concentration (MIC) = 1–32 μg mL−1), A. rhodostoma and B. atrox venoms were active against Staphylococcus epidermidis and Enterococcus faecalis (MIC = 4.5 μg mL−1), while B. jararaca inhibited S. aureus growth (MIC = 13 μg ml−1). As genomic and proteomic technologies are improving and developing rapidly, our results suggested that A. rhodostoma, B. atrox and B. jararaca venoms and glands are feasible sources for searching antimicrobial prototypes for future design new antibiotics against drug-resistant clinical bacteria. They also point to an additional perspective to fully identify the pharmacological potential of these venoms by using different techniques.
Collapse
Affiliation(s)
- Bruno L Ferreira
- Departamento de Biologia Celular e Molecular, Laboratório de Antibióticos, Bioquímica e Modelagem Molecular (LABioMol), Instituto de Biologia, CEG, Universidade Federal Fluminense, CEP 24001-970, Niterói, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang J, Han X, Yang H, Lu L, Wu Y, Liu X, Guo R, Zhang Y, Zhang Y, Li Q. A novel RGD-toxin protein, Lj-RGD3, from the buccal gland secretion of Lampetra japonica impacts diverse biological activities. Biochimie 2010; 92:1387-96. [PMID: 20650303 DOI: 10.1016/j.biochi.2010.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/01/2010] [Indexed: 11/19/2022]
Abstract
RGD (Arg-Gly-Asp) motif toxin proteins from snake venoms, saliva glands secretion of leech or tick have typical characteristics of inhibiting platelet aggregation, angiogenesis, and tumor growth. Here we report cloning and characterization of a novel RGD-toxin protein from the buccal gland of Lampetra japonica. In an attempt to study the activities of anticoagulant in the buccal gland secretion of L. japonica, we established buccal gland cDNA library and identified a gene encoding a predicted protein of 118 amino acids with 3 RGD motifs. The predicted protein was named Lj-RGD3. We generated the cDNA of Lj-RGD3 and obtained the recombinant protein rLj-RGD3. The polyclonal antibodies against rLj-RGD3 recognized the native Lj-RGD3 protein in buccal gland secretion in Western blot analyses. The biological function studies reveal that rLj-RGD3 inhibited human platelet aggregation in a dose-dependent manner with IC(50) value at 5.277 μM. In addition, rLj-RGD3 repressed bFGF-induced angiogenesis in the chick chorioallantoic membrane model. rLj-RGD3 also inhibited the adhesion of ECV304 cells to vitronectin. Furthermore, rLj-RGD3 induced apoptosis and significantly inhibited proliferation, migration, and invasion evoked by bFGF in ECV304 cells. Taken together, these results suggested that rLj-RGD3 is a novel RGD-toxin protein possessing typical functions of the RGD-toxin protein.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Biological Sciences, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sathler PC, Craik CS, Takeuchi T, Zingali RB, Castro HC. Engineering ecotin for identifying proteins with a trypsin fold. Appl Biochem Biotechnol 2009; 160:2355-65. [PMID: 19728173 DOI: 10.1007/s12010-009-8711-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 07/05/2009] [Indexed: 11/29/2022]
Abstract
Ecotin is a bidentate, fold-specific inhibitor of mammalian serine-proteases produced by Escherichia coli. This molecule may be engineered to increase and/or change its affinity and specificity providing significant biotechnological potential. Since ecotin binds tightly to serine proteases of the trypsin fold, it may help to identify the role of these enzymes in different biological processes. In this work, we tested ecotin variants as an affinity purification reagent for identifying enzymes in samples of tumor progression and mammary gland involution. Initially, we used a commercial source of urokinase-type plasminogen activator (u-PA) that remained fully active after elution from an affinity column of the ecotin variant (M84R, M85R). We then successfully identified u-PA from more complex mixtures including lysates from a prostate cancer cell line and involuting mouse mammary glands. Interestingly, a membrane-type serine protease 1 was isolated from the Triton X-100-solubilized PC-3 cell lysates, and surprisingly, haptoglobin, a serine-protease homolog protein, was also identified in mammary gland lysates and in blood. Haptoglobin does not prevent ecotin inhibition of u-PA, but it may act as a carrier within blood when ecotin is used in vivo. Finally, this affinity purification matrix was also able to identify a thrombin-like enzyme from snake venom using an ecotin variant directed against thrombin. Overall, the ecotin variants acted as robust tools for the isolation and characterization of proteins with a trypsin fold. Thus, they may assist in the understanding of the role of these serine proteases and homologous proteins in different biological processes.
Collapse
Affiliation(s)
- Plínio C Sathler
- LaBioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24001-970, Brazil
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Costa TR, Menaldo DL, Oliveira CZ, Santos-Filho NA, Teixeira SS, Nomizo A, Fuly AL, Monteiro MC, de Souza BM, Palma MS, Stábeli RG, Sampaio SV, Soares AM. Myotoxic phospholipases A(2) isolated from Bothrops brazili snake venom and synthetic peptides derived from their C-terminal region: cytotoxic effect on microorganism and tumor cells. Peptides 2008; 29:1645-56. [PMID: 18602430 DOI: 10.1016/j.peptides.2008.05.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/16/2008] [Accepted: 05/19/2008] [Indexed: 11/26/2022]
Abstract
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A(2) (PLA(2)s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing M(r) approximately 14,000 for the monomer and 28,000Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA(2)s from snake venoms, MTX-I belonging to Asp49 PLA(2) class, enzymatically active, and MTX-II to Lys49 PLA(2)s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA(2) and anticoagulant activities, corroborating the importance of residue His48 and Ca(2+) ions for the enzymatic catalysis. Both PLA(2)s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA(2) proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer.
Collapse
Affiliation(s)
- Tassia R Costa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nair D, Fry B, Alewood P, Kumar P, Kini R. Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. Biochem J 2007; 402:93-104. [PMID: 17044815 PMCID: PMC1783991 DOI: 10.1042/bj20060318] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have isolated and characterized omwaprin, a 50-amino-acid cationic protein from the venom of inland taipan (Oxyuranus microlepidotus). It is a new member of the waprin family of snake venom proteins. A synthetic gene was designed and constructed for expressing the recombinant protein in Escherichia coli. Recombinant omwaprin was used for carrying out functional analyses. The protein is non-toxic to Swiss albino mice at doses of up to 10 mg/kg when administered intraperitoneally. However, it shows selective and dose-dependant antibacterial activity against Gram-positive bacteria. The minimum inhibitory doses were in the range 2-10 microg for selected species of bacteria in radial diffusion assays. The antibacterial activity is salt-tolerant up to 350 mM NaCl. However, omwaprin lost its antibacterial activity upon reduction and alkylation of its cysteine residues, or upon deletion of six N-terminal amino acid residues, four of which are positively charged. These observations indicate that the three-dimensional structure constrained by four disulfide bonds and the N-terminal residues are essential for its activity. The mechanism of action is via membrane disruption, as shown by scanning electron microscopy. Importantly, omwaprin lacks haemolytic activity on human erythrocytes. This demonstrates the specificity of omwaprin for bacterial membranes. Unlike other reported WAP (whey acidic protein) domain-containing antibacterial proteins, including elafin, EPPIN (epididymal proteinase inhibitor), SWAM1 and SWAM2 [single WAP (whey acidic protein) motif proteins 1 and 2] and SLPI (secretory leucocyte proteinase inhibitor), omwaprin shows species-specific activity on the Gram-positive bacteria tested.
Collapse
Affiliation(s)
- Dileep G. Nair
- *Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
| | - Bryan G. Fry
- *Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
- †Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia 4072
| | - Paul Alewood
- †Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia 4072
| | - Prakash P. Kumar
- *Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
- ‡Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
- Correspondence may be addressed to either of these authors (email or )
| | - R. Manjunatha Kini
- *Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
- §Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, U.S.A
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
30
|
Abreu PA, Albuquerque MG, Rodrigues CR, Castro HC. Structure–function inferences based on molecular modeling, sequence-based methods and biological data analysis of snake venom lectins. Toxicon 2006; 48:690-701. [PMID: 17046438 DOI: 10.1016/j.toxicon.2006.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 08/05/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
Lectins are a structurally and functionally diverse group of proteins from different sources, capable to recognize and bind specifically carbohydrates. Several snake venoms contain calcium-dependent true lectins (SVLs) that recognize galactose. Herein, in order to enlighten some of the structure-function relationships of snake venom lectins (SVLs), we constructed theoretical models for 10 SVLs based on the Crotalus atrox lectin (CaL), the only SVL crystal structure available, and compared with other animal and plant lectins, and C-type lectin-like proteins (CLPs) that do not bind carbohydrates. Although these are theoretical structures, we could identify some SVL features, including: (i) a singular intrachain disulfide bond (Cys(38)-Cys(133)) that is not present in CLPs; (ii) a significant reorientation (39-41A) of the 80's loop position that folds back to the globular domain, assists the carbohydrate recognition domain (CRD), and orients the dimer formation, even in BfL-1 and BfL-2, which did not present the Cys(86) interchain; (iii) a CRD presenting a negative and concave surface that allows the interaction with the specific saccharide hydroxyl groups and calcium ion; (iv) the role of water molecules in some interchain interactions, similar to other animal and plant lectins; and (v) the inability of forming oligomers in contrast to CaL and some CLPs, such as convulxin.
Collapse
Affiliation(s)
- Paula Alvarez Abreu
- Laboratório de Bioquímica e Modelagem Molecular, Departamento de Biologia Celular e Molecular, Instituto de Biologia, CEG, Universidade Federal Fluminense, CEP 24001-970, Niterói, RJ, Brazil
| | | | | | | |
Collapse
|
31
|
Cooper EL. eCAM benefits from diversity that derives from CAM. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2005; 2:263-5. [PMID: 16136204 PMCID: PMC1193560 DOI: 10.1093/ecam/neh120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|