1
|
Pavitra E, Acharya RK, Gupta VK, Verma HK, Kang H, Lee JH, Sahu T, Bhaskar L, Raju GSR, Huh YS. Impacts of oxidative stress and anti-oxidants on the development, pathogenesis, and therapy of sickle cell disease: A comprehensive review. Biomed Pharmacother 2024; 176:116849. [PMID: 38823275 DOI: 10.1016/j.biopha.2024.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
Sickle cell disease (SCD) is the most severe monogenic hemoglobinopathy caused by a single genetic mutation that leads to repeated polymerization and depolymerization of hemoglobin resulting in intravascular hemolysis, cell adhesion, vascular occlusion, and ischemia-reperfusion injury. Hemolysis causes oxidative damage indirectly by generating reactive oxygen species through various pathophysiological mechanisms, which include hemoglobin autoxidation, endothelial nitric oxide synthase uncoupling, reduced nitric oxide bioavailability, and elevated levels of asymmetric dimethylarginine. Red blood cells have a built-in anti-oxidant system that includes enzymes like sodium dismutase, catalase, and glutathione peroxidase, along with free radical scavenging molecules, such as vitamin C, vitamin E, and glutathione, which help them to fight oxidative damage. However, these anti-oxidants may not be sufficient to prevent the effects of oxidative stress in SCD patients. Therefore, in line with a recent FDA request that the focus to be placed on the development of innovative therapies for SCD that address the root cause of the disease, there is a need for therapies that target oxidative stress and restore redox balance in SCD patients. This review summarizes the current state of knowledge regarding the role of oxidative stress in SCD and the potential benefits of anti-oxidant therapies. It also discusses the challenges and limitations of these therapies and suggests future directions for research and development.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Rakesh Kumar Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, Munich 85764, Germany
| | - Haneul Kang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Tarun Sahu
- Department of Physiology, All Indian Institute of Medical Science, Raipur, Chhattisgarh, India
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India.
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
2
|
Foong WC, Loh CK, Ho JJ, Lau DS. Foetal haemoglobin inducers for reducing blood transfusion in non-transfusion-dependent beta-thalassaemias. Cochrane Database Syst Rev 2023; 1:CD013767. [PMID: 36637054 PMCID: PMC9837847 DOI: 10.1002/14651858.cd013767.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Non-transfusion-dependent β-thalassaemia (NTDβT) is a subset of inherited haemoglobin disorders characterised by reduced production of the β-globin chain of haemoglobin leading to anaemia of varying severity. Although blood transfusion is not a necessity for survival, it may be required to prevent complications of chronic anaemia, such as impaired growth and hypercoagulability. People with NTDβT also experience iron overload due to increased iron absorption from food sources which becomes more pronounced in those requiring blood transfusion. People with a higher foetal haemoglobin (HbF) level have been found to require fewer blood transfusions, thus leading to the emergence of treatments that could increase its level. HbF inducers stimulate HbF production without altering any gene structures. Evidence for the possible benefits and harms of these inducers is important for making an informed decision on their use. OBJECTIVES To compare the effectiveness and safety of the following for reducing blood transfusion for people with NTDβT: 1. HbF inducers versus usual care or placebo; 2. single HbF inducer with another HbF inducer, and single dose with another dose; and 3. combination of HbF inducers versus usual care or placebo, or single HbF inducer. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 21 August 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) or quasi-RCTs comparing single HbF inducer with placebo or usual care, with another single HbF inducer or with a combination of HbF inducers; or comparing different doses of the same HbF inducer. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were blood transfusion and haemoglobin levels. Our secondary outcomes were HbF levels, the long-term sequelae of NTDβT, quality of life and adverse events. MAIN RESULTS We included seven RCTs involving 291 people with NTDβT, aged two to 49 years, from five countries. We reported 10 comparisons using eight different HbF inducers (four pharmacological and four natural): three RCTs compared a single HbF inducer to placebo and seven to another HbF inducer. The duration of the intervention lasted from 56 days to six months. Most studies did not adequately report the randomisation procedures or whether and how blinding was achieved. HbF inducer against placebo or usual care Three HbF inducers, HQK-1001, Radix Astragali or a 3-in-1 combined natural preparation (CNP), were compared with a placebo. None of the comparisons reported the frequency of blood transfusion. We are uncertain whether Radix Astragali and CNP increase haemoglobin at three months (mean difference (MD) 1.33 g/dL, 95% confidence interval (CI) 0.54 to 2.11; 1 study, 2 interventions, 35 participants; very low-certainty evidence). We are uncertain whether Radix Astragali and CNP have any effect on HbF (MD 12%, 95% CI -0.74% to 24.75%; 1 study, 2 interventions, 35 participants; very low-certainty evidence). Only medians on haemoglobin and HbF levels were reported for HQK-1001. Adverse effects reported for HQK-1001 were nausea, vomiting, dizziness and suprapubic pain. There were no prespecified adverse effects for Radix Astragali and CNP. HbF inducer versus another HbF inducer Four studies compared a single inducer with another over three to six months. Comparisons included hydroxyurea versus resveratrol, hydroxyurea versus thalidomide, hydroxyurea versus decitabine and Radix Astragali versus CNP. No study reported our prespecified outcomes on blood transfusion. Haemoglobin and HbF were reported for the comparison Radix Astragali versus CNP, but we are uncertain whether there were any differences (1 study, 24 participants; low-certainty evidence). Different doses of the same HbF inducer Two studies compared two different types of HbF inducers at different doses over two to six months. Comparisons included hydroxyurea 20 mg/kg/day versus 10 mg/kg/day and HQK-1001 10 mg/kg/day, 20 mg/kg/day, 30 mg/kg/day and 40 mg/kg/day. Blood transfusion, as prespecified, was not reported. In one study (61 participants) we are uncertain whether the lower levels of both haemoglobin and HbF at 24 weeks were due to the higher dose of hydroxyurea (haemoglobin: MD -2.39 g/dL, 95% CI -2.80 to -1.98; very low-certainty evidence; HbF: MD -10.20%, 95% CI -16.28% to -4.12%; very low-certainty evidence). The study of the four different doses of HQK-1001 did not report results for either haemoglobin or HbF. We are not certain if major adverse effects may be more common with higher hydroxyurea doses (neutropenia: risk ratio (RR) 9.93, 95% CI 1.34 to 73.97; thrombocytopenia: RR 3.68, 95% CI 1.12 to 12.07; very low-certainty evidence). Taking HQK-1001 20 mg/kg/day may result in the fewest adverse effects. A combination of HbF inducers versus a single HbF inducer Two studies compared three combinations of two inducers with a single inducer over six months: hydroxyurea plus resveratrol versus resveratrol or hydroxyurea alone, and hydroxyurea plus l-carnitine versus hydroxyurea alone. Blood transfusion was not reported. Hydroxyurea plus resveratrol may reduce haemoglobin compared with either resveratrol or hydroxyurea alone (MD -0.74 g/dL, 95% CI -1.45 to -0.03; 1 study, 54 participants; low-certainty evidence). We are not certain whether the gastrointestinal disturbances, headache and malaise more commonly reported with hydroxyurea plus resveratrol than resveratrol alone were due to the interventions. We are uncertain whether hydroxyurea plus l-carnitine compared with hydroxyurea alone may increase mean haemoglobin, and reduce pulmonary hypertension (1 study, 60 participants; very low-certainty evidence). Adverse events were reported but not in the intervention group. None of the comparisons reported the outcome of HbF. AUTHORS' CONCLUSIONS We are uncertain whether any of the eight HbF inducers in this review have a beneficial effect on people with NTDβT. For each of these HbF inducers, we found only one or at the most two small studies. There is no information on whether any of these HbF inducers have an effect on our primary outcome, blood transfusion. For the second primary outcome, haemoglobin, there may be small differences between intervention groups, but these may not be clinically meaningful and are of low- to very low-certainty evidence. Data on adverse effects and optimal doses are limited. Five studies are awaiting classification, but none are ongoing.
Collapse
Affiliation(s)
- Wai Cheng Foong
- Department of Paediatrics, RCSI & UCD Malaysia Campus (formerly Penang Medical College), George Town, Malaysia
| | - C Khai Loh
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Malaysia
| | - Jacqueline J Ho
- Department of Paediatrics, RCSI & UCD Malaysia Campus (formerly Penang Medical College), George Town, Malaysia
| | - Doris Sc Lau
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Malaysia
| |
Collapse
|
3
|
LRF Promotes Indirectly Advantageous Chromatin Conformation via BGLT3-lncRNA Expression and Switch from Fetal to Adult Hemoglobin. Int J Mol Sci 2022; 23:ijms23137025. [PMID: 35806029 PMCID: PMC9266405 DOI: 10.3390/ijms23137025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
The hemoglobin switch from fetal (HbF) to adult (HbA) has been studied intensively as an essential model for gene expression regulation, but also as a beneficial therapeutic approach for β-hemoglobinopathies, towards the objective of reactivating HbF. The transcription factor LRF (Leukemia/lymphoma-related), encoded from the ZBTB7A gene has been implicated in fetal hemoglobin silencing, though has a wide range of functions that have not been fully clarified. We thus established the LRF/ZBTB7A-overexpressing and ZBTB7A-knockdown K562 (human erythroleukemia cell line) clones to assess fetal vs. adult hemoglobin production pre- and post-induction. Transgenic K562 clones were further developed and studied under the influence of epigenetic chromatin regulators, such as DNA methyl transferase 3 (DNMT3) and Histone Deacetylase 1 (HDAC1), to evaluate LRF’s potential disturbance upon the aberrant epigenetic background and provide valuable information of the preferable epigenetic frame, in which LRF unfolds its action on the β-type globin’s expression. The ChIP-seq analysis demonstrated that LRF binds to γ-globin genes (HBG2/1) and apparently associates BCL11A for their silencing, but also during erythropoiesis induction, LRF binds the BGLT3 gene, promoting BGLT3-lncRNA production through the γ-δ intergenic region of β-type globin’s locus, triggering the transcriptional events from γ- to β-globin switch. Our findings are supported by an up-to-date looping model, which highlights chromatin alterations during erythropoiesis at late stages of gestation, to establish an “open” chromatin conformation across the γ-δ intergenic region and accomplish β-globin expression and hemoglobin switch.
Collapse
|
4
|
Mukherjee M, Rahaman M, Ray SK, Shukla PC, Dolai TK, Chakravorty N. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: a review of natural products, conventional and combinatorial therapies. Mol Biol Rep 2021; 49:2359-2373. [PMID: 34822068 DOI: 10.1007/s11033-021-06977-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
Beta-hemoglobinopathies exhibit a heterogeneous clinical picture with varying degrees of clinical severity. Pertaining to the limited treatment options available, where blood transfusion still remains the commonest mode of treatment, pharmacological induction of fetal hemoglobin (HbF) has been a lucrative therapeutic intervention. Till now more than 70 different HbF inducers have been identified. The practical usage of many pharmacological drugs has been limited due to safety concerns. Natural compounds, like Resveratrol, Ripamycin and Bergaptene, with limited cytotoxicity and high efficacy have started capturing the attention of researchers. In this review, we have summarized pharmacological drugs and bioactive compounds isolated from natural sources that have been shown to increase HbF significantly. It primarily discusses recently identified synthetic and natural compounds, their mechanism of action, and their suitable screening platforms, including high throughput drug screening technology and biosensors. It also delves into the topic of combinatorial therapy and drug repurposing for HbF induction. Overall, we aim to provide insights into where we stand in HbF induction strategies for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Mandrita Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Suman Kumar Ray
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Tuphan Kanti Dolai
- Department of Hematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, 700014, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
5
|
Erythrocyte microRNAs: a tiny magic bullet with great potential for sickle cell disease therapy. Ann Hematol 2021; 100:607-614. [PMID: 33398452 DOI: 10.1007/s00277-020-04390-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is a severe hereditary blood disorder caused by a mutation of the beta-globin gene, which results in a substantial reduction in life expectancy. Many studies are focused on various novel therapeutic strategies that include re-activation of the γ-globin gene. Among them, expression therapy caused by the fetal hemoglobin (HbF) at a later age is highly successful. The induction of HbF is one of the dominant genetic modulators of the hematological and clinical characteristics of SCD. In fact, HbF compensates for the abnormal beta chain and has an ameliorant effect on clinical complications. Erythropoiesis is a multi-step process that involves the proliferation and differentiation of a small population of hematopoietic stem cells and is affected by several factors, including signaling pathways, transcription factors, and small non-coding RNAs (miRNAs). miRNAs play a regulatory role through complex networks that control several epigenetic mechanisms as well as the post-transcriptional regulation of multiple genes. In this review, we briefly describe the current understanding of interactions between miRNAs, their molecular targets, and their regulatory effects in HbF induction in SCD.
Collapse
|
6
|
Foong WC, Loh CK, Ho JJ, Lau DSC. Foetal haemoglobin inducers for reducing blood transfusion in non-transfusion dependent beta thalassaemias. Hippokratia 2020. [DOI: 10.1002/14651858.cd013767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wai Cheng Foong
- Department of Paediatrics; RCSI & UCD Malaysia Campus (formerly Penang Medical College); George Town Malaysia
| | - C Khai Loh
- Department of Paediatrics; Universiti Kebangsaan Malaysia Medical Centre; 56000 Cheras Malaysia
| | - Jacqueline J Ho
- Department of Paediatrics; RCSI & UCD Malaysia Campus (formerly Penang Medical College); George Town Malaysia
| | - Doris SC Lau
- Department of Paediatrics; Universiti Kebangsaan Malaysia Medical Centre; 56000 Cheras Malaysia
| |
Collapse
|
7
|
Abstract
β-thalassemia is caused by mutations in the β-globin gene which diminishes or abolishes β-globin chain production. This reduction causes an imbalance of the α/β-globin chain ratio and contributes to the pathogenesis of the disease. Several approaches to reduce the imbalance of the α/β ratio using several nucleic acid-based technologies such as RNAi, lentiviral mediated gene therapy, splice switching oligonucleotides (SSOs) and gene editing technology have been investigated extensively. These approaches aim to reduce excess free α-globin, either by reducing the α-globin chain, restoring β-globin expression and reactivating γ-globin expression, leading a reduced disease severity, treatment necessity, treatment interval, and disease complications, thus, increasing the life quality of the patients and alleviating economic burden. Therefore, nucleic acid-based therapy might become a potential targeted therapy for β-thalassemia.
Collapse
Affiliation(s)
- Annette d'Arqom
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
8
|
Bosquesi PL, Melchior ACB, Pavan AR, Lanaro C, de Souza CM, Rusinova R, Chelucci RC, Barbieri KP, Fernandes GFDS, Carlos IZ, Andersen OS, Costa FF, Dos Santos JL. Synthesis and evaluation of resveratrol derivatives as fetal hemoglobin inducers. Bioorg Chem 2020; 100:103948. [PMID: 32450391 PMCID: PMC8052979 DOI: 10.1016/j.bioorg.2020.103948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022]
Abstract
Resveratrol (RVT) derivatives (10a-i) were designed, synthesized, and evaluated for their potential as gamma-globin inducers in treating Sickle Cell Disease (SCD) symptoms. All compounds were able to release NO at different levels ranging from 0 to 26.3%, while RVT did not demonstrate this effect. In vivo, the antinociceptive effect was characterized using an acetic acid-induced abdominal contortion model. All compounds exhibited different levels of protection, ranging from 5.9 to 37.3%; the compound 10a was the most potent among the series. At concentrations between 3.13 and 12.5 µM, the derivative 10a resulted in a reduction of 41.1-64.3% in the TNF-α levels in the supernatants of macrophages that were previously LPS-stimulated. This inhibitory effect was higher than that of RVT used as the control. In addition, the compound 10a and RVT induced double the production of the gamma-globin chains (γG + γA), compared to the vehicle, using CD34+ cells. Compound 10a also did not induce membrane perturbation and it was not mutagenic in the in vivo assay. Thus, compound 10a emerged as a new prototype of the gamma-globin-inducer group with additional analgesic and anti-inflammatory activities and proving to be a useful alternative to treat SCD symptoms.
Collapse
Affiliation(s)
| | | | - Aline Renata Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara 14800-903, Brazil
| | - Carolina Lanaro
- University of Campinas (UNICAMP), Hematology and Hemotherapy Center, Campinas 13083-878, Brazil
| | | | - Radda Rusinova
- Weill Cornell Medical College, Department of Physiology and Biophysics, New York, NY 10065-489, United States
| | - Rafael Consolin Chelucci
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara 14800-903, Brazil
| | - Karina Pereira Barbieri
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara 14800-903, Brazil
| | | | - Iracilda Zepone Carlos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara 14800-903, Brazil
| | - Olaf Sparre Andersen
- Weill Cornell Medical College, Department of Physiology and Biophysics, New York, NY 10065-489, United States
| | - Fernando Ferreira Costa
- University of Campinas (UNICAMP), Hematology and Hemotherapy Center, Campinas 13083-878, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara 14800-903, Brazil.
| |
Collapse
|
9
|
Guo L, Chen J, Wang Q, Zhang J, Huang W. Oridonin enhances γ‑globin expression in erythroid precursors from patients with β‑thalassemia via activation of p38 MAPK signaling. Mol Med Rep 2019; 21:909-917. [PMID: 31789406 DOI: 10.3892/mmr.2019.10848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/20/2019] [Indexed: 11/05/2022] Open
Abstract
Upregulation of fetal hemoglobin expression can alleviate the severity of β‑thalassaemia. This study aimed to investigate the effects of Oridonin (ORI, a diterpenoid compound) on γ‑globin expression in human erythroid precursor cells and the potential underlying mechanisms. Erythroid precursor cells were enriched from 12 patients with β‑thalassaemia by two‑phase culture. The cells were then treated with different doses of ORI and the survival of erythroid precursor cells was determined. In addition, the expression levels of γ‑globin and potential mechanisms were analyzed by reverse transcription‑quantitative PCR, western blotting and chromatin immunoprecipitation. Treatment with 0.5 µM ORI preferably enhanced γ‑globin expression and exhibited little cytotoxicity. Similar to sodium butyrate (NaB, a histone deacetylase inhibitor), ORI significantly increased p38 mitogen‑activated protein kinase (MAPK) activation, γ‑globin expression, histone H3 and H4 acetylation at the Gγ‑ and Aγ‑globin promoters, and cAMP‑response element binding protein 1 (CREB1) phosphorylation. These effects were significantly mitigated by treatment with SB23580, a p38 MAPK inhibitor, in erythroid precursor cells. Therefore, ORI may effectively enhance γ‑globin expression by activating p38 MAPK and CREB1, leading to histone modification in γ‑globin gene promoters during the maturation of erythroid precursor cells. These findings suggested that ORI may be a novel and potential therapeutic agent for the treatment of β‑thalassaemia.
Collapse
Affiliation(s)
- Lishan Guo
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jia Chen
- Department of Neonatology, Pediatric Clinics of Guangdong Women and Children Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Qianying Wang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Junliang Zhang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weimin Huang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
10
|
Phenotypic-screening generates active novel fetal globin-inducers that downregulate Bcl11a in a monkey model. Biochem Pharmacol 2019; 171:113717. [PMID: 31751536 DOI: 10.1016/j.bcp.2019.113717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/13/2019] [Indexed: 01/02/2023]
Abstract
Heritable disorders associated with hemoglobin production are the most common monogenic disorders. These are mainly represented by disorders such as β-thalassemia and sickle cell disease. Induction of fetal hemoglobin (HbF) has been known to ameliorate the clinical severity of these β hemoglobinopathies. A high throughput phenotypic screening was used in this study to isolate novel compounds that may enhance the expression of γ-globin, the component of HbF, in human erythroid cell lines and primary erythroid progenitors derived from human CD34+ cells. The effect of lead compounds on epigenetic enzymes and key transcriptional factors was evaluated to identify their mode of action. One hit compound was further evaluated in vivo using monkey models. Among the ~18,000 compounds screened, 18 compounds were selected and tested to determine their ability to induce HbF in human erythroid cell lines and primary erythroid cells. One of these compounds, a 3-phenyl-isoxazole derivative, could potentially induce HbF in monkey bone marrow cells when administered orally. The compound downregulated negative transcriptional regulators of HbF, Bcl11a and LRF without inhibiting the known epigenetic enzymes. These studies demonstrated the advantages associated with phenotype-screening and identified novel fetal globin inducers that may be useful for treating hemoglobinopathies.
Collapse
|
11
|
Breveglieri G, Salvatori F, Finotti A, Cosenza LC, Zuccato C, Bianchi N, Breda L, Rivella S, Bresciani A, Bisbocci M, Borgatti M, Gambari R. Development and characterization of cellular biosensors for HTS of erythroid differentiation inducers targeting the transcriptional activity of γ-globin and β-globin gene promoters. Anal Bioanal Chem 2019; 411:7669-7680. [PMID: 31273412 DOI: 10.1007/s00216-019-01959-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
There is a general agreement that pharmacologically mediated stimulation of human γ-globin gene expression and increase of production of fetal hemoglobin (HbF) is a potential therapeutic approach in the experimental therapy of β-thalassemia and sickle cell anemia. Here, we report the development and characterization of cellular biosensors carrying enhanced green fluorescence protein (EGFP) and red fluorescence protein (RFP) genes under the control of the human γ-globin and β-globin gene promoters, respectively; these dual-reporter cell lines are suitable to identify the induction ability of screened compounds on the transcription in erythroid cells of γ-globin and β-globin genes by FACS with efficiency and reproducibility. Our experimental system allows to identify (a) HbF inducers stimulating to different extent the activity of the γ-globin gene promoter and (b) molecules that stimulate also the activity of the β-globin gene promoter. A good correlation does exist between the results obtained by using the EGFP/RFP clones and experiments performed on erythroid precursor cells from β-thalassemic patients, confirming that this experimental system can be employed for high-throughput screening (HTS) analysis. Finally, we have demonstrated that this dual-reporter cell line can be used for HTS in 384-well plate, in order to identify novel HbF inducers for the therapy of β-thalassemia and sickle cell anemia. Graphical abstract.
Collapse
Affiliation(s)
- Giulia Breveglieri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.,Biotechnology Center, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Salvatori
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.,Biotechnology Center, University of Ferrara, 44121, Ferrara, Italy
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Biomedical Sciences and Specialist Surgery, Section of Biochemistry, Molecular Biology and Medical Genetics, University of Ferrara, 44121, Ferrara, Italy
| | - Laura Breda
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stefano Rivella
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | | | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.,Biotechnology Center, University of Ferrara, 44121, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.
| |
Collapse
|
12
|
Iftikhar F, Ali H, Musharraf SG. Cinchona alkaloids as natural fetal hemoglobin inducing agents in human erythroleukemia cells. RSC Adv 2019; 9:17551-17559. [PMID: 35520581 PMCID: PMC9066308 DOI: 10.1039/c9ra01744e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/28/2019] [Indexed: 01/14/2023] Open
Abstract
Pharmacologically mediated reactivation of γ-globin gene with an increase in fetal hemoglobin production, is a cost effective experimental therapeutic intervention for the management of β-hemoglobinopathies. Investigation of new pharmacological agents as HbF inducers from natural resources is desirable to develop safe and effective HbF inducers. We evaluated selected cinchona alkaloids (cinchonidine and quinidine) for their potential of erythroid differentiation and augmentation of fetal hemoglobin production. K562 cells were used as in vitro experimental model. Erythroid differentiation of K562 cells was studied using a benzidine assay, and total hemoglobin was estimated through a calorimetric method. Whereas, quantitative real-time PCR (qRT-PCR) was used to analyse γ-globin gene expression, and flow cytometry and immunofluorescence microscopy for evaluating HbF production. Cinchona alkaloids showed dose dependent erythroid differentiation, time driven cellular proliferation, with kinetics of hemoglobin accumulation in K562 cells. The findings of qRT-PCR showed an increase in expression of γ-globin mRNA content (3.17-fold in cinchonidine and 2.03-fold increase in quinidine treated K562 cells), accompanied by an increase in fetal hemoglobin production. Altogether, this study demonstrates that cinchona alkaloids can be used as therapeutic agents in treating β-thalassemia after further biological investigation. Pharmacologically mediated reactivation of γ-globin gene and fetal hemoglobin (HbF) induction by cinchona alkaloids; a cost effective experimental therapeutic intervention for the efficient management of β-thalassemia.![]()
Collapse
Affiliation(s)
- Fizza Iftikhar
- Dr Panjwani Center for Molecular Medicine and Drug Research
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-75270
- Pakistan
| | - Hamad Ali
- Dr Panjwani Center for Molecular Medicine and Drug Research
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-75270
- Pakistan
| | - Syed Ghulam Musharraf
- Dr Panjwani Center for Molecular Medicine and Drug Research
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-75270
- Pakistan
| |
Collapse
|
13
|
Afantitis A, Leonis G, Gambari R, Melagraki G. Consensus Predictive Model for Human K562 Cell Growth Inhibition through Enalos Cloud Platform. ChemMedChem 2018; 13:555-563. [PMID: 29195008 DOI: 10.1002/cmdc.201700675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 12/27/2022]
Abstract
β-Thalassemia is an inherited hematologic disorder caused by various mutations of the β-globin gene, thus resulting in a significant decrease in adult hemoglobin (HbA) production. An increase in fetal hemoglobin (HbF) levels by drug molecules is considered of great potential in β-thalassemia treatment and is expected to counterbalance the impaired production of HbA. In this work, based on a set of 129 experimentally tested biological inhibitors, we developed and validated a computational model for the prediction of K562 functional inhibition, possibly associated with HbF induction. To facilitate future advancements in the field, we incorporated our model into Enalos Cloud Platform, which enabled online access to our computational scheme (http://enalos.insilicotox.com/K562) through a user-friendly interface. This web service is offered to the wider community to promote in silico drug discovery through fast and reliable predictions.
Collapse
Affiliation(s)
| | | | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Georgia Melagraki
- Department of Military Sciences, Division of Physical Sciences and Applications, Hellenic Army Academy Vari, Greece
| |
Collapse
|
14
|
Lohani N, Bhargava N, Munshi A, Ramalingam S. Pharmacological and molecular approaches for the treatment of β-hemoglobin disorders. J Cell Physiol 2017; 233:4563-4577. [PMID: 29159826 DOI: 10.1002/jcp.26292] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
β-hemoglobin disorders, such as β-thalassemia and sickle cell anemia are among the most prevalent inherited genetic disorders worldwide. These disorders are caused by mutations in the gene encoding hemoglobin-β (HBB), a vital protein found in red blood cells (RBCs) that carries oxygen from lungs to all parts of the human body. As a consequence, there has been an enduring interest in this field in formulating therapeutic strategies for the treatment of these diseases. Currently, there is no cure available for hemoglobin disorders, although, some patients have been treated with bone marrow transplantation, whose scope is limited because of the difficulty in finding a histocompatible donor and also due to transplant-associated clinical complications that can arise during the treatment. On account of these constraints, reactivation of fetal hemoglobin (HbF) synthesis holds immense promise and is a viable strategy to alleviate the symptoms of β-hemoglobin disorders. Development of new genomic tools has led to the identification of important natural genetic modifiers of hemoglobin switching which include BCL11A, KLF1, HBSIL-MYB, LRF, LSD1, LDB1, histone deacetylases 1 and 2 (HDAC1 and HDAC2). miRNAs are also promising therapeutic targets for development of more effective strategies for the induction of HbF production. Many new small molecule pharmacological inducers of HbF production are already under pre-clinical and clinical development. Furthermore, recent advancements in gene and cell therapy includes targeted genome editing and iPS cell technologies, both of which utilizes a patient's own cells, are emerging as extremely promising approaches for significantly reducing the burden of β-hemoglobin disorders.
Collapse
Affiliation(s)
- Neelam Lohani
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Nupur Bhargava
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
15
|
Saab AM, Gambari R, Sacchetti G, Guerrini A, Lampronti I, Tacchini M, El Samrani A, Medawar S, Makhlouf H, Tannoury M, Abboud J, Diab-Assaf M, Kijjoa A, Tundis R, Aoun J, Efferth T. Phytochemical and pharmacological properties of essential oils from Cedrus species. Nat Prod Res 2017; 32:1415-1427. [DOI: 10.1080/14786419.2017.1346648] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Antoine M. Saab
- Faculty of Science II, Department of Biochemistry and Chemistry, Lebanese University, Lebanon
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessandra Guerrini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Tacchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Antoine El Samrani
- Faculty of Science II, Department of Biology, Lebanese University, Beirut, Lebanon
| | - Samir Medawar
- Faculty of Agriculture and Animal Sciences, Lebanese University, Beirut, Lebanon
| | - Hassane Makhlouf
- Faculty of Science II, Department of Biology, Lebanese University, Beirut, Lebanon
| | - Mona Tannoury
- Faculty of Science II, Department of Biology, Lebanese University, Beirut, Lebanon
| | - Jihad Abboud
- Faculty of Agriculture and Animal Sciences, Lebanese University, Beirut, Lebanon
| | - Mona Diab-Assaf
- Faculty of Science II, Department of Biochemistry and Chemistry, Lebanese University, Lebanon
| | - Anake Kijjoa
- ICBAS–Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Rosa Tundis
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Nutrition and Health Sciences, University of Calabria, Rende, Italy
| | - Jawad Aoun
- Faculty of Science II, Department of Biochemistry and Chemistry, Lebanese University, Lebanon
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
16
|
Bordbar M, Pasalar M, Safaei S, Kamfiroozi R, Zareifar S, Zekavat O, Haghpanah S. Complementary and alternative medicine use in thalassemia patients in Shiraz, southern Iran: A cross-sectional study. J Tradit Complement Med 2017; 8:141-146. [PMID: 29322002 PMCID: PMC5755989 DOI: 10.1016/j.jtcme.2017.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/24/2017] [Accepted: 05/09/2017] [Indexed: 01/19/2023] Open
Abstract
This study aimed to determine the frequency and pattern of complementary and alternative medicine (CAM) use in thalassemia patients in south of Iran. The survey was done using a validated questionnaire which was distributed among 122 thalassemia patients. Only 108 questionnaires were completed and turned back (response rate 88.5%). Patients referred to an outpatient thalassemia clinic in Shiraz, southern Iran for blood transfusion. The mean age of the patients was 22.9 ± 7.9 years (range 4–45 years) with female/male ratio 1.84. Seventy four (68.5%) of the responders used CAM at least once during their life, and about half of them used it concurrently with their conventional treatments. The most reported CAM product was mint juice (50%). The most common reason of CAM use was increased general health. The most common information source about CAM was physicians who were the most trusted source as well. CAM is frequently being used in thalassemia patients to ensure their sense of well-being and help them overcome the complications of their illnesses.
Collapse
Affiliation(s)
| | - Mehdi Pasalar
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Safaei
- Islamic Azad University, Isfahan (Khorasgan) Branch, Iran
| | - Roza Kamfiroozi
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sohelia Zareifar
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Zekavat
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sezaneh Haghpanah
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Relationship Between Some Single-nucleotide Polymorphism and Response to Hydroxyurea Therapy in Iranian Patients With β-Thalassemia Intermedia. J Pediatr Hematol Oncol 2017; 39:e171-e176. [PMID: 28121747 DOI: 10.1097/mph.0000000000000779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the possible relationship between hydroxyurea (HU) response and some single-nucleotide polymorphism (SNP) in patients affected by β-thalassemia intermedia. MATERIALS AND METHODS In this cross-sectional study, 100 β-thalassemia intermedia patients who were taking HU with a dose of 8 to 15 mg/kg body weight per day for a period of at least 6 months were randomly selected between February 2013 and October 2014 in southern Iran. HU response was defined based on decrease or cessation of the blood transfusion need and evaluation of Hb level. RESULTS In univariate analysis, from all evaluated SNPs, only rs10837814 SNP of olfactory receptors (ORs) OR51B2 showed a significant association with HU response (P=0.038) and from laboratory characteristics, only nucleated red blood cells showed significant associations (116%±183%) in good responders versus (264%±286%) in poor responders (P=0.045). In multiple logistic regression, neither laboratory variables nor different SNPs, showed significant association with HU response. Three novel nucleotide variations (-665 [A→C], -1301 [T→G],-1199 delA) in OR51B2 gene were found in good responders. CONCLUSIONS None of the evaluated SNPs in our study showed significant association with HU response. Further larger studies and evaluation of other genes are suggested.
Collapse
|
18
|
Radix Astragali Stimulates p38 MARK Phosphorylation in Pediatric Patients with β-Thalassemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7468979. [PMID: 27882072 PMCID: PMC5110864 DOI: 10.1155/2016/7468979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/01/2016] [Accepted: 10/10/2016] [Indexed: 11/27/2022]
Abstract
A previous study conducted by our group demonstrated that Radix Astragali compounded with Codonopsis pilosula and Plastrum testudinis was effective in treating pediatric β-thalassemia in a randomized, controlled clinical trial. However, the mechanism of action that underpins this treatment remains to be elucidated. Blood was collected from patients participating in this clinical trial and nucleated red blood cell-enriched mononuclear cells were isolated to facilitate the extraction of RNA and protein. RT-PCR was used to monitor the expression of globin genes and p38 MAPK, and total and phosphorylated p38 MAPK expression was assessed using Western blot analysis. Expression of α-, β-, and Aγ-globin mRNAs was not significantly affected following treatment with R. Astragali or the compounded formulation. However, Gγ-globin mRNA levels increased significantly in both treatment groups (when compared with pretreatment levels) following 12 weeks of treatment. Moreover, posttreatment Gγ-globin expression was significantly higher in both treatment groups compared with the control group. Although neither p38 MAPK mRNA nor protein levels were affected by the treatments, posttreatment phosphorylation of p38 MAPK was significantly increased in the R. Astragali and compounded formulation groups compared with the control group. These data suggest that the molecular mechanisms that underpin the efficacious use of R. Astragali (and its compounded formulation) in pediatric β-thalassemia treatment facilitate the induction of Gγ-globin expression following activation of p38 MAPK.
Collapse
|
19
|
Costa D, Capuano M, Sommese L, Napoli C. Impact of epigenetic mechanisms on therapeutic approaches of hemoglobinopathies. Blood Cells Mol Dis 2015; 55:95-100. [DOI: 10.1016/j.bcmd.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 11/24/2022]
|
20
|
Motovali-Bashi M, Ghasemi T. Role of XmnIgG Polymorphism in Hydroxyurea Treatment and Fetal Hemoglobin Level at Isfahanian Intermediate β-Thalassemia Patients. IRANIAN BIOMEDICAL JOURNAL 2015; 19:177-82. [PMID: 26024726 PMCID: PMC4571014 DOI: 10.7508/ibj.2015.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND β-thalassemia is the most common monogenic disorder in human. The (C-->T) polymorphism at -158 upstream region of the γG-globin gene and pharmacological factors such as hydroxyurea have been reported to influence γ-globin gene expression and the severity of clinical symptoms of β-thalassemia. METHODS In the present study, 51 β-thalassemia intermediate patients were studied. Xmn1γG polymorphism genotype was determined using Tetra-Primer ARMS-PCR technique. Hemoglobin (Hb) and fetal hemoglobin (HbF) levels were determined by gel electrophoresis. RESULTS Of 51 patients, 35 (68.6%) patients were heterozygous (CT) and 16 (31.4%) patients were homozygous (CC). Of 30 patients under treatment by hydroxyurea, 20 (66.7%) patients were heterozygous (CT) and 10 (33.3%) patients were homozygous (CC). Our results demonstrated that in the heterozygous (CT) genotype, the Hb (9.58 ± 1.25 gm/dl) and HbF (89.30 ± 21.87) levels were significantly higher in comparison with homozygous (CC) genotype (7.94 ± 1.34 gm/dl and 70.32 ± 40.56, respectively). Furthermore, we observed that after drug usage, the Hb and HbF levels in patients with heterozygous (CT) genotype (0.7 ± 1.26 gm/dl and 5.95 ± 14.8, respectively) raised more in comparison with homozygous (CC) genotype (0.26 ± 1.43 gm/dl and 0.8 ± 1.31, respectively). CONCLUSION Hb and HbF levels in the patients carrying T allele are increased significantly, and they also response to hydroxyurea treatment.
Collapse
Affiliation(s)
- Majid Motovali-Bashi
- Genetic Division, Dept. of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Tayyebeh Ghasemi
- Genetic Division, Dept. of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
21
|
Ratanasopa K, Strader MB, Alayash AI, Bulow L. Dissection of the radical reactions linked to fetal hemoglobin reveals enhanced pseudoperoxidase activity. Front Physiol 2015; 6:39. [PMID: 25750627 PMCID: PMC4335259 DOI: 10.3389/fphys.2015.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/27/2015] [Indexed: 02/03/2023] Open
Abstract
In the presence of excess hydrogen peroxide (H2O2), ferrous (Fe(+2)) human hemoglobin (Hb) (α2β2) undergoes a rapid conversion to a higher oxidation ferryl state (Fe(+4)) which rapidly autoreduces back to the ferric form (Fe(+3)) as H2O2 is consumed in the reaction. In the presence of additional H2O2 the ferric state can form both ferryl Hb and an associated protein radical in a pseudoperoxidative cycle that results in the loss of radicals and heme degradation. We examined whether adult HbA (β2α2) exhibits a different pseudoenzymatic activity than fetal Hb (γ2α2) due to the switch of γ to β subunits. Rapid mixing of the ferric forms of both proteins with excess H2O2 resulted in biphasic kinetic time courses that can be assigned to γ/β and α, respectively. Although there was a 1.5 fold increase in the fast reacting γ /β subunits the slower reacting phases (attributed to α subunits of both proteins) were essentially the same. However, the rate constant for the auto-reduction of ferryl back to ferric for both proteins was found to be 76% higher for HbF than HbA and in the presence of the mild reducing agent, ascorbate there was a 3-fold higher reduction rate in ferryl HbF as opposed to ferryl HbA. Using quantitative mass spectrometry in the presence of H2O2 we found oxidized γ/β Cys93, to be more abundantly present in HbA than HbF, whereas higher levels of nitrated β Tyr35 containing peptides were found in HbA samples treated with nitrite. The extraordinary stability of HbF reported here may explain the evolutionary advantage this protein may confer onto co-inherited hemoglobinopathies and can also be utilized in the engineering of oxidatively stable Hb-based oxygen carriers.
Collapse
Affiliation(s)
| | - Michael Brad Strader
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration Silver Spring, MD, USA
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration Silver Spring, MD, USA
| | - Leif Bulow
- Pure and Applied Biochemistry, Department of Chemistry, Lund University Lund, Sweden
| |
Collapse
|
22
|
Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, Kleanthous M, Rivella S, Gambari R. Recent trends in the gene therapy of β-thalassemia. J Blood Med 2015; 6:69-85. [PMID: 25737641 PMCID: PMC4342371 DOI: 10.2147/jbm.s46256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases.
Collapse
Affiliation(s)
- Alessia Finotti
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Laura Breda
- Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus ; Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Nicoletta Bianchi
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Cristina Zuccato
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus ; Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Stefano Rivella
- Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA ; Department of Cell and Development Biology, Weill Cornell Medical College, New York, NY, USA
| | - Roberto Gambari
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| |
Collapse
|
23
|
Natural Remedies for the Treatment of Beta-Thalassemia and Sickle Cell Anemia-Current Status and Perspectives in Fetal Hemoglobin Reactivation. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:123257. [PMID: 27350962 PMCID: PMC4897541 DOI: 10.1155/2014/123257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022]
Abstract
For the treatment of β-thalassemia and sickle cell disease (SCD), pharmacological induction of fetal hemoglobin (HbF) production may be a promising approach. To date, numerous studies have been done on identifying the novel HbF-inducing agents and understanding the underlying mechanism for stimulating the HbF production. In this review, we have summarized the identified HbF-inducing agents by far. By examining the action mechanisms of the HbF-inducing agents, various studies have suggested that despite the ability of stimulating HbF production, the chemotherapeutic agents could not be practically applied for treating β-hemoglobinopathies, especially β-thalassemia, due to the their cytotoxicity and growth-inhibitory effect. Owing to this therapeutic obstacle, much effort has been put on identifying new HbF-inducing agents from the natural world with the combination of efficacy, safety, and ease of use. Therefore, this review aims to (i) reveal the novel screening platforms for identifying potential inducers with high efficiency and accuracy and to (ii) summarize the new identified natural remedies for stimulating HbF production. Hopefully, this review can provide a new insight into the current status and future perspectives in fetal hemoglobin reactivation for treating β-thalassaemia and SCD.
Collapse
|
24
|
Najjari A, Asouri M, Gouhari LH, Niaki HA, Nejad ASM, Eslami SM, Abolghasemi H, Ataee R, Ebrahimi AA, Moshaei MR, Ahmadi AA. α:Non-α and Gγ:Aγ globin chain ratios in thalassemia intermedia patients treated with hydroxyurea. Asian Pac J Trop Biomed 2014; 4:S177-85. [PMID: 25183077 DOI: 10.12980/apjtb.4.2014c1161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/23/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES To elucidate the possible ways by which hydroxyurea molecules affect globin chain (α or β-like) synthesis. METHODS A total of 23 thalassemia intermedia patients (13 male and 10 female) aged between 5 and 26 years were treated for five months with 15 mg/(kg·day) of hydroxyurea. Hemoglobins electrophoresis and globin chain electrophoresis was performed on each sample at different time points before and during the treatment. RESULTS Fetal hemoglobin increased significantly in most patients and average episodes of transfusion decreased. Both Gγ and Aγ-globin chains increased significantly and α-globin:Nonα-globin chain as well as Gγ-globin:Aγ globin chains ratios decreased. CONCLUSIONS Improvement in α:non-α ratio and consequent decrease of free α-globin chain might be the cause of beneficial effects of hydroxyurea therapy. Two patients who felt better didn't show significant increase in their fetal hemoglobin level, and this is in contradiction with the hypothesis claiming that the HbF level increase is the cause of such therapeutic effect. In spite of the unclear mechanism of action of this drug, hydroxyurea therapy had noticeable impacts on thalassemia intermedia and also sickle cell disease and even patients suffering from thalassemia major.
Collapse
Affiliation(s)
- Abbas Najjari
- Centre for collective, reflection & implementation of ideas, Undersecretary for Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohsen Asouri
- North Research Center, Pasteur Institute of Iran, Amol, Iran ; 17th Shahrivar Hospital, Mazandaran University of Medical Sciences, Amol, Iran
| | - Ladan Hosseini Gouhari
- Iran University of Medical Sciences, School of Paramedicine, Cellular and Molecular Research Center, Tehran, Iran
| | - Haleh Akhavan Niaki
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | | | | | - Ramin Ataee
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Masoumeh Rezaei Moshaei
- Department of Plant Breeding and Biotechnology, Agricultural sciences & Natural Resources University of Sari, Iran
| | | |
Collapse
|
25
|
Finotti A, Gambari R. Recent trends for novel options in experimental biological therapy of β-thalassemia. Expert Opin Biol Ther 2014; 14:1443-54. [PMID: 24934764 DOI: 10.1517/14712598.2014.927434] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION β-thalassemias are caused by nearly 300 mutations of the β-globin gene, leading to low or absent production of adult hemoglobin. Achievements have been recently obtained on innovative therapeutic strategies for β-thalassemias, based on studies focusing on the transcriptional regulation of the γ-globin genes, epigenetic mechanisms governing erythroid differentiation, gene therapy and genetic correction of the mutations. AREAS COVERED The objective of this review is to describe recently published approaches (the review covers the years 2011 - 2014) useful for the development of novel therapeutic strategies for the treatment of β-thalassemia. EXPERT OPINION Modification of β-globin gene expression in β-thalassemia cells was achieved by gene therapy (eventually in combination with induction of fetal hemoglobin [HbF]) and correction of the mutated β-globin gene. Based on recent areas of progress in understanding the control of γ-globin gene expression, novel strategies for inducing HbF have been proposed. Furthermore, the identification of microRNAs involved in erythroid differentiation and HbF production opens novel options for developing therapeutic approaches for β-thalassemia and sickle-cell anemia.
Collapse
Affiliation(s)
- Alessia Finotti
- Biotechnology Centre of Ferrara University, Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia , Ferrara , Italy
| | | |
Collapse
|
26
|
Abstract
With increasing burdens placed on Primary Care Physicians in the prevention and management of Sickle Cell Disease (SCD), it is imperative that there is some basic understanding of the same. Needless to say, its management is a multifocal, multidisciplinary approach which includes a collaborative effort between patients, family members and the healthcare team. Primary Care Physicians must be familiar with the pathophysiological processes, diagnostic evaluation, and current standard of care, new treatment options, clinical research advances and medical management of sickle hemoglobinopathies and their complications. The guidelines should include new born screening and assessment, accessible medical records for those diagnosed with SCD, system support and prevention, management of complication and crisis periods and home management (dietary and lifestyle modifications).
Collapse
Affiliation(s)
- José V A Humphreys
- Department of Research, Optimum Health Clinic Ltd, Belmont Medical and Surgical Centre, St. John's, Antigua, West Indies, Clinical Faculty, American International School of Medicine, Georgetown Guyana and Atlanta Georgia, USA
| |
Collapse
|
27
|
Kukreja A, Tandon S, Mishra A, Tiwari A. Piceatannol: a potential futuristic natural stilbene as fetal haemoglobin inducer. J Clin Diagn Res 2013; 7:3028-31. [PMID: 24551719 DOI: 10.7860/jcdr/2013/6239.3839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 10/08/2013] [Indexed: 01/18/2023]
Abstract
Beta thalassaemia is an autosomal recessive inherited blood disorder which results in abnormal formation of Haemoglobin molecule and ineffective erythropoiesis. Patients need to be dependent on habitual blood transfusion and on unaffordable exorbitant therapies for continued existence. It has been hypothesized that if the level of foetal Haemoglobin increases, it compensates the need of adult Haemoglobin and hence, ameliorates clinical symptoms associated with beta thalassaemia major. Illation from previous studies has proved that reactivation of foetal Haemoglobin with the aid of natural compounds is a better alternative therapy for patients of beta thalassaemia because of its cost effectiveness and occurrence in natural eatables. Piceatannol, a naturally occurring stilbene, is less studied compound in comparison to resveratrol, but it shows a wide range of biological activities. This article has mainly focused on piceatannol and its application as a foetal Haemoglobin inducer in future.
Collapse
Affiliation(s)
- Aayush Kukreja
- School of Biotechnology, Rajiv Gandhi Technological University , Airport Bypass Road, Bhopal, Madhya Pradesh-462033, India
| | - Samarth Tandon
- School of Biotechnology, Rajiv Gandhi Technological University , Airport Bypass Road, Bhopal, Madhya Pradesh-462033, India
| | - Amit Mishra
- School of Biotechnology, Rajiv Gandhi Technological University , Airport Bypass Road, Bhopal, Madhya Pradesh-462033, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Technological University , Airport Bypass Road, Bhopal, Madhya Pradesh-462033, India
| |
Collapse
|
28
|
Breda L, Rivella S, Zuccato C, Gambari R. Combining gene therapy and fetal hemoglobin induction for treatment of β-thalassemia. Expert Rev Hematol 2013; 6:255-64. [PMID: 23782080 DOI: 10.1586/ehm.13.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
β-thalassemias are caused by nearly 300 mutations of the β-globin gene, leading to a low or absent production of adult hemoglobin (HbA). Two major therapeutic approaches have recently been proposed: gene therapy and induction of fetal hemoglobin (HbF) with the objective of achieving clinically relevant levels of Hbs. The objective of this article is to describe the development of therapeutic strategies based on a combination of gene therapy and induction of HbFs. An increase of β-globin gene expression in β-thalassemia cells can be achieved by gene therapy, although de novo production of clinically relevant levels of adult Hb may be difficult to obtain. On the other hand, an increased production of HbF is beneficial in β-thalassemia. The combination of gene therapy and HbF induction appears to be a pertinent strategy to achieve clinically relevant results.
Collapse
Affiliation(s)
- Laura Breda
- Department of Pediatrics, Division of Hematology-Oncology, Weill Cornell Medical College, New York, NY, USA.
| | | | | | | |
Collapse
|
29
|
Italia K, Jijina F, Merchant R, Swaminathan S, Nadkarni A, Gupta M, Ghosh K, Colah R. Comparison of in-vitro and in-vivo response to fetal hemoglobin production and γ-mRNA expression by hydroxyurea in Hemoglobinopathies. INDIAN JOURNAL OF HUMAN GENETICS 2013; 19:251-8. [PMID: 24019630 PMCID: PMC3758735 DOI: 10.4103/0971-6866.116128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Hydroxyurea, which induces Fetal hemoglobin (HbF) synthesis, is the only drug widely used in different hemoglobinopathies; however, the response is very variable. We compared the efficacy of hydroxyurea in-vitro in erythroid cultures and in-vivo in the same patients with different hemoglobinopathies to induce HbF production and enhance γ-messenger RNA expression. MATERIALS AND METHODS A total of 24-patients with different Hemoglobinopathies were given hydroxyurea and their response was studied in-vivo and in-vitro on mononuclear cells collected from them simultaneously. RESULTS A total of 57.7% of patients (responders) showed no further crisis or transfusion requirements after hydroxyurea therapy with a mean increase in fetal cells (F-cells) of 63.8 ± 59.1% and γ-mRNA expression of 205.5 ± 120.8%. In-vitro results also showed a mean increase in F-cells of 27.2 ± 24.7% and γ-mRNA expression of 119.6% ± 65.4% among the treated cells. Nearly 19.0% of the partial-responders reduced their transfusion requirements by 50% with a mean increase in F-cells of 61.2 ± 25.0% and 28.4 ± 25.3% and γ-mRNA-expression of 21.0% ± 1.4% and 80.0% ± 14.1% in-vivo and in-vitro respectively. The non-responders (15.3%) showed no change in their clinical status and there was no significant increase in F-cells levels and γ-mRNA expression in-vivo or in-vitro. CONCLUSION Thus, this method may help to predict the in-vivo response to hydroxyurea therapy; however, a much larger study is required.
Collapse
Affiliation(s)
- Khushnooma Italia
- National Institute of Immunohematology, Hematogenetics, 13 Floor, K.E.M. Hospital Campus, Parel, Mumbai, India
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Cho HJ, Jeong SG, Park JE, Han JA, Kang HR, Lee D, Song MJ. Antiviral activity of angelicin against gammaherpesviruses. Antiviral Res 2013; 100:75-83. [PMID: 23892155 DOI: 10.1016/j.antiviral.2013.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/13/2013] [Accepted: 07/15/2013] [Indexed: 12/29/2022]
Abstract
Human gammaherpesviruses including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are important pathogens as they persist in the host and cause various malignancies. However, few antiviral drugs are available to efficiently control gammaherpesvirus replication. Here we identified the antiviral activity of angelicin against murine gammaherpesvirus 68 (MHV-68), genetically and biologically related to human gammaherpesviruses. Angelicin, a furocoumarin naturally occurring tricyclic aromatic compound, efficiently inhibited lytic replication of MHV-68 in a dose-dependent manner following the virus entry. The IC50 of angelicin antiviral activity was estimated to be 28.95μM, while the CC50 of angelicin was higher than 2600μM. Furthermore, incubation with angelicin efficiently inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced lytic replication of human gammaherpresviruses in both EBV- and KSHV-infected cells. Taken together, these results suggest that MHV-68 can be a useful tool to screen novel antiviral agents against human gammaherepsviruses and that angelicin may provide a lead structure for the development of antiviral drug against gammaherpesviruses.
Collapse
Affiliation(s)
- Hye-Jeong Cho
- Department of Biosystems and Biotechnology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Pauline N, Cabral BNP, Anatole PC, Jocelyne AMV, Bruno M, Jeanne NY. The in vitro antisickling and antioxidant effects of aqueous extracts Zanthoxyllum heitzii on sickle cell disorder. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:162. [PMID: 23829696 PMCID: PMC3708797 DOI: 10.1186/1472-6882-13-162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/03/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Several plant extracts from Rutaceae family are currently used to the management of sickle cell disorder (SCD) in the African. Few reports have shown that extracts from Zanthoxyllum or Fagara genus demonstrated anti-sickling property. This study investigates the in vitro antisickling and antioxidant properties of extracts from Zanthoxyllum heitzii. METHODS The sickling of red blood cells (RBCs) was induced using sodium metabisulfite (2%) followed by treatment with extracts at different concentrations. The osmotic fragility tests permits to explore the effect of Z. heitzii extracts on haemoglobin S solubility and sickle cells membrane stability. For each extract, qualitative phytochemical tests were used to identify the presence of alkaloids, tannins, saponins, flavonoids, glycosides and phenols, while some quantitative methods such as Folin, Ferric Reducing Antioxidant Power (FRAP) and diphenyl 1, 2 picryl hydrazyl (DPPH) were used to determine the antioxidant potential of these extracts. RESULTS Sodium metabisulphite increased the sickling of RBCs from 29.62 to 55.46% during 2 h. Treatment of sickling cells with extracts at different concentrations showed that a decrease of the percentage of sickling cells was found in both induced and non induced sickling cells. The fruits extract of Z. heitzii demonstrated the best anti-sickling property. The same extract at 250 μg/mL showed the best membrane cell stability compared to others. All the extracts revealed an antioxidant and anti-radical activities although lesser compared to the standard. CONCLUSION The fruit extract of Z. Heitzii demonstrated the most significant antisickling effect with a potential for use in the clinical management of SCD.
Collapse
Affiliation(s)
- Nanfack Pauline
- Department of Biochemistry and Physiological Sciences, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, PO Box 1364, Yaounde, Cameroon
| | - Biapa Nya Prosper Cabral
- Department of Biochemistry, Faculty of Sciences, University of Dschang, Cameroon, PO Box 67, Dschang, Cameroon
| | - Pieme Constant Anatole
- Department of Biochemistry and Physiological Sciences, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, PO Box 1364, Yaounde, Cameroon
| | - Ama Moor Vicky Jocelyne
- Department of Biochemistry and Physiological Sciences, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, PO Box 1364, Yaounde, Cameroon
- University Center teaching hospital, Yaoundé, Cameroon
| | - Moukette Bruno
- Department of Biochemistry and Physiological Sciences, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, PO Box 1364, Yaounde, Cameroon
| | - Ngogang Yonkeu Jeanne
- Department of Biochemistry and Physiological Sciences, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, PO Box 1364, Yaounde, Cameroon
- University Center teaching hospital, Yaoundé, Cameroon
| |
Collapse
|
32
|
Qian X, Chen J, Zhao D, Guo L, Qian X. Plastrum testudinis induces γ-globin gene expression through epigenetic histone modifications within the γ-globin gene promoter via activation of the p38 MAPK signaling pathway. Int J Mol Med 2013; 31:1418-28. [PMID: 23588991 DOI: 10.3892/ijmm.2013.1338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/15/2013] [Indexed: 11/06/2022] Open
Abstract
The pharmacologically-induced expression of the γ-globin gene, to increase fetal hemoglobin (HbF) production, is a therapeutic strategy used for the treatment of β-thalassemia and sickle cell anemia (SCA). The aim of this study was to investigate the effects of Plastrum testudinis (PT) on differentiation, proliferation, γ-globin gene expression and HbF synthesis in human erythroid cells. For this purpose, we used the K562 human leukemia cell line and human erythroid progenitor cells from normal donors and patients with β-thalassemia cultured using the two-phase liquid culture system. The effects of PT on erythroid differentiation, proliferation, γ-globin gene expression and HbF synthesis, as well as the involvement of epigenetic histone modifications within the γ-globin gene promoter via activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway, were assessed by benzidine staining, trypan-blue dye exclusion, quantitative real-time RT-PCR (qRT-PCR), western blot analysis and chromatin immunoprecipitation (ChIP). PT promoted the erythroid differentiation of K562 cells, and increased γ-globin mRNA accumulation and HbF synthesis without inhibiting cell proliferation in K562 cells and human erythroid progenitors. PT exerted no effect on α- and β-globin gene expression. In human erythroid cells, PT activated the p38 MAPK signaling pathway, and enhanced the acetylation of histone H3 and H4, the phosphorylation of histone H3 within the Gγ- and Aγ-globin gene promoter regions, γ-globin mRNA accumulation and HbF synthesis. These effects were suppressed by pre-treatment with the p38 MAPK inhibitor, SB203580. Epigenetic histone modifications within γ-globin gene promoter regions, via activation of the p38 MAPK signaling pathway, are important for the induction of γ-globin gene expression in human erythroid cells by PT. PT may be a novel potential therapeutic agent for β-hemoglobinopathies, including β-thalassemia and SCA.
Collapse
Affiliation(s)
- Xinhua Qian
- Department of Neonatology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | | | | | | | | |
Collapse
|
33
|
A reduced curcuminoid analog as a novel inducer of fetal hemoglobin. Ann Hematol 2012; 92:379-86. [PMID: 23079892 DOI: 10.1007/s00277-012-1604-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 10/07/2012] [Indexed: 02/06/2023]
Abstract
Thalassemia is an inherited disorder of hemoglobin molecules that is characterized by an imbalance of α- and β-globin chain synthesis. Accumulation of unbound α-globin chains in erythroid cells is the major cause of pathology in β-thalassemia. Stimulation of γ-globin production can ameliorate disease severity as it combines with the α-globin to form fetal hemoglobin. We examined γ-globin-inducing effect of curcuminoids extracted from Curcuma longa L. and their metabolite reduced forms in erythroid leukemia K562 and human primary erythroid precursor cells. The results showed that curcuminoid compounds, especially bisdemethoxycurcumin are potential γ-globin enhancers. We also demonstrated that its reduced analog, hexahydrobisdemethoxycurcumin (HHBDMC), is most effective and leads to induction of γ-globin mRNA and HbF in primary erythroid precursor cells for 3.6 ± 0.4- and 2.0 ± 0.4-folds, respectively. This suggested that HHBDMC is the potential agent to be developed as a new therapeutic drug for β-thalassemia and related β-hemoglobinopathies.
Collapse
|
34
|
Gambari R. Alternative options for DNA-based experimental therapy of β-thalassemia. Expert Opin Biol Ther 2012; 12:443-62. [PMID: 22413823 DOI: 10.1517/14712598.2012.665047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Beta-thalassemias are caused by more than 200 mutations of the β-globin gene, leading to low or absent production of adult hemoglobin. Achievements have been made with innovative therapeutic strategies for β-thalassemias, based on research conducted at the levels of gene structure, transcription, mRNA processing and protein synthesis. AREAS COVERED The objective of this review is to describe the development of therapeutic strategies employing viral and non-viral DNA-based approaches for treatment of β-thalassemia. EXPERT OPINION Modification of β-globin gene expression in β-thalassemia cells has been achieved by gene therapy, correction of the mutated β-globin gene and RNA repair. In addition, cellular therapy has been proposed for β-thalassemia, including reprogramming of somatic cells to generate induced pluripotent stem cells to be genetically corrected. Based on the concept that increased production of fetal hemoglobin (HbF) is beneficial in β-thalassemia, DNA-based approaches to increase HbF production have been optimized, including treatment of target cells with lentiviral vectors carrying γ-globin genes. Finally, DNA-based targeting of α-globin gene expression has been applied to reduce the excess of α-globin production by β-thalassemia cells, one of the major causes of the clinical phenotype.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Department of Biochemistry and Molecular Biology, BioPharmaNet and Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Ferrara, Italy.
| |
Collapse
|
35
|
Li B, Ding L, Li W, Story MD, Pace BS. Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation. BMC Genomics 2012; 13:153. [PMID: 22537182 PMCID: PMC3353202 DOI: 10.1186/1471-2164-13-153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 04/26/2012] [Indexed: 12/14/2022] Open
Abstract
Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation.
Collapse
Affiliation(s)
- Biaoru Li
- Department Pediatrics, Georgia Health Sciences University, 1120 15th St, CN-4112, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
36
|
Brognara E, Lampronti I, Breveglieri G, Accetta A, Corradini R, Manicardi A, Borgatti M, Canella A, Multineddu C, Marchelli R, Gambari R. C(5) modified uracil derivatives showing antiproliferative and erythroid differentiation inducing activities on human chronic myelogenous leukemia K562 cells. Eur J Pharmacol 2011; 672:30-7. [PMID: 21958870 PMCID: PMC3271358 DOI: 10.1016/j.ejphar.2011.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 08/30/2011] [Accepted: 09/07/2011] [Indexed: 01/18/2023]
Abstract
The K562 cell line has been proposed as a useful experimental system to identify anti-tumor compounds acting by inducing terminal erythroid differentiation. K562 cells exhibit a low proportion of hemoglobin-synthesizing cells under standard cell growth conditions, but are able to undergo terminal erythroid differentiation when treated with a variety of anti-tumor compounds. In this paper we report a screening study on a set of different modified C(5) uracil derivatives for the evaluation of their antiproliferative effect in connection with erythroid differentiation pathways, and for defining a new class of drug candidates for the treatment of chronic myelogenous leukemia. Activity of the derivatives tested can be classified in two effect: an antiproliferative effect linked to a high level of erythroid differentiation activity and an antiproliferative effect without activation of gamma globin genes The highest antiproliferative effect and erythroid induction was shown by compound 9, a thymine derivative bearing a n-octyl chain on nitrogen N(1), whereas thymine did not show any effect, suggesting the importance of the linear alkyl chain in position N(1). To our knowledge this compound should be considered among the most efficient inducers of erythroid differentiation of K562 cells. This work is the starting point for the quest of more effective and specific drugs for the induction of terminal erythroid differentiation, for leading new insights in the treatment of neoplastic diseases with molecules acting by inducing differentiation rather than by simply exerting cytotoxic effects.
Collapse
Affiliation(s)
- Eleonora Brognara
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Molecular Biology Division, University of Ferrara, Via Luigi Borsari, 46-44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li H, Ko CH, Tsang SY, Leung PC, Fung MC, Fung KP. The Ethanol Extract of Fructus trichosanthis Promotes Fetal Hemoglobin Production via p38 MAPK Activation and ERK Inactivation in K562 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:657056. [PMID: 21876711 PMCID: PMC3163070 DOI: 10.1093/ecam/neq022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 02/22/2010] [Indexed: 11/14/2022]
Abstract
Pharmacological stimulation of fetal hemoglobin (HbF) expression may be a promising approach for the treatment of beta-thalassemia. In this study, the effects of Fructus trichosanthis (FT) were investigated in human erythroleukemic K562 cells for their gamma-globin mRNA and HbF-induction activities. The role of signaling pathways, including extracellular regulated protein kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), was also investigated. It was found that the ethanol extract of FT significantly increased gamma-globin mRNA and HbF levels, determined by real-time reverse transcription polymerase chain reaction and enzyme linked immunosorbent assay, respectively, in dose- and time-dependent manner. Total Hb (THb) levels were also elevated in the concentrations without cytotoxicity (<80 μg mL(-1)). Pre-treatment with p38 MAPK inhibitor SB203580 blocked the stimulatory effects of FT extract in total and HbF induction. In contrast, no change in HbF was observed when treated with ERK inhibitor PD98059. Furthermore, FT ethanol extract activated p38 MAPK and inhibited ERK signaling pathways in K562 cells, as revealed in western blotting analysis. In addition, SB203580 significantly abolished p38 MAPK activation when the cells were treated with FT. In summary, the ethanol extract of FT was found to be a potent inducer of HbF synthesis in K562 cells. The present data delineated the role of ERK and p38 MAPK signaling as molecular targets for pharmacologic stimulation of HbF production upon FT treatment.
Collapse
Affiliation(s)
- Hui Li
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
38
|
Wang Y, Hong C, Zhou C, Xu D, Qu HB. Screening Antitumor Compounds Psoralen and Isopsoralen from Psoralea corylifolia L. Seeds. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:363052. [PMID: 19131395 PMCID: PMC3135392 DOI: 10.1093/ecam/nen087] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 12/16/2008] [Indexed: 12/16/2022]
Abstract
Psoralea corylifolia L. (Fabaceae) is a widely used medical plant in China. This study was designed to screen and identify bioactive compounds with anticancer activity from the seeds of Psoralea corylifolia L. One volatile fraction (fraction I) and three other fractions (fraction II, III, IV) from methanol extraction of P. corylifolia L. were obtained. Bioactivities of these fractions were evaluated by the cytotoxicity on KB, KBv200, K562, K562/ADM cancer cells with MTT assay. Major components in the active fraction were identified by HPLC/MS(n). Fraction IV significantly inhibits the growth of cancer cells in a dose-dependent manner. The IC(50) values were 21.6, 24.4, 10.0 and 26.9, respectively. Psoralen and isopsoralen, isolated from fraction IV, were subject to bioactive assay and presented a dose-dependent anticancer activity in four cancer cell lines (KB, KBv200, K562 and K562/ADM). The IC(50) values of psoralen were 88.1, 86.6, 24.4 and 62.6, which of isopsoralen were 61.9, 49.4, 49.6 and 72.0, respectively. Apoptosis of tumor cell significantly increased after treated with psoralen and isopsoralen. Induction of apoptotic activity was confirmed by flow cytometry after staining with Annexin V/PI. These results suggested psoralen and isopsoralen contribute to anticancer effect of P. corylifolia L.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
39
|
Gambari R. Predictive analyses of biological effects of natural products: from plant extracts to biomolecular laboratory and computer modeling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:383290. [PMID: 19752166 PMCID: PMC3135393 DOI: 10.1093/ecam/nep096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 06/25/2009] [Indexed: 02/07/2023]
Abstract
Year by year, the characterization of the biological activity of natural products is becoming more competitive and complex, with the involvement in this research area of experts belonging to different scientific fields, including chemistry, biochemistry, molecular biology, immunology and bioinformatics. These fields are becoming of great interest for several high-impact scientific journals, including eCAM. The available literature in general, and a survey of reviews and original articles recently published, establishes that natural products, including extracts from medicinal plants and essential oils, retain interesting therapeutic activities, including antitumor, antiviral, anti-inflammatory, pro-apoptotic and differentiating properties. In this commentary, we focus attention on interest in networks based on complementary activation and comparative evaluation of different experimental strategies applied to the discovery and characterization of bioactive natural products. A representative flow chart is shown in the paper.
Collapse
Affiliation(s)
- Roberto Gambari
- Department of Biochemistry and Molecular Biology, Section of Molecular Biology, Via Fossato di Mortara, 74, 44100 Ferrara, Italy
| |
Collapse
|
40
|
Salvador A, Dall'Acqua S, Sardo MS, Caffieri S, Vedaldi D, Dall'Acqua F, Borgatti M, Zuccato C, Bianchi N, Gambari R. Erythroid induction of chronic myelogenous leukemia K562 cells following treatment with a photoproduct derived from the UV-A irradiation of 5-methoxypsoralen. ChemMedChem 2011; 5:1506-12. [PMID: 20645383 DOI: 10.1002/cmdc.201000204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Induction of terminal erythroid differentiation can be an efficient strategy to inhibit proliferation of chronic myelogenous leukemia cells. Psoralens, well-known photo-chemotherapeutic agents, were found to be efficient at inducing erythroid differentiation of K562 cells, an in vitro cell line isolated from the pleural effusion of a patient with chronic myelogenous leukemia in blast crisis. The effects of crude pre-irradiated solutions of 5-methoxypsoralen on erythroid differentiation of human leukemic K-562 cells were evaluated. The major photoproduct was characterized and analyzed, and it was found to induce erythroid differentiation of K562 cells and inhibit NF-kappaB/DNA interactions.
Collapse
Affiliation(s)
- Alessia Salvador
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo, 5, 35151, Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu K, Xing H, Zhang S, Liu SM, Fung MC. Cucurbitacin D induces fetal hemoglobin synthesis in K562 cells and human hematopoietic progenitors through activation of p38 pathway and stabilization of the γ-globin mRNA. Blood Cells Mol Dis 2010; 45:269-75. [PMID: 20926322 DOI: 10.1016/j.bcmd.2010.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/13/2010] [Accepted: 09/13/2010] [Indexed: 02/08/2023]
Abstract
The search for novel therapeutic candidates targeting fetal hemoglobin (HbF) activation to reduce the imbalance of globin genes is regarded as a promising approach for the clinical management of sickle cell disease and β-thalassemia. For the first time, we identified cucurbitacin D (CuD), an oxygenated tetracyclic triterpenoid, as a molecular entity inducing γ-globin gene expression and HbF synthesis in K562 cells and human hematopoietic progenitors from a β-thalassemia patient. CuD demonstrated a higher potency in HbF induction when compared with hydroxyurea, which was revealed by the evidence that CuD results in a higher fetal cell percentage and greater HbF content in K562 cells, in addition, to being less cytotoxic. Moreover, CuD also promotes higher HbF expression in primary erythroid cells. In the study to elucidate the molecular mechanisms of CuD's action, our data indicated that CuD-stimulated HbF synthesis was mediated by p38 pathway activation. At the post-transcriptional level, CuD treatment led to a significant elongation of the γ-globin mRNA half-life in K562 cells. Taken together, the results suggest that CuD may be a potential therapeutic agent for β-hemoglobinopathies, including sickle cell anemia and β-thalassemia.
Collapse
Affiliation(s)
- Kan Liu
- Department of Biology, the Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | |
Collapse
|
42
|
Foetal haemoglobin inducers and thalassaemia: novel achievements. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2010; 8:5-7. [PMID: 20104272 DOI: 10.2450/2009.0137-09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
El-Beshlawy A, Hamdy M, El Ghamrawy M. Fetal Globin Induction in β-thalassemia. Hemoglobin 2009; 33 Suppl 1:S197-203. [DOI: 10.3109/03630260903351882] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Salvatori F, Breveglieri G, Zuccato C, Finotti A, Bianchi N, Borgatti M, Feriotto G, Destro F, Canella A, Brognara E, Lampronti I, Breda L, Rivella S, Gambari R. Production of beta-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous beta(0)39 thalassemia patients. Am J Hematol 2009; 84:720-8. [PMID: 19810011 PMCID: PMC3572903 DOI: 10.1002/ajh.21539] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In several types of thalassemia (including beta(0)39-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying beta-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the beta(0)39-thalassemia globin gene under control of the beta-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of beta-globin by K562 cell clones expressing the beta(0)39-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from beta(0)39-thalassemia patients were demonstrated to be able to produce beta-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of beta(0)-thalassemia caused by stop codon mutations. Am. J. Hematol., 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Francesca Salvatori
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Giulia Breveglieri
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Cristina Zuccato
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Alessia Finotti
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Nicoletta Bianchi
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Monica Borgatti
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Giordana Feriotto
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Federica Destro
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Alessandro Canella
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Eleonora Brognara
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Ilaria Lampronti
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Laura Breda
- Department of Pediatric and Hematology-Oncology, Weill Medical College of Cornell University, New York, New York
| | - Stefano Rivella
- Department of Pediatric and Hematology-Oncology, Weill Medical College of Cornell University, New York, New York
| | - Roberto Gambari
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| |
Collapse
|
45
|
Increase in gamma-globin mRNA content in human erythroid cells treated with angelicin analogs. Int J Hematol 2009; 90:318-327. [PMID: 19777196 DOI: 10.1007/s12185-009-0422-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 08/27/2009] [Accepted: 08/30/2009] [Indexed: 10/20/2022]
Abstract
The aim of the present study was to identify molecular analogs of angelicin (ANG) able to increase erythroid differentiation of K562 cells and expression of gamma-globin genes in human erythroid precursor cells, with low effects on apoptosis. ANG-like molecules are well-known photosensitizers largely used for their antiproliferative activity in the treatment of different skin diseases (i.e., psoriasis, vitiligo, eczema, and mycosis fungoides). To verify the activity of these derivatives, we employed three experimental cell systems: (1) the human leukemic K562 cell line, (2) K562 cell clones stably transfected with a pCCL construct carrying green-EGFP under the gamma-globin gene promoter, and (3) the two-phase liquid culture of human erythroid progenitors isolated from normal donors and beta-thalassemia patients. The results of our study suggest that trimethyl ANG is a powerful inducer of erythroid differentiation, compared with known inducers, such as ANG, cytosine arabinoside, mithramycin, and cisplatin. These data could have practical relevance, because pharmacologically mediated regulation of human gamma-globin gene expression, with the consequent induction of fetal hemoglobin, is considered a potential therapeutic approach in hematological disorders including beta-thalassemia and sickle cell anemia.
Collapse
|
46
|
Hau DKP, Gambari R, Wong RSM, Yuen MCW, Cheng GYM, Tong CSW, Zhu GY, Leung AKM, Lai PBS, Lau FY, Chan AKW, Wong WY, Kok SHL, Cheng CH, Kan CW, Chan ASC, Chui CH, Tang JCO, Fong DWF. Phyllanthus urinaria extract attenuates acetaminophen induced hepatotoxicity: involvement of cytochrome P450 CYP2E1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:751-760. [PMID: 19386480 DOI: 10.1016/j.phymed.2009.01.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/17/2008] [Accepted: 01/27/2009] [Indexed: 05/27/2023]
Abstract
Acetaminophen is a commonly used drug for the treatment of patients with common cold and influenza. However, an overdose of acetaminophen may be fatal. In this study we investigated whether mice, administered intraperitoneally with a lethal dose of acetaminophen, when followed by oral administration of Phyllanthus urinaria extract, may be prevented from death. Histopathological analysis of mouse liver sections showed that Phyllanthus urinaria extract may protect the hepatocytes from acetaminophen-induced necrosis. Therapeutic dose of Phyllanthus urinaria extract did not show any toxicological phenomenon on mice. Immunohistochemical staining with the cytochrome P450 CYP2E1 antibody revealed that Phyllanthus urinaria extract reduced the cytochrome P450 CYP2E1 protein level in mice pre-treated with a lethal dose of acetaminophen. Phyllanthus urinaria extract also inhibited the cytochrome P450 CYP2E1 enzymatic activity in vitro. Heavy metals, including arsenic, cadmium, mercury and lead, as well as herbicide residues were not found above their detection limits. High performance liquid chromatography identified corilagin and gallic acid as the major components of the Phyllanthus urinaria extract. We conclude that Phyllanthus urinaria extract is effective in attenuating the acetaminophen induced hepatotoxicity, and inhibition of cytochrome P450 CYP2E1 enzyme may be an important factor for its therapeutic mechanism.
Collapse
Affiliation(s)
- Desmond Kwok Po Hau
- Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|